
Components Language Reference

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Encoder, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in
the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases
mentioned within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and
may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Macromedia Flash 8 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights
Reserved. http://www.on2.com.

Visual SourceSafe is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Sheila McGinn

Writing: Bob Berry, Jen deHaan, Peter deHaan, David Jacowitz, Wade Pickett

Managing Editor: Rosana Francescato

Lead Editor: Lisa Stanziano

Editing: Evelyn Eldridge, Mary Ferguson, Mary Kraemer, Jessie Wood

Production Management: Patrice O’Neill, Kristin Conradi, Yuko Yagi

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman. John Francis, Geeta Karmarkar, Masayo Noda,
Paul Rangel, Arena Reed, Mario Reynoso

Special thanks to Jody Bleyle, Mary Burger, Lisa Friendly, Stephanie Gowin, Bonnie Loo, Nivesh Rajbhandari, Mary Ann Walsh,
Erick Vera, the beta testers, and the entire Flash and Flash Player engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.
San Francisco, CA 94103

Contents
Chapter 1: Components Dictionary . 29

Types of components . 30
Other listings in this chapter. 33

Chapter 2: Accordion component (Flash Professional only) . . . 35

Using the Accordion component (Flash Professional only) 36
Customizing the Accordion component (Flash Professional only) . . 40
Accordion class (Flash Professional only) .47
Accordion.change . 51
Accordion.createChild() . 53
Accordion.createSegment() . 55
Accordion.destroyChildAt() .57
Accordion.getChildAt() . 58
Accordion.getHeaderAt() . 59
Accordion.numChildren . 60
Accordion.selectedChild. 61
Accordion.selectedIndex . 62

Chapter 3: Alert component (Flash Professional only) 65

Using the Alert component (Flash Professional only) 66
Customizing the Alert component (Flash Professional only)67
Alert class (Flash Professional only) . 71
Alert.buttonHeight .76
Alert.buttonWidth. .76
Alert.CANCEL. 77
Alert.cancelLabel .78
Alert.click .79
Alert.NO . 80
Alert.noLabel . 81
Alert.NONMODAL. 82
Alert.OK . 83
Alert.okLabel . 84
Alert.show() . 84
Alert.YES . 86
Alert.yesLabel .87
3

Chapter 4: Button component .89

Using the Button component . 90
Customizing the Button component . 94
Button class .101
Button.icon . 106
Button.label. 107
Button.labelPlacement. 108

Chapter 5: CellRenderer API. 109

Understanding the List class. 109
Using the CellRenderer API . 111
CellRenderer.getCellIndex() .118
CellRenderer.getDataLabel() .119
CellRenderer.getPreferredHeight() . 120
CellRenderer.getPreferredWidth() .121
CellRenderer.listOwner . 122
CellRenderer.owner . 123
CellRenderer.setSize() . 123
CellRenderer.setValue(). 124

Chapter 6: CheckBox component . 129

Using the CheckBox component . 130
Customizing the CheckBox component. 132
CheckBox class . 135
CheckBox.click . 140
CheckBox.label . 142
CheckBox.labelPlacement . 143
CheckBox.selected. 145

Chapter 7: Collection interface (Flash Professional only) 147

Collection class (Flash Professional only) . 147
Collection.addItem() . 148
Collection.contains() . 149
Collection.clear() . 150
Collection.getItemAt() .151
Collection.getIterator() . 152
Collection.getLength() . 153
Collection.isEmpty() . 153
Collection.removeItem(). 154
4 Contents

Chapter 8: ComboBox component . 157

Using the ComboBox component .159
Customizing the ComboBox component .162
ComboBox class .165
ComboBox.addItem() . 171
ComboBox.addItemAt() . 172
ComboBox.change . 173
ComboBox.close() . 174
ComboBox.close . 175
ComboBox.dataProvider . 176
ComboBox.dropdown. 178
ComboBox.dropdownWidth . 179
ComboBox.editable . 179
ComboBox.enter . 181
ComboBox.getItemAt(). .182
ComboBox.itemRollOut .183
ComboBox.itemRollOver .185
ComboBox.labelField .186
ComboBox.labelFunction. 187
ComboBox.length .188
ComboBox.open() .188
ComboBox.open .189
ComboBox.removeAll() . 191
ComboBox.removeItemAt(). .192
ComboBox.replaceItemAt() .193
ComboBox.restrict .194
ComboBox.rowCount .196
ComboBox.scroll . 197
ComboBox.selectedIndex .199
ComboBox.selectedItem . 200
ComboBox.sortItems() .201
ComboBox.sortItemsBy(). 202
ComboBox.text. 205
ComboBox.textField . 205
ComboBox.value . 206
Contents 5

Chapter 9: Data binding classes (Flash Professional only) . . . 207

Making data binding classes available at runtime
(Flash Professional only) .207
Classes in the mx.data.binding package
(Flash Professional only) . 208
Binding class (Flash Professional only) . 208
Constructor for the Binding class. 209
Binding.execute() .211
CustomFormatter class (Flash Professional only) 212
CustomFormatter.format() . 214
CustomFormatter.unformat() . 215
CustomValidator class (Flash Professional only) 216
CustomValidator.validate() . 217
CustomValidator.validationError() . 219
EndPoint class (Flash Professional only) . 220
Constructor for the EndPoint class .222
EndPoint.component .222
EndPoint.constant. .223
EndPoint.event. .223
EndPoint.location .224
EndPoint.property .226
ComponentMixins class (Flash Professional only).226
ComponentMixins.getField() .227
ComponentMixins.initComponent() .228
ComponentMixins.refreshDestinations() .229
ComponentMixins.refreshFromSources() . 230
ComponentMixins.validateProperty() . 230
DataType class (Flash Professional only) .233
DataType.encoder. .234
DataType.formatter. .235
DataType.getAnyTypedValue() .236
DataType.getAsBoolean(). .237
DataType.getAsNumber() .238
DataType.getAsString(). .238
DataType.getTypedValue() .239
DataType.kind . 240
DataType.setAnyTypedValue() . 240
DataType.setAsBoolean() . 241
DataType.setAsNumber() .242
DataType.setAsString() .243
DataType.setTypedValue() . 244
TypedValue class (Flash Professional only) . 245
Constructor for the TypedValue class. .246
6 Contents

TypedValue.type. 246
TypedValue.typeName . 247
TypedValue.value . 247

Chapter 10: DataGrid component (Flash Professional only) . . 249

Interacting with the DataGrid component
(Flash Professional only) . 250
Using the DataGrid component (Flash Professional only) 251
DataGrid performance strategies . 256
Customizing the DataGrid component (Flash Professional only) . . 258
DataGrid class (Flash Professional only) . 262
DataGrid.addColumn() . 268
DataGrid.addColumnAt() . 269
DataGrid.addItem() . 270
DataGrid.addItemAt() . 271
DataGrid.cellEdit . 272
DataGrid.cellFocusIn . 274
DataGrid.cellFocusOut . 275
DataGrid.cellPress . 277
DataGrid.change . 278
DataGrid.columnCount . 280
DataGrid.columnNames . 280
DataGrid.columnStretch. .281
DataGrid.dataProvider . 282
DataGrid.editable . 283
DataGrid.editField() . 285
DataGrid.focusedCell . 286
DataGrid.getColumnAt(). 287
DataGrid.getColumnIndex() . 288
DataGrid.headerHeight. 289
DataGrid.headerRelease . 289
DataGrid.hScrollPolicy .291
DataGrid.removeAllColumns() . 292
DataGrid.removeColumnAt() . 293
DataGrid.replaceItemAt() . 294
DataGrid.resizableColumns . 295
DataGrid.selectable . 296
DataGrid.showHeaders. 297
DataGrid.sortableColumns. 298
DataGrid.spaceColumnsEqually() . 299
DataGridColumn class (Flash Professional only) 300
Constructor for the DataGridColumn class. 302
DataGridColumn.cellRenderer . 303
Contents 7

DataGridColumn.columnName . 303
DataGridColumn.editable . 304
DataGridColumn.headerRenderer. 306
DataGridColumn.headerText . 306
DataGridColumn.labelFunction .307
DataGridColumn.resizable . 308
DataGridColumn.sortable . 309
DataGridColumn.sortOnHeaderRelease . 310
DataGridColumn.width. .311

Chapter 11: DataHolder component
(Flash Professional only) . 313

Creating an application with the DataHolder component
(Flash Professional only) . 314
DataHolder class . 315
DataHolder.data . 316

Chapter 12: DataProvider API . 317

DataProvider class . 317
DataProvider.addItem() . 319
DataProvider.addItemAt() . 319
DataProvider.editField(). 320
DataProvider.getEditingData(). 321
DataProvider.getItemAt() . 321
DataProvider.getItemID() .322
DataProvider.length .323
DataProvider.modelChanged .323
DataProvider.removeAll() .325
DataProvider.removeItemAt() .325
DataProvider.replaceItemAt(). .326
DataProvider.sortItems() .327
DataProvider.sortItemsBy() .328

Chapter 13: DataSet component (Flash Professional only). . . . 331

Using the DataSet component . 331
DataSet class (Flash Professional only). .335
DataSet.addItem .338
DataSet.addItem(). 340
DataSet.addItemAt() .342
DataSet.addSort(). .343
DataSet.afterLoaded .346
DataSet.applyUpdates() .347
8 Contents

DataSet.calcFields. 348
DataSet.changesPending() . 349
DataSet.clear() . 350
DataSet.createItem() .351
DataSet.currentItem . 352
DataSet.dataProvider . 353
DataSet.deltaPacket . 354
DataSet.deltaPacketChanged . 355
DataSet.disableEvents(). 356
DataSet.enableEvents() . 357
DataSet.filtered. 359
DataSet.filterFunc .361
DataSet.find() . 364
DataSet.findFirst() . 366
DataSet.findLast() . 367
DataSet.first() . 369
DataSet.getItemId() . 370
DataSet.getIterator() . 371
DataSet.getLength() . 373
DataSet.hasNext() . 373
DataSet.hasPrevious() . 374
DataSet.hasSort() . 375
DataSet.isEmpty() . 376
DataSet.items . 377
DataSet.itemClassName . 378
DataSet.iteratorScrolled. 378
DataSet.last() . 380
DataSet.length .381
DataSet.loadFromSharedObj(). 382
DataSet.locateById(). 384
DataSet.logChanges . 385
DataSet.modelChanged . 386
DataSet.newItem . 389
DataSet.next(). 390
DataSet.previous() .391
DataSet.properties. 392
DataSet.readOnly. 392
DataSet.removeAll() . 393
DataSet.removeItem . 394
DataSet.removeItem(). 396
DataSet.removeItemAt() . 397
DataSet.removeRange(). 398
Contents 9

DataSet.removeSort() . 399
DataSet.resolveDelta . 401
DataSet.saveToSharedObj() . 402
DataSet.schema . 404
DataSet.selectedIndex. 405
DataSet.setIterator() . 405
DataSet.setRange() . 406
DataSet.skip() .407
DataSet.useSort() . 408

Chapter 14: DateChooser component
(Flash Professional only) . 411

Using the DateChooser component (Flash Professional only)411
Customizing the DateChooser component
(Flash Professional only) . 413
DateChooser class (Flash Professional only) . 417
DateChooser.change . 421
DateChooser.dayNames .423
DateChooser.disabledDays .423
DateChooser.disabledRanges . 424
DateChooser.displayedMonth . 425
DateChooser.displayedYear . 425
DateChooser.firstDayOfWeek .426
DateChooser.monthNames .427
DateChooser.scroll .427
DateChooser.selectableRange . 429
DateChooser.selectedDate. 430
DateChooser.showToday . 431

Chapter 15: DateField component
(Flash Professional only) . 433

Using the DateField component (Flash Professional only) 433
Customizing the DateField component (Flash Professional only) . .435
DateField class (Flash Professional only) . 439
DateField.change . 444
DateField.close() . 445
DateField.close . 446
DateField.dateFormatter .448
DateField.dayNames .448
DateField.disabledDays. 449
DateField.disabledRanges . 449
DateField.displayedMonth . 450
DateField.displayedYear . 451
10 Contents

DateField.firstDayOfWeek. 452
DateField.monthNames . 452
DateField.open(). 453
DateField.open . 454
DateField.pullDown . 455
DateField.scroll . 456
DateField.selectableRange . 458
DateField.selectedDate . 459
DateField.showToday . 460

Chapter 16: Delegate class .461

Delegate.create() . 462

Chapter 17: DeltaItem class (Flash Professional only) 463

DeltaItem.argList . 464
DeltaItem.curValue. 464
DeltaItem.delta . 465
DeltaItem.kind . 465
DeltaItem.message . 466
DeltaItem.name. 466
DeltaItem.newValue. 467
DeltaItem.oldValue. 467

Chapter 18: Delta interface (Flash Professional only) 469

Delta.addDeltaItem() . 470
Delta.getChangeList() . 470
Delta.getDeltaPacket() . 471
Delta.getId() . 472
Delta.getItemByName() . 473
Delta.getMessage() . 474
Delta.getOperation() . 475
Delta.getSource(). 476

Chapter 19: DeltaPacket interface (Flash Professional only) . 479

DeltaPacket.getConfigInfo() . 480
DeltaPacket.getIterator() .481
DeltaPacket.getSource() . 482
DeltaPacket.getTimestamp(). 483
DeltaPacket.getTransactionId() . 484
DeltaPacket.logChanges() . 485
Contents 11

Chapter 20: DepthManager class .487

DepthManager.createChildAtDepth() . 489
DepthManager.createClassChildAtDepth() . 490
DepthManager.createClassObjectAtDepth() . 491
DepthManager.createObjectAtDepth() . 492
DepthManager.kBottom . 493
DepthManager.kCursor . 493
DepthManager.kNotopmost . 493
DepthManager.kTooltip . 494
DepthManager.kTop. 494
DepthManager.kTopmost . 495
DepthManager.setDepthAbove() . 495
DepthManager.setDepthBelow() . 496
DepthManager.setDepthTo() . 496

Chapter 21: EventDispatcher class. 499

Event objects . 499
EventDispatcher class (API) . 500
EventDispatcher.addEventListener() . 501
EventDispatcher.dispatchEvent() . 503
EventDispatcher.removeEventListener(). 504

Chapter 22: FLVPlayback Component
(Flash Professional Only) . 505

Using the FLVPlayback component .507
Using cue points . 513
Playing multiple FLV files . 521
Streaming FLV files from a FCS . 524
Customizing the FLVPlayback component. 524
FLVPlayback class . 539
VideoError class. .698
VideoPlayer class .706
Using a SMIL file . 712

Chapter 23: FocusManager class . 721

Using Focus Manager .722
Customizing Focus Manager .725
FocusManager class (API) .725
FocusManager.defaultPushButton .729
FocusManager.defaultPushButtonEnabled .730
FocusManager.enabled .730
12 Contents

FocusManager.getFocus(). 731
FocusManager.nextTabIndex . 732
FocusManager.sendDefaultPushButtonEvent(). 732
FocusManager.setFocus() . 734

Chapter 24: Form class (Flash Professional only) 735

Using the Form class (Flash Professional only). 735
Form class (Flash Professional only) . 736
Form.currentFocusedForm . 742
Form.getChildForm(). 743
Form.indexInParentForm . 744
Form.numChildForms . 744
Form.parentIsForm . 745
Form.parentForm . 746
Form.rootForm . 746
Form.visible . 747

Chapter 25: Iterator interface (Flash Professional only) 749

Iterator.hasNext() . 749
Iterator.next() . 750

Chapter 26: Label component . 751

Using the Label component . 751
Customizing the Label component. 753
Label class . 755
Label.autoSize . 758
Label.html . 758
Label.text . 759

Chapter 27: List component . 761

Using the List component. 762
Customizing the List component . 766
List class . 770
List.addItem() . 776
List.addItemAt() .777
List.cellRenderer . 778
List.change . 778
List.dataProvider . 780
List.getItemAt() . 781
List.hPosition. 782
List.hScrollPolicy . 783
Contents 13

List.iconField .784
List.iconFunction. .785
List.itemRollOut .786
List.itemRollOver. 788
List.labelField .789
List.labelFunction .790
List.length . 791
List.maxHPosition . 791
List.multipleSelection .792
List.removeAll() .793
List.removeItemAt() .794
List.replaceItemAt() .795
List.rowCount . 797
List.rowHeight .798
List.scroll .799
List.selectable . 800
List.selectedIndex . 801
List.selectedIndices . 802
List.selectedItem . 803
List.selectedItems . 804
List.setPropertiesAt() . 805
List.sortItems() . 806
List.sortItemsBy() .807
List.vPosition . 809
List.vScrollPolicy. 810

Chapter 28: Loader component . 813

Using the Loader component . 813
Customizing the Loader component. 816
Loader class . 817
Loader.autoLoad. 821
Loader.bytesLoaded . 821
Loader.bytesTotal .822
Loader.complete .823
Loader.content. .825
Loader.contentPath .826
Loader.load() .826
Loader.percentLoaded .828
Loader.progress .828
Loader.scaleContent . 830
14 Contents

Chapter 29: Media components (Flash Professional only) 831

Interacting with media components (Flash Professional only). 832
Understanding media components (Flash Professional only) 833
Using media components (Flash Professional only) 836
Media component parameters (Flash Professional only) 843
Creating applications with media components
(Flash Professional only) . 846
Customizing media components (Flash Professional only) 847
Media class (Flash Professional only) . 847
Media.activePlayControl. .851
Media.addCuePoint() . 852
Media.aspectRatio . 853
Media.associateController(). 853
Media.associateDisplay() . 854
Media.autoPlay . 855
Media.autoSize . 856
Media.backgroundStyle . 857
Media.bytesLoaded . 858
Media.bytesTotal . 858
Media.change . 859
Media.click . 860
Media.complete .861
Media.contentPath. 862
Media.controllerPolicy. 863
Media.controlPlacement. 864
Media.cuePoint . 864
Media.cuePoints. 865
Media.displayFull() . 866
Media.displayNormal() . 867
Media.getCuePoint() . 868
Media.horizontal . 868
Media.mediaType. 869
Media.pause() . 870
Media.play() . 870
Media.playheadChange . 871
Media.playheadTime . 872
Media.playing . 873
Media.preferredHeight . 873
Media.preferredWidth . 874
Media.progress . 875
Media.scrubbing . 876
Media.removeAllCuePoints(). 877
Contents 15

Media.removeCuePoint(). 878
Media.setMedia(). .879
Media.stop() .880
Media.totalTime .880
Media.volume . 881
Media.volume .882

Chapter 30: Menu component (Flash Professional only) 883

Interacting with the Menu component (Flash Professional only) . . .884
Using the Menu component (Flash Professional only)885
About menu item types (Flash Professional only) 888
About initialization object properties (Flash Professional only). 891
Menu parameters (Flash Professional only) .892
Creating an application with the Menu component
(Flash Professional only) .892
Customizing the Menu component (Flash Professional only)897
Menu class (Flash Professional only) . 901
Menu.addMenuItem() . 905
Menu.addMenuItemAt(). .907
Menu.change . 908
Menu.createMenu(). 910
Menu.dataProvider .911
Menu.getMenuItemAt() . 913
Menu.hide(). 914
Menu.indexOf() . 915
Menu.menuHide . 917
Menu.menuShow . 919
Menu.removeAll() . 921
Menu.removeMenuItem() .922
Menu.removeMenuItemAt() . 924
Menu.rollOut . 925
Menu.rollOver. .927
Menu.setMenuItemEnabled() . 929
Menu.setMenuItemSelected() . 930
Menu.show() .932
MenuDataProvider class .933
MenuDataProvider.addMenuItem() . 934
MenuDataProvider.addMenuItemAt() .936
MenuDataProvider.getMenuItemAt() .938
MenuDataProvider.indexOf() . 939
MenuDataProvider.removeMenuItem() . 941
MenuDataProvider.removeMenuItemAt() . 943
16 Contents

Chapter 31: MenuBar component
(Flash Professional only). 945

Interacting with the MenuBar component
(Flash Professional only) . 946
Using the MenuBar component (Flash Professional only) 946
Customizing the MenuBar component (Flash Professional only) . . 948
MenuBar class (Flash Professional only) .951
MenuBar.addMenu() . 955
MenuBar.addMenuAt() . 957
MenuBar.dataProvider . 958
MenuBar.getMenuAt() . 960
MenuBar.getMenuEnabledAt(). .961
MenuBar.labelField . 962
MenuBar.labelFunction. 963
MenuBar.removeAll() . 964
MenuBar.removeMenuAt() . 965
MenuBar.setMenuEnabledAt() . 966

Chapter 32: NumericStepper component 969

Using the NumericStepper component. 970
Customizing the NumericStepper component 972
NumericStepper class . 975
NumericStepper.change. 980
NumericStepper.maximum .981
NumericStepper.minimum . 982
NumericStepper.nextValue . 983
NumericStepper.previousValue . 984
NumericStepper.stepSize . 985
NumericStepper.value. 986

Chapter 33: PopUpManager class . 987

PopUpManager.createPopUp() . 988
PopUpManager.deletePopUp() . 989

Chapter 34: ProgressBar component .991

Using the ProgressBar component .991
Customizing the ProgressBar component . 996
ProgressBar class . 999
ProgressBar.complete . 1003
ProgressBar.conversion . 1005
ProgressBar.direction . 1006
ProgressBar.indeterminate . 1007
Contents 17

ProgressBar.label .1008
ProgressBar.labelPlacement .1009
ProgressBar.maximum. 1010
ProgressBar.minimum . 1012
ProgressBar.mode . 1013
ProgressBar.percentComplete . 1014
ProgressBar.progress . 1016
ProgressBar.setProgress() . 1018
ProgressBar.source .1020
ProgressBar.value. 1021

Chapter 35: RadioButton component .1023

Using the RadioButton component. .1024
Customizing the RadioButton component .1025
RadioButton class .1029
RadioButton.click .1035
RadioButton.data . 1037
RadioButton.groupName . 1038
RadioButton.label .1039
RadioButton.labelPlacement .1040
RadioButton.selected. 1041
RadioButton.selectedData .1042
RadioButton.selection .1043

Chapter 36: RadioButtonGroup component1045

Chapter 37: RDBMSResolver component
(Flash Professional only) .1047

Using the RDBMSResolver component
(Flash Professional only) .1048
RDBMSResolver class (Flash Professional only) 1051
RDBMSResolver.addFieldInfo() .1053
RDBMSResolver.beforeApplyUpdates .1054
RDBMSResolver.deltaPacket .1055
RDBMSResolver.fieldInfo. .1055
RDBMSResolver.nullValue. .1056
RDBMSResolver.reconcileResults. 1057
RDBMSResolver.reconcileUpdates .1058
RDBMSResolver.tableName .1059
RDBMSResolver.updateMode .1060
RDBMSResolver.updatePacket . 1061
RDBMSResolver.updateResults. .1062
18 Contents

Chapter 38: RectBorder class. 1063

Using styles with the RectBorder class . 1064
Creating a custom RectBorder implementation 1067

Chapter 39: Screen class (Flash Professional only). 1071

Loading external content into screens (Flash Professional only) . 1072
Screen class (API) (Flash Professional only) 1074
Screen.allTransitionsInDone . 1080
Screen.allTransitionsOutDone . 1081
Screen.currentFocusedScreen. 1081
Screen.getChildScreen() . 1082
Screen.indexInParent . 1083
Screen.mouseDown . 1084
Screen.mouseDownSomewhere . 1085
Screen.mouseMove. 1085
Screen.mouseOut . 1086
Screen.mouseOver . 1087
Screen.mouseUp . 1088
Screen.mouseUpSomewhere . 1088
Screen.numChildScreens. 1089
Screen.parentIsScreen . 1090
Screen.parentScreen . 1091
Screen.rootScreen. 1091

Chapter 40: ScrollPane component. 1093

Using the ScrollPane component . 1094
Customizing the ScrollPane component. 1096
ScrollPane class . 1098
ScrollPane.complete . 1103
ScrollPane.content . 1104
ScrollPane.contentPath . 1106
ScrollPane.getBytesLoaded(). 1107
ScrollPane.getBytesTotal() . 1108
ScrollPane.hLineScrollSize . 1109
ScrollPane.hPageScrollSize . 1110
ScrollPane.hPosition . 1111
ScrollPane.hScrollPolicy . 1112
ScrollPane.progress . 1113
ScrollPane.refreshPane() . 1115
ScrollPane.scroll. 1116
ScrollPane.scrollDrag . 1118
Contents 19

ScrollPane.vLineScrollSize . 1119
ScrollPane.vPageScrollSize. 1120
ScrollPane.vPosition . 1121
ScrollPane.vScrollPolicy . 1122

Chapter 41: SimpleButton class . 1125

SimpleButton.click . 1129
SimpleButton.emphasized . 1131
SimpleButton.emphasizedStyleDeclaration . 1132
SimpleButton.selected. 1132
SimpleButton.toggle. 1133

Chapter 42: Slide class (Flash Professional only) 1135

Using the Slide class (Flash Professional only) 1136
Slide class (API) (Flash Professional only) . 1138
Slide.autoKeyNav . 1145
Slide.currentChildSlide . 1146
Slide.currentFocusedSlide . 1147
Slide.currentSlide . 1147
Slide.defaultKeydownHandler . 1148
Slide.firstSlide . 1149
Slide.getChildSlide(). 1150
Slide.gotoFirstSlide() . 1151
Slide.gotoLastSlide() . 1152
Slide.gotoNextSlide() . 1154
Slide.gotoPreviousSlide() . 1156
Slide.gotoSlide() . 1158
Slide.hideChild . 1159
Slide.indexInParentSlide . 1160
Slide.lastSlide. 1161
Slide.nextSlide . 1163
Slide.numChildSlides . 1164
Slide.overlayChildren . 1165
Slide.parentIsSlide . 1166
Slide.parentSlide . 1166
Slide.playHidden .1167
Slide.previousSlide .1167
Slide.revealChild . 1168
Slide.rootSlide . 1169
20 Contents

Chapter 43: StyleManager class .1171

StyleManager.registerColorName() . 1172
StyleManager.registerColorStyle(). 1173
StyleManager.registerInheritingStyle() . 1174

Chapter 44: SystemManager class . 1175

SystemManager.screen . 1176

Chapter 45: TextArea component . 1177

Using the TextArea component . 1178
Customizing the TextArea component . 1180
TextArea class. 1182
TextArea.change . 1187
TextArea.editable . 1189
TextArea.hPosition. 1190
TextArea.hScrollPolicy . 1191
TextArea.html . 1192
TextArea.length . 1193
TextArea.maxChars . 1194
TextArea.maxHPosition . 1195
TextArea.maxVPosition . 1196
TextArea.password . 1198
TextArea.restrict . 1199
TextArea.scroll . 1200
TextArea.styleSheet . 1202
TextArea.text . 1204
TextArea.vPosition. 1205
TextArea.vScrollPolicy . 1206
TextArea.wordWrap . 1207

Chapter 46: TextInput component . 1209

Using the TextInput component . 1210
Customizing the TextInput component . 1212
TextInput class . 1214
TextInput.change . 1219
TextInput.editable. 1221
TextInput.enter . 1222
TextInput.hPosition . 1224
TextInput.length . 1225
TextInput.maxChars. 1226
TextInput.maxHPosition . 1227
Contents 21

TextInput.password. 1228
TextInput.restrict . 1229
TextInput.text . 1231

Chapter 47: TransferObject interface .1233

TransferObject.clone() . 1234
TransferObject.getPropertyData() . 1235
TransferObject.setPropertyData(). 1236

Chapter 48: TransitionManager class . 1237

Using the TransitionManager class . 1237
TransitionManager class summary . 1239
TransitionManager.allTransitionsInDone .1240
TransitionManager.allTransitionsOutDone . 1241
TransitionManager.content . 1243
TransitionManager.contentAppearance . 1243
TransitionManager.start() . 1244
TransitionManager.startTransition() . 1246
TransitionManager.toString() . 1248
Transition-based classes . 1249

Chapter 49: TreeDataProvider interface
(Flash Professional only) . 1257

TreeDataProvider.addTreeNode() . 1258
TreeDataProvider.addTreeNodeAt() . 1259
TreeDataProvider.attributes.data .1260
TreeDataProvider.attributes.label . 1261
TreeDataProvider.getTreeNodeAt() . 1261
TreeDataProvider.removeTreeNode() . 1262
TreeDataProvider.removeTreeNodeAt() . 1263

Chapter 50: Tree component (Flash Professional only) 1265

Using the Tree component (Flash Professional only) 1266
Customizing the Tree component (Flash Professional only) 1273
Tree class (Flash Professional only) . 1278
Tree.addTreeNode() . 1285
Tree.addTreeNodeAt() . 1286
Tree.dataProvider . 1288
Tree.firstVisibleNode .1290
22 Contents

Tree.getDisplayIndex() . 1291
Tree.getIsBranch() . 1293
Tree.getIsOpen() . 1294
Tree.getNodeDisplayedAt() . 1295
Tree.getTreeNodeAt(). 1296
Tree.nodeClose. 1297
Tree.nodeOpen. 1299
Tree.refresh(). 1300
Tree.removeAll() . 1302
Tree.removeTreeNodeAt() . 1303
Tree.selectedNode. 1304
Tree.selectedNodes. 1305
Tree.setIcon() . 1306
Tree.setIsBranch() . 1308
Tree.setIsOpen(). 1309

Chapter 51: Tween class .1311

Using the Tween class. 1313
Applying easing methods to components. 1315
Tween.continueTo(). 1319
Tween.duration . 1320
Tween.fforward() . 1320
Tween.finish. 1321
Tween.FPS . 1322
Tween.nextFrame() . 1323
Tween.onMotionChanged . 1324
Tween.onMotionFinished. 1325
Tween.onMotionResumed. 1326
Tween.onMotionStarted. .1327
Tween.onMotionStopped. 1328
Tween.position . 1329
Tween.prevFrame() . 1330
Tween.resume() . 1331
Tween.rewind() . 1333
Tween.start() . 1334
Tween.stop() . 1335
Tween.time . 1336
Tween.toString(). .1337
Tween.yoyo(). 1338
Contents 23

Chapter 52: UIComponent class. .1339

UIComponent class (API) . 1339
UIComponent.enabled . 1343
UIComponent.focusIn. 1343
UIComponent.focusOut . 1345
UIComponent.getFocus() . 1346
UIComponent.keyDown. 1347
UIComponent.keyUp . 1348
UIComponent.setFocus() . 1349
UIComponent.tabIndex .1350

Chapter 53: UIEventDispatcher class . 1351

UIEventDispatcher.keyDown . 1352
UIEventDispatcher.keyUp . 1353
UIEventDispatcher.load . 1353
UIEventDispatcher.mouseDown . 1354
UIEventDispatcher.mouseOut . 1354
UIEventDispatcher.mouseOver . 1355
UIEventDispatcher.mouseUp . 1356
UIEventDispatcher.removeEventListener() . 1356
UIEventDispatcher.unload. 1357

Chapter 54: UIObject class .1359

UIObject.bottom . 1362
UIObject.createClassObject(). 1362
UIObject.createLabel(). 1363
UIObject.createObject() . 1365
UIObject.destroyObject(). 1365
UIObject.doLater() . 1366
UIObject.draw. 1368
UIObject.getStyle() . 1369
UIObject.height . 1370
UIObject.hide . 1370
UIObject.invalidate() .1371
UIObject.left . 1372
UIObject.load . 1372
UIObject.move . 1373
UIObject.move(). 1375
UIObject.redraw() . 1376
UIObject.resize. 1376
UIObject.reveal. 1378
24 Contents

UIObject.right . 1379
UIObject.scaleX . 1379
UIObject.scaleY . 1380
UIObject.setSize() . 1381
UIObject.setSkin() . 1382
UIObject.setStyle(). 1383
UIObject.top . 1385
UIObject.unload . 1385
UIObject.visible . 1386
UIObject.width .1387
UIObject.x .1387
UIObject.y . 1388

Chapter 55: UIScrollBar Component . 1389

Using the UIScrollBar component . 1389
Customizing the UIScrollBar component . 1393
UIScrollBar class . 1395
UIScrollBar.horizontal . 1400
UIScrollBar.lineScrollSize . 1401
UIScrollBar.pageScrollSize . 1402
UIScrollBar.scroll . 1403
UIScrollBar.scrollPosition . 1406
UIScrollBar.setScrollProperties() . 1408
UIScrollBar.setScrollTarget() . 1409
UIScrollBar._targetInstanceName . 1410

Chapter 56: Web service classes (Flash Professional only) . . 1413

Making web service classes available at runtime
(Flash Professional only) . 1414
Log class (Flash Professional only) . 1414
Constructor for the Log class . 1416
Log.getDateString(). 1417
Log.logInfo() . 1418
Log.logDebug(). 1419
Log.level . 1420
Log.name . 1421
Log.onLog(). 1422
PendingCall class (Flash Professional only). 1423
PendingCall.getOutputParameter() . 1425
PendingCall.getOutputParameterByName() 1426
PendingCall.getOutputParameters() . 1427
PendingCall.getOutputValue() . 1428
Contents 25

PendingCall.getOutputValues() . 1429
PendingCall.myCall .1430
PendingCall.onFault .1430
PendingCall.onResult . 1432
PendingCall.request . 1433
PendingCall.response . 1433
SOAPCall class (Flash Professional only) . 1434
SOAPCall.concurrency . 1435
SOAPCall.doDecoding . 1436
SOAPCall.doLazyDecoding . 1436
WebService class (Flash Professional only) . 1437
Supported types (Flash Professional only) . 1438
WebService security (Flash Professional only) 1441
Constructor for the WebService class . 1441
WebService.getCall() . 1443
WebService.myMethodName() .1444
WebService.onFault . 1445
WebService.onLoad. 1447

Chapter 57: WebServiceConnector component
(Flash Professional only) .1449

Using the WebServiceConnector component
(Flash Professional only) .1449
WebServiceConnector class (Flash Professional only) 1451
WebServiceConnector.multiple
SimultaneousAllowed. 1453
WebServiceConnector.operation . 1454
WebServiceConnector.params . 1455
WebServiceConnector.result . 1456
WebServiceConnector.results . 1457
WebServiceConnector.send. 1457
WebServiceConnector.status . 1458
WebServiceConnector.suppress
InvalidCalls . 1461
WebServiceConnector.trigger(). 1463
WebServiceConnector.WSDLURL . 1464

Chapter 58: Window component .1465

Using the Window component . 1465
Customizing the Window component. 1468
Window class . 1472
Window.click . 1476
26 Contents

Window.closeButton. 1478
Window.complete . 1479
Window.content . 1481
Window.contentPath. 1482
Window.deletePopUp() . 1483
Window.mouseDownOutside . 1484
Window.title. 1486
Window.titleStyleDeclaration . 1487

Chapter 59: XMLConnector component
(Flash Professional only). 1489

Using the XMLConnector component
(Flash Professional only) . 1489
XMLConnector class (Flash Professional only). 1491
XMLConnector.direction . 1493
XMLConnector.ignoreWhite . 1493
XMLConnector.multipleSimultaneousAllowed 1494
XMLConnector.params. 1495
XMLConnector.result . 1496
XMLConnector.results . 1497
XMLConnector.send . 1497
XMLConnector.status . 1498
XMLConnector.suppressInvalidCalls. 1500
XMLConnector.trigger() . 1502
XMLConnector.URL . 1503

Chapter 60: XPathAPI class . 1505

Chapter 61: XUpdateResolver component
(Flash Professional only). .1507

Using the XUpdateResolver component
(Flash Professional only) . 1508
XUpdateResolver class (Flash Professional only) 1511
XUpdateResolver.beforeApplyUpdates . 1512
XUpdateResolver.deltaPacket . 1513
XUpdateResolver.includeDeltaPacketInfo. 1514
XUpdateResolver.reconcileResults . 1514
XUpdateResolver.updateResults . 1515
XUpdateResolver.xupdatePacket . 1516

Index . 1517
Contents 27

28 Contents

1

CHAPTER 1

Components Dictionary
The Components Language Reference book describes each component and its application
programming interface (API). To learn how to use, customize, and create components, see
Using Components. In Components Language Reference, each component description contains
information about the following:

■ Keyboard interaction
■ Live preview
■ Accessibility
■ Setting the component parameters
■ Using the component in an application
■ Customizing the component with styles and skins
■ ActionScript methods, properties, and events

Components are presented alphabetically. You can also find components arranged by category
in the tables that follow.

This chapter contains the following sections:
Types of components . 30

Other listings in this chapter. 33
29

Types of components
The following tables list the different components, arranged by category, in version 2 of the
Macromedia Component Architecture.

User interface (UI) components

Component Description

Accordion component (Flash
Professional only)

A set of vertical overlapping views with buttons along the top
that allow users to switch views.

Alert component (Flash
Professional only)

A window that presents a message and buttons to capture the
user’s response.

Button component A resizable button that can be customized with a custom icon.

CheckBox component Allows users to make a Boolean (true or false) choice.

ComboBox component Allows users to select one option from a scrolling list of
choices. This component can have an selectable text field at
the top of the list that allows users to search the list.

DataGrid component (Flash
Professional only)

Allows users to display and manipulate multiple columns of
data.

DateChooser component
(Flash Professional only)

Allows users to select one or more dates from a calendar.

DateField component (Flash
Professional only)

An nonselectable text field with a calendar icon. When a user
clicks inside the component’s bounding box, Macromedia
Flash displays a DateChooser component.

Label component A non-editable, single-line text field.

List component Allows users to select one or more options from a scrolling list.

Loader component A container that holds a loaded SWF or JPEG file.

Menu component (Flash
Professional only)

A standard desktop application menu; allows users to select
one command from a list.

MenuBar component (Flash
Professional only)

A horizontal bar of menus.

NumericStepper component A text box with clickable arrows that raise and lower the value
of a number.

ProgressBar component Displays the progress of a process, such as a loading
operation.

RadioButton component Allows users to select between mutually exclusive options.
30 Components Dictionary

Data handling

ScrollPane component Displays movie clips, bitmaps, and SWF files in a limited area
using automatic scroll bars.

TextArea component An optionally editable, multiline text field.

TextInput component An optionally editable, single-line text input field.

Tree component (Flash
Professional only)

Allows a user to manipulate hierarchical information.

Window component A draggable window with a title bar, caption, border, and
Close button and content-display area.

UIScrollBar Component Allows you to add a scroll bar to a text field.

Component Description

Data binding classes (Flash
Professional only)

Classes that implement the Flash runtime data
binding functionality.

DataHolder component
(Flash Professional only)

Holds data and can be used as a connector between
components.

DataProvider API The model for linear-access lists of data; it provides simple
array-manipulation capabilities that broadcast data changes.

DataSet component (Flash
Professional only)

A building block for creating data-driven applications.

RDBMSResolver component
(Flash Professional only)

Lets you save data back to any supported data source. This
component translates the XML that can be received and
parsed by a web service, JavaBean, servlet, or ASP page.

Web service classes (Flash
Professional only)

Classes that allow access to web services that use Simple
Object Access Protocol (SOAP). These classes are in the
mx.services package.

WebServiceConnector
component (Flash
Professional only)

Provides scriptless access to web service method calls.

XMLConnector component
(Flash Professional only)

Reads and writes XML documents by using the HTTP GET and
POST methods.

XUpdateResolver
component (Flash
Professional only)

Lets you save data back to any supported data source. This
component translates the delta packet into XUpdate.

Component Description
Types of components 31

Media components

Managers

Screens

Component Description

FLVPlayback Component
(Flash Professional Only)

Lets you include a video player in your Flash application to
play progressive streaming video over HTTP, from a Flash
Video Streaming Service (FVSS), or from Flash
Communication Server (FCS).

MediaController component
(Flash Professional only)

Controls streaming media playback in an application (see
“Media components (Flash Professional only)” on page 831).

MediaDisplay component
(Flash Professional only)

Displays streaming media in an application (see “Media
components (Flash Professional only)” on page 831).

MediaPlayback component
(Flash Professional only)

A combination of the MediaDisplay and
MediaController components (see “Media components (Flash
Professional only)” on page 831).

Class Description

DepthManager class Manages the stacking depths of objects.

FocusManager class Handles Tab key navigation between components. Also
handles focus changes as users click in the application.

PopUpManager class Lets you create and delete pop-up windows.

StyleManager class Lets you register styles and manages inherited styles.

SystemManager class Lets you manage which top-level window is activated.

TransitionManager class Lets you manage animation effects to slides and movie clips.

Class Description

Form class (Flash
Professional only)

Lets you manipulate form application screens at runtime.

Screen class (Flash
Professional only)

Base class for the Slide and Form classes.

Slide class (Flash
Professional only)

Lets you manipulate slide presentation screens at runtime.
32 Components Dictionary

Other listings in this chapter
This book also describes several classes and APIs that are not included in the categories of
components listed in the previous section. These classes and APIs are listed in the following
table.

Item Description

CellRenderer API A set of properties and methods that the list-based
components (List, DataGrid, Tree, Menu, and ComboBox) use
to manipulate and display custom cell content for each of their
rows.

Collection interface (Flash
Professional only)

Lets you manage a group of related items, called collection
items. Each collection item in this set has properties that are
described in the metadata of the collection item class
definition.

DataGridColumn class (Flash
Professional only)

Lets you create objects to use as columns of a data grid.

Delegate class Allows a function passed from one object to another to be run
in the context of the first object.

Delta interface (Flash
Professional only)

Provides access to the transfer object, collection, and transfer
object-level changes.

DeltaItem class (Flash
Professional only)

Provides information about an individual operation performed
on a transfer object.

DeltaPacket interface (Flash
Professional only)

Along with the Delta interface and DeltaItem class, lets you
manage changes made to data.

EventDispatcher class Let you add and remove event listeners so that your code can
react to events appropriately.

Iterator interface (Flash
Professional only)

Lets you step through the objects that a collection contains.

MenuDataProvider class Lets XML instances assigned to a Menu.dataProvider property
use methods and properties to manipulate their own data as
well as the associated menu views.

RectBorder class Describes the styles used to control component borders.
Other listings in this chapter 33

SimpleButton class Lets you control some aspects of button appearance and
behavior.

TransferObject interface Defines a set of methods that items managed by the DataSet
component must implement.

TreeDataProvider interface
(Flash Professional only)

A set of properties and methods used to create XML for the
Tree.dataProvider property.

Tween class Lets you use ActionScript to move, resize, and fade movie
clips easily on the Stage.

UIComponent class Provides methods, properties, and events that allow
components to share some common behavior.

UIEventDispatcher class Allows components to emit certain events. This class is mixed
in to the UIComponent class.

UIObject class The base class for all version 2 components.

Item Description
34 Components Dictionary

2

CHAPTER 2

Accordion component (Flash
Professional only)
The Accordion component is a navigator that contains a sequence of children that it displays
one at a time. The children must be objects that inherit from the UIObject class (which
includes all components and screens built with version 2 of the Macromedia Component
Architecture); most often, children are a subclass of the View class. This includes movie clips
assigned to the class mx.core.View. To maintain tabbing order in an accordion’s children, the
children must also be instances of the View class.

An accordion creates and manages header buttons that a user can click to navigate between
the accordion’s children. An accordion has a vertical layout with header buttons that span the
width of the component. One header is associated with each child, and each header belongs to
the accordion—not to the child. When a user clicks a header, the associated child is displayed
below that header. The transition to the new child uses a transition animation.

An accordion with children accepts focus, and changes the appearance of its headers to display
focus. When a user tabs into an accordion, the selected header displays the focus indicator. An
accordion with no children does not accept focus. Clicking components that can take focus
within the selected child gives them focus. When an Accordion instance has focus, you can
use the following keys to control it:

Key Description

Down Arrow, Right
Arrow

Moves focus to the next child header. Focus cycles from last to first
without changing the selected child.

Up Arrow, Left Arrow Moves focus to the previous child header. Focus cycles from first to
last without changing the selected child.

End Selects the last child.

Enter/Space Selects the child associated with the header that has focus.

Home Selects the first child.

Page Down Selects the next child. Selection cycles from the last child to the
first child.
35

The Accordion component cannot be made accessible to screen readers.

Using the Accordion component (Flash
Professional only)
You can use the Accordion component to present multipart forms. For example, a three-child
accordion might present forms where the user fills out her shipping address, billing address,
and payment information for an e-commerce transaction. Using an accordion instead of
multiple web pages minimizes server traffic and allows the user to maintain a better sense of
progress and context in an application.

Accordion parameters
You can set the following authoring parameters for each Accordion component instance in
the Property inspector or the Component inspector (Window > Component Inspector
menu option):

childIcons is an array that specifies the linkage identifiers of the library symbols to be used as
the icons on the accordion’s headers. The default value is [] (an empty array).

childLabels is an array that specifies the text labels to use on the accordion’s headers. The
default value is [] (an empty array).

childNames is an array that specifies the instance names of the accordion’s children. The
values that you enter are the instance names for the child symbols that you specify in the
childSymbols parameter. The default value is [] (an empty array).

childSymbols is an array that specifies the linkage identifiers of the library symbols to be used
to create the accordion’s children. The default value is [] (an empty array).

You can set the following additional parameters for each Accordion component instance in
the Component inspector (Window > Component Inspector):

Page Up Selects the previous child. Selection cycles from the first child to the
last child.

Shift+Tab Moves focus to the previous component. This component may be
inside the selected child, or outside the accordion; it is never another
header in the same accordion.

Tab Moves focus to the next component. This component may be inside
the selected child, or outside the accordion; it is never another
header in the same accordion.

Key Description
36 Accordion component (Flash Professional only)

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control additional options for the Accordion component by
using its properties, methods, and events. For more information, see “Accordion class (Flash
Professional only)” on page 47.

Creating an application with the
Accordion component
In this example, an application developer is building the checkout section of an online store.
The design calls for an accordion with three forms in which a user enters a shipping address, a
billing address, and payment information. The shipping address and billing address forms
are identical.

To use screens to add an Accordion component to an application:

1. In Flash, select File > New and select Flash Form Application.

2. Double-click the text Form1, and enter the name addressForm.

Although it doesn’t appear in the library, the addressForm screen is a symbol of the Screen
class. Because the Screen class is a subclass of the View class, an accordion can use it as
a child.

3. With the form selected, in the Property inspector, set the form’s visible property to false.

This hides the contents of the form in the application; the form only appears in
the accordion.

4. Drag components such as Label and TextInput from the Components panel onto the form
to create a mock address form; arrange them, and set their properties in the Parameters tab
of the Component inspector.

Position the form elements in the upper left corner of the form. This corner of the form is
placed in the upper-left corner of the accordion.

5. Repeat steps 2-4 to create a screen named checkoutForm.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector will have no
visible effect.
Using the Accordion component (Flash Professional only) 37

6. Create a new screen named accordionForm.

7. Drag an Accordion component from the Components panel to the accordionForm form,
and name it my_acc.

8. With my_acc selected, in the Property inspector, do the following:

■ For the childSymbols property, enter addressForm, addressForm, and checkoutForm.
These strings specify the names of the screens used to create the accordion’s children.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.

■ For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

9. Select Control > Test Movie.

To add an Accordion component to an application:

1. Select File > New and create a new Flash document.

2. Select Insert > New Symbol and name it AddressForm.

3. In the Create New Symbol dialog box, click the Advanced button and select Export for
ActionScript. In the AS 2.0 Class field, enter mx.core.View.

To maintain tabbing order in an accordion’s children, the children must also be instances
of the View class.

4. Drag components such as Label and TextInput from the Components panel onto the Stage
to create a mock address form; arrange them, and set their properties in the Parameters tab
of the Component inspector.

Position the form elements in relation to 0,0 (the middle) on the Stage. The 0,0
coordinate of the movie clip is placed in the upper left corner of the accordion.

5. Select Edit > Edit Document to return to the main timeline.

6. Repeat steps 2-5 to create a movie clip named CheckoutForm.

7. Drag an Accordion component from the Components panel to add it to the Stage on the
main timeline.

N
O

T
E

The first two children are instances of the same screen, because the shipping
address form and the billing address form are identical.
38 Accordion component (Flash Professional only)

8. In the Property inspector, do the following:

■ Enter the instance name my_acc.
■ For the childSymbols property, enter AddressForm, AddressForm, and

CheckoutForm.
These strings specify the names of the movie clips used to create the accordion’s
children.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.

■ For the childLabels property, enter Shipping Address, Billing Address, and
Checkout.
These strings are the text labels on the accordion headers.

■ For the childIcons property, enter AddressIcon, AddressIcon, and CheckoutIcon.
These strings specify the linkage identifiers of the movie clip symbols that are used as
the icons on the accordion headers. You must create these movie clip symbols if you
want icons in the headers.

9. Select Control > Test Movie.

To use ActionScript to add children to an Accordion component:

1. Select File > New and create a Flash document.

2. Drag an Accordion component from the Components panel to the Stage.

3. In the Property inspector, enter the instance name my_acc.

4. Drag a TextInput component to the library.

This adds the component to the library so that you can dynamically instantiate it in step
6.

5. In the Actions panel in Frame 1 of the timeline, enter the following (this code calls the
createChild() method to create its child views.):
import mx.core.View;

// Create child panels for each form to be displayed in my_acc object.
my_acc.createChild(View, "shippingAddress", {label: "Shipping

Address"});
my_acc.createChild(View, "billingAddress", {label: "Billing Address"});
my_acc.createChild(View, "payment", {label: "Payment"});

N
O

T
E

The first two children are instances of the same movie clip, because the shipping
address form and the billing address form are identical.
Using the Accordion component (Flash Professional only) 39

6. In the Actions panel in Frame 1, below the code you entered in step 5, enter the following
code (this code adds two TextInput component instances to the accordion’s children):
// Create child text input for the shippingAddress panel.
var firstNameChild_obj:Object =

my_acc.shippingAddress.createChild("TextInput", "firstName", {text:
"First Name"});

// Set position of text input.
firstNameChild_obj.move(10, 38);
firstNameChild_obj.setSize(110, 20);

// Create another child text input.
var lastNameChild_obj:Object =

my_acc.shippingAddress.createChild("TextInput", "lastName", {text:
"Last Name"});

// Set position of text input.
lastNameChild_obj.move(150, 38);
lastNameChild_obj.setSize(140, 20);

Customizing the Accordion component
(Flash Professional only)
You can transform an Accordion component horizontally and vertically during authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method
(see UIObject.setSize()).

The setSize() method and the Transform tool change only the width of the accordion’s
headers and the width and height of its content area. The height of the headers and the width
and height of the children are not affected. Calling the setSize() method is the only way to
change the bounding rectangle of an accordion.

If the headers are too small to contain their label text, the labels are clipped. If the content area
of an accordion is smaller than a child, the child is clipped.
40 Accordion component (Flash Professional only)

Using styles with the Accordion component
You can set style properties to change the appearance of the border and background of an
Accordion component.

An Accordion component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. This is the only color
style that doesn’t inherit its value. Possible values are
"haloGreen", "haloBlue", and "haloOrange".

backgroundColor Both The background color. The default color is white.

borderStyle Both The Accordion component uses a RectBorder instance as its
border and responds to the styles defined on that class. For
more information, see “RectBorder class” on page 1063.
The Accordion component’s default border style value is
"solid".

headerHeight Both The height of the header buttons, in pixels. The default value
is 22.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font is not used. If this style is set to true and
fontFamily does not refer to an embedded font, no text is
displayed. The default value is false.

fontFamily Both The font name for the header labels. The default value is
"_sans".

fontSize Both The point size for the font of the header labels. The default
value is 10.

fontStyle Both The font style for the header labels; either "normal" or
"italic". The default value is "normal".

fontWeight Both The font weight for the header labels; either "none" or "bold".
The default value is "none".
All components can also accept the value "normal" in place of
"none" during a setStyle() call, but subsequent calls to
getStyle() return "none".
Customizing the Accordion component (Flash Professional only) 41

So, for example, the following code sets the style appearance of the font within an accordion
instance named my_acc to italic:
my_acc.setStyle("fontStyle", "italic");

If the name of a style property ends in “Color”, it is a color style property and behaves
differently than noncolor style properties. For more information, see “Using styles to
customize component color and text” in Using Components.

Using skins with the Accordion component
The Accordion component uses skins to represent the visual states of its header buttons. To
skin the buttons and title bar while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/Accordion Assets skins states folder in the library of one
of the themes’ FLA files. For more information, see “About skinning components” in Using
Components.

An Accordion component is composed of its border, background, header buttons, and
children. The border and background are provided by the RectBorder class by default. For
information on skinning the RectBorder class, see “RectBorder class” on page 1063. You can
skin the headers with the skins listed below.

textDecoration Both The text decoration; either "none" or "underline".

openDuration Both The duration, in milliseconds, of the transition animation.

openEasing Both A reference to a tweening function that controls the
animation. Defaults to sine in/out. For more information, see
“Customizing component animations” in Using Components.

Property Description Default value

falseUpSkin The up (normal) state of the header above all
collapsed children.

accordionHeaderSkin

falseDownSkin The pressed state of the header above all
collapsed children.

accordionHeaderSkin

falseOverSkin The rolled-over state of the header above all
collapsed children.

accordionHeaderSkin

falseDisabled The disabled state of the header above all
collapsed children.

accordionHeaderSkin

trueUpSkin The up (normal) state of the header above the
expanded child.

accordionHeaderSkin

Style Theme Description
42 Accordion component (Flash Professional only)

Using ActionScript to draw the Accordion header
The default headers in both the Halo and Sample themes use the same skin element for all
states and draw the actual graphics through ActionScript. The Halo implementation uses an
extension of the RectBorder class and custom drawing API code to draw the states. The
Sample implementation uses the same skin and the same ActionScript class as the
Button skin.

To create an ActionScript class to use as the skin and provide different states, the skin can read
the borderStyle style property of the skin to determine the state. The following table shows
the border style that is set for each skin:

trueDownSkin The pressed state of the header above the
expanded child.

accordionHeaderSkin

trueOverSkin The rolled-over state of the header above the
expanded child.

accordionHeaderSkin

trueDisabledSkin The disabled state of the header above the
expanded child.

accordionHeaderSkin

Property Border style

falseUpSkin falseup

falseDownSkin falsedown

falseOverSkin falserollover

falseDisabled falsedisabled

trueUpSkin trueup

trueDownSkin truedown

trueOverSkin truerollover

trueDisabledSkin truedisabled

Property Description Default value
Customizing the Accordion component (Flash Professional only) 43

To create an ActionScript-customized Accordion header skin:

1. Create a new ActionScript class file.

For this example, name the file RedGreenBlueHeader.as.
2. Copy the following ActionScript to the file:

import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueHeader extends RectBorder
{
 static var symbolName_str:String = "RedGreenBlueHeader";
 static var symbolOwner_obj:Object = RedGreenBlueHeader;

 function size():Void
 {
 var color_num:Number; // Color
 var borderStyle_str:String = getStyle("borderStyle"); // Attribute of

Accordion

 // Define the colors of each tab in the Accordion for each tab state.
 switch (borderStyle_str) {
 case "falseup":
 case "falserollover":
 case "falsedisabled":
 color_num = 0x7777FF;
 break;
 case "falsedown":
 color_num = 0x77FF77;
 break;
 case "trueup":
 case "truedown":
 case "truerollover":
 case "truedisabled":
 color_num = 0xFF7777;
 break;
 }

 // Clear default style and draw custom style.
 clear();
 lineStyle(0, 0, 100);
 beginFill(color_num, 100);
 drawRect(0, 0, __width, __height);
 endFill();
 }

 // required for skins
 static function classConstruct():Boolean
 {
 UIObjectExtensions.Extensions();
44 Accordion component (Flash Professional only)

 _global.skinRegistry["AccordionHeaderSkin"] = true;
 return true;
 }
 static var classConstructed_bl:Boolean = classConstruct();
 static var UIObjectExtensionsDependency_obj:Object =

UIObjectExtensions;
}

This class creates a square box based on the border style: a blue box for the false up,
rollover, and disabled states; a green box for the normal pressed state; and a red box for the
expanded child.

3. Save the file.

4. Create a new FLA file and save it in the same folder as the AS file.

5. Create a new symbol by selecting Insert > New Symbol.

6. Set the name to AccordionHeaderSkin.

7. If the advanced view is not displayed, click the Advanced button.

8. Select Export for ActionScript.

The identifier is automatically filled out with AccordionHeaderSkin.
9. Set the AS 2.0 class to RedGreenBlueHeader.

10. Make sure that Export in First Frame is already selected, and click OK.

11. In Scene 1, drag an Accordion component to the Stage.

12. Set the Accordion properties so that they display several children.

For example, set the childLabels to an array of [One,Two,Three] and childNames to
an array of [one,two,three].

13. Select Control > Test Movie.

Using movie clips to customize the Accordion header skin
The example above demonstrates how to use an ActionScript class to customize the Accordion
header skin, which is the method used by the skins provided in both the Halo and Sample
themes. However, because the example uses simple colored boxes, it is simpler in this case to
use different movie clip symbols as header skins.
Customizing the Accordion component (Flash Professional only) 45

To create movie clip symbols for Accordion header skins:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to RedAccordionHeaderSkin.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

The identifier is automatically filled out with RedAccordionHeaderSkin.
6. Leave the AS 2.0 Class text box blank.

7. Make sure that Export in First Frame is already selected, and click OK.

8. Open the new symbol for editing.

9. Use the drawing tools to create a box with a red fill and black line.

10. Set the border style to hairline.

11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height
of 100.

The ActionScript code sizes the skin as needed.
12. Repeat steps 2-11 and create green and blue skins, named accordingly.

13. Click the Back button to return to the main timeline.

14. Drag an Accordion component to the Stage.

15. Set the Accordion properties so that they display several children.

For example, set childLabels to an array of [One,Two,Three] and childNames to an
array of [one,two,three].

16. Copy the following ActionScript code to the Actions panel with the Accordion instance
selected:
onClipEvent(initialize) {

falseUpSkin = "RedAccordionHeaderSkin";
falseDownSkin = "GreenAccordionHeaderSkin";
falseOverSkin = "RedAccordionHeaderSkin";
falseDisabled = "RedAccordionHeaderSkin";
trueUpSkin = "BlueAccordionHeaderSkin";
trueDownSkin = "BlueAccordionHeaderSkin";
trueOverSkin = "BlueAccordionHeaderSkin";
trueDisabledSkin = "BlueAccordionHeaderSkin";

}

17. Select Control > Test Movie.
46 Accordion component (Flash Professional only)

Accordion class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > Accordion

ActionScript Class Name mx.containers.Accordion

An Accordion component contains children that are displayed one at a time. Each child has a
corresponding header button that is created when the child is created. A child must be an
instance of UIObject.

A movie clip symbol automatically becomes an instance of the UIObject class when it
becomes a child of an accordion. However, to maintain tabbing order in an accordion’s
children, the children must also be instances of the View class. If you use a movie clip symbol
as a child, set its AS 2.0 Class field to mx.core.View so that it inherits from the View class.

Setting a property of the Accordion class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

Each component class has a version property that is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.containers.Accordion.version);

Method summary for the Accordion class
The following table lists methods of the Accordion class.

N
O

T
E

The code trace(my_accInstance.version); returns undefined.

Method Description

Accordion.createChild() Creates a child for an Accordion instance.

Accordion.createSegment() Creates a child for an Accordion instance. The parameters
for this method are different from those of the createChild()
method.

Accordion.destroyChildAt() Destroys a child at a specified index position.

Accordion.getChildAt() Gets a reference to a child at a specified index position.

Accordion.getHeaderAt() Gets a reference to a header object at a specified index
position.
Accordion class (Flash Professional only) 47

Methods inherited from the UIObject class
The following table lists the methods the Accordion class inherits from the UIObject class.
When calling these methods from the Accordion object, use the form
accordionInstance.methodName.

Methods inherited from UIComponent class
The following table lists the methods the Accordion class inherits from the UIComponent
class. When calling these methods from the Accordion object, use the form
accordionInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
48 Accordion component (Flash Professional only)

Property summary for the Accordion class
The following table lists properties of the Accordion class.

Properties inherited from the UIObject class
The following table lists the properties the Accordion class inherits from the UIObject class.
When accessing these properties, use the form accordionInstance.propertyName.

Property Description

Accordion.numChildren The number of children of an Accordion instance.

Accordion.selectedChild A reference to the selected child.

Accordion.selectedIndex The index position of the selected child.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of
the object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of
the object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible
(true) or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.
Accordion class (Flash Professional only) 49

Properties inherited from the UIComponent class
The following table lists the properties the Accordion class inherits from the UIComponent
class. When accessing these properties, use the form accordionInstance.propertyName.

Event summary for the Accordion class
The following table lists an event of the Accordion class.

Events inherited from the UIObject class
The following table lists the events the Accordion class inherits from the UIObject class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

Accordion.change Broadcast to all registered listeners when the selectedIndex
and selectedChild properties of an accordion change because
of a user’s mouse click or keypress.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
50 Accordion component (Flash Professional only)

Events inherited from the UIComponent class
The following table lists the events the Accordion class inherits from the UIComponent class.

Accordion.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// Insert your code here.
};
accordionInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// Insert your code here.
}

Description

Event; broadcast to all registered listeners when the selectedIndex and selectedChild
properties of an accordion change. This event is broadcast only when a user’s mouse click or
keypress changes the value of selectedChild or selectedIndex—not when the value is
changed with ActionScript. This event is broadcast before the transition animation occurs.

Version 2 components use a dispatcher/event listener model. The Accordion component
dispatches a change event when one of its buttons is clicked and the event is handled by a
function (also called a handler) on a listener object (listenerObject) that you create. You
call the addEventListener() method and pass it a reference to the handler as a parameter.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
Accordion.change 51

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

The Accordion change event also contains two unique event object properties:

■ newValue Number; the index of the child that is about to be selected.
■ prevValue Number; the index of the child that was previously selected.

Example

The following example uses an Accordion instance named my_acc containing three child
panels labelled “Shipping Address”, “Billing Address”, and “Payment”. The code defines a
handler called my_accListener and passes the handler to the my_acc.addEventListener()
method as the second parameter. The event object is captured by the change handler in the
eventObject parameter. When the change event is broadcast, a trace statement is sent to
the Output panel.
// Create new Listener object.
var my_accListener:Object = new Object();
my_accListener.change = function() {

trace("Changed to different view");
// Assign label of child panel to variable.
var selectedChild_str:String = my_acc.selectedChild.label;
// Perform action based on selected child.
switch (selectedChild_str) {
case "Shipping Address":

trace("One was selected");
break;

case "Billing Address":
trace("Two was selected");
break;

case "Payment":
trace("Three was selected");
break;

}
};
my_acc.addEventListener("change", my_accListener);
52 Accordion component (Flash Professional only)

Accordion.createChild()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.createChild(classOrSymbolName, instanceName[,

initialProperties])

Parameters

classOrSymbolName Either the constructor function for the class of the UIObject to be
instantiated, or the linkage name (a reference to the symbol to be instantiated). The class must
be UIObject or a subclass of UIObject, but most often it is View object or a subclass of View.

instanceName The instance name of the new instance.

initialProperties An optional parameter that specifies initial properties for the new
instance. You can use the following properties:

■ label A string that specifies the text label that the new child instance uses on its header.
■ icon A string that specifies the linkage identifier of the library symbol that the child

uses for the icon on its header.

Returns

A reference to an instance of the UIObject that is the newly created child.

Description

Method (inherited from View); creates a child for the accordion. The newly created child is
added to the end of the list of children owned by the accordion. Use this method to place
views inside the accordion. The created child is an instance of the class or movie clip symbol
specified in the classOrSymbolName parameter. You can use the label and icon properties
to specify a text label and an icon for the associated accordion header for each child in the
initialProperties parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.
Accordion.createChild() 53

Example

Start with an Accordion instance on the Stage named my_acc. Add a symbol to the library
with the Linkage Identifier payIcon to be the icon for the child header. The following code
creates a child named billing (with the label “Payment”) that is an instance of the
View class:
var child_obj:Object = my_acc.createChild(mx.core.View, "billing", {label:

"Payment", icon: "payIcon"});

The following code also creates a child that is an instance of the View class, but it uses import
to reference the constructor for the View class:
import mx.core.View;
var child_obj:Object = my_acc.createChild(View, "billing", {label:

"Payment", icon: "payIcon"});

Or, add a movie clip symbol to the library with the Linkage Identifier PaymentForm to be the
Accordion child, and the following code creates an instance of PaymentForm named billing
as the child of my_acc (this approach is useful for dynamic content where you load the
dynamic content into a movie clip symbol, and then make that symbol a child of the
Accordion instance):
var child_obj:Object = my_acc.createChild("PaymentForm", "billing", {label:

"Payment", icon: "payIcon"});

For a more complex example, keep the Accordion instance my_acc on the Stage. Then drag a
Label component and a TextInput component from the Components panel to the current
document’s library (so that you have both a TextInput symbol and a Label symbol in the
library). Paste the following code in the first frame of the main timeline (replacing any code
from the previous examples). The following code creates a child that is an instance of the
View class named billing, and also adds children to billing to provide labels and text
input fields for a form:
import mx.core.View;
import mx.controls.Label;
import mx.controls.TextInput;
var child_obj:Object = my_acc.createChild(View, "billing",

{label:"Payment", icon: "payIcon"});
// Create labels as children of the view instance.
var cardType_label:Object = child_obj.createChild(Label, "CardType_label",

{_x:10, _y:50});
var cardNumber_label:Object = child_obj.createChild(Label,

"CardNumber_label", {_x:10, _y:100});
// Create text inputs as children of the view instance.
var cardTypeInput_ti:Object = child_obj.createChild(TextInput,

"CardType_ti", {_x:150, _y:50});
var cardNumberInput_ti:Object = child_obj.createChild(TextInput,

"CardNumber_ti", {_x:150, _y:100});
// Fill in labels.
54 Accordion component (Flash Professional only)

cardType_label.text = "Card Type";
cardNumber_label.text = "Card Number";

Accordion.createSegment()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.createSegment(classOrSymbolName, instanceName[, label[,

icon]])

Parameters

classOrSymbolName Either a reference to the constructor function for the class of the
UIObject to be instantiated, or the linkage name of the symbol to be instantiated. The class
must be UIObject or a subclass of UIObject, but most often it is View or a subclass of View.

instanceName The instance name of the new instance.

label A string that specifies the text label that the new child instance uses on its header.
This parameter is optional.

icon A string reference to the linkage identifier of the library symbol that the child uses for
the icon on its header. This parameter is optional.

Returns

A reference to the newly created UIObject instance.

Description

Method; creates a child for the accordion. The newly created child is added to the end of the
list of children owned by the accordion. Use this method to place views inside the accordion.
The created child is an instance of the class or movie clip symbol specified in the
classOrSymbolName parameter. You can use the label and icon parameters to specify a text
label and an icon for the associated accordion header for each child.

The createSegment() method differs from the createChild() method in that label and
icon are passed directly as parameters, not as properties of an initalProperties parameter.

When each child is created, it is assigned an index number in the order of creation, and the
numChildren property is increased by 1.
Accordion.createSegment() 55

Example

Start with an Accordion instance on the Stage named my_acc. Add a movie clip symbol to the
library with the Linkage Identifier PaymentForm to be the Accordion child. Then, add a
symbol to the library with Linkage Identifier payIcon to be the icon for the child header. The
following example creates an instance of the PaymentForm movie clip symbol named billing
as the last child of my_acc with header label “Payment” and the icon in the library:
var child_obj:Object = my_acc.createSegment("PaymentForm", "billing",

"Payment", "payIcon");

The following code creates a child that is an instance of the View class:
var child_obj:Object = my_acc.createSegment(mx.core.View, "billing",

"Payment", "payIcon");

The following code also creates a child that is an instance of the View class, but it uses import
to reference the constructor for the View class:
import mx.core.View;
var child_obj:Object = my_acc.createSegment(View, "billing", "Payment",

"payIcon");

Drag a Label component and a TextInput component from the Components panel to the
current document’s library (so that you have both a TextInput symbol and a Label symbol in
the library).The following code creates a child that is an instance of the View class named
billing, and also adds children to billing to provide labels and text input fields for a form:
import mx.core.View;
import mx.controls.Label;
import mx.controls.TextInput;
var child_obj:Object = my_acc.createSegment(View, "billing", "Payment",

"payIcon");
// Create labels as children of the view instance.
var cardType_label:Object = child_obj.createChild(Label, "CardType_label",

{_x:10, _y:50});
var cardNumber_label:Object = child_obj.createChild(Label,

"CardNumber_label", {_x:10, _y:100});
// Create text inputs as children of the view instance.
var cardTypeInput_ti:Object = child_obj.createChild(TextInput,

"CardType_ti", {_x:150, _y:50});
var cardNumberInput_ti:Object = child_obj.createChild(TextInput,

"CardNumber_ti", {_x:150, _y:100});
// Fill in labels.
cardType_label.text = "Card Type";
cardNumber_label.text = "Card Number";
56 Accordion component (Flash Professional only)

Accordion.destroyChildAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.destroyChildAt(index)

Parameters

index The index number of the accordion child to destroy. Each child of an accordion is
assigned a zero-based index number in the order in which it was created.

Returns

Nothing.

Description

Method (inherited from View); destroys one of the accordion’s children. The child to be
destroyed is specified by its index, which is passed to the method in the index parameter.
Calling this method destroys the corresponding header as well.

If the destroyed child is selected, a new selected child is chosen. If there is a next child, it is
selected. If there is no next child, the previous child is selected. If there is no previous child,
the selection is undefined.

N
O

T
E

Calling destroyChildAt() decreases the numChildren property by 1.
Accordion.destroyChildAt() 57

Example

The following code destroys the first child of my_acc when the third child is selected:
import mx.core.View;

// Create child panels with instances of the View class.
my_acc.createSegment(View, "myMainItem1", "Menu Item 1");
my_acc.createSegment(View, "myMainItem2", "Menu Item 2");
my_acc.createSegment(View, "myMainItem3", "Menu Item 3");

// Create new Listener object.
my_accListener = new Object();
my_accListener.change = function() {
 if ("myMainItem3"){
 my_acc.destroyChildAt(0);
 }
};

my_acc.addEventListener("change", my_accListener);

See also

Accordion.createChild()

Accordion.getChildAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.getChildAt(index)

Parameters

index The index number of an accordion child. Each child of an accordion is assigned a
zero-based index in the order in which it was created.

Returns

A reference to the instance of the UIObject at the specified index.
58 Accordion component (Flash Professional only)

Description

Method; returns a reference to the child at the specified index. Each accordion child is given
an index number for its position. This index number is zero-based, so the first child is 0, the
second child is 1, and so on.

Example

The following code gets a reference to the last child of my_acc and changes the label to
“Last Child”:
import mx.core.View;

// Create child panels with instances of the View class.
my_acc.createSegment(View, "myMainItem1", "Menu Item 1");
my_acc.createSegment(View, "myMainItem2", "Menu Item 2");
my_acc.createSegment(View, "myMainItem3", "Menu Item 3");

// Get reference for last child object.
var lastChild_obj:Object = my_acc.getChildAt(my_acc.numChildren - 1);
// Change label of object.
lastChild_obj.label = "Last Child";

Accordion.getHeaderAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.getHeaderAt(index)

Parameters

index The index number of an accordion header. Each header of an accordion is assigned a
zero-based index in the order in which it was created.

Returns

A reference to the instance of the UIObject at the specified index.

Description

Method; returns a reference to the header at the specified index. Each accordion header is
given an index number for its position. This index number is zero-based, so the first header is
0, the second header is 1, and so on.
Accordion.getHeaderAt() 59

Example

The following code gets a reference to the last header of my_acc and displays the label in the
Output panel:
import mx.core.View;

// Create child panels for each form to be displayed in my_acc object.
my_acc.createChild(View, "shippingAddress", {label: "Shipping Address"});
my_acc.createChild(View, "billingAddress", {label: "Billing Address"});
my_acc.createChild(View, "payment", {label: "Payment"});

var head3:Object = my_acc.getHeaderAt(2);
trace(head3.label);

Accordion.numChildren
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.numChildren

Description

Property (inherited from View); indicates the number of children (of type UIObject) in an
Accordion instance. Headers are not counted as children.

Each accordion child is given an index number for its position. This index number is zero-
based, so the first child is 0, the second child is 1, and so on. The code my_acc.numChild -
1 always refers to the last child added to an accordion. For example, if there were seven
children in an accordion, the last child would have the index 6. The numChildren property is
not zero-based, so the value of my_acc.numChildren would be 7. The result of 7 - 1 is 6,
which is the index number of the last child.
60 Accordion component (Flash Professional only)

Example

The following code uses numChildren to get a reference to the last child of my_acc and
changes the label to “Last Child”:
import mx.core.View;

// Create child panels with instances of the View class.
my_acc.createSegment(View, "myMainItem1", "Menu Item 1");
my_acc.createSegment(View, "myMainItem2", "Menu Item 2");
my_acc.createSegment(View, "myMainItem3", "Menu Item 3");

// Get reference for last child object.
var lastChild_obj:Object = my_acc.getChildAt(my_acc.numChildren - 1);
// Change label of object.
lastChild_obj.label = "Last Child";

Accordion.selectedChild
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.selectedChild

Description

Property; the selected child (of type UIObject) if one or more children exist; undefined if no
children exist.

If the accordion has children, the code accordionInstance.selectedChild is equivalent to
the code accordionInstance.getChildAt(accordionInstance.selectedIndex).

Setting this property to a child causes the accordion to begin the transition animation to
display the specified child.

Changing the value of selectedChild also changes the value of selectedIndex.

If the accordian has children, the default value is accordionInstance.getChildAt(0). If
the accordion doesn’t have children, the default value is undefined.
Accordion.selectedChild 61

Example

The following example detects when a child is selected and displays the child’s order in the
Output panel each time a header is selected:
// Create new Listener object.
var my_accListener:Object = new Object();
my_accListener.change = function() {

trace("Changed to different view");
// Assign label of child panel to variable
var selectedChild_str:String = my_acc.selectedChild.label;
// Perform action based on selected child
switch (selectedChild_str) {
case "Shipping Address":

trace("One was selected");
break;

case "Billing Address":
trace("Two was selected");
break;

case "Payment":
trace("Three was selected");
break;

}
};
my_acc.addEventListener("change", my_accListener);

See also

Accordion.selectedIndex

Accordion.selectedIndex
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
accordionInstance.selectedIndex
62 Accordion component (Flash Professional only)

Description

Property; the zero-based index of the selected child in an accordion with one or more
children. For an accordion with no child views, the only valid value is undefined.

Each accordion child is given an index number for its position. This index number is zero-
based, so the first child is 0, the second child is 1, and so on. The valid values of
selectedIndex are 0, 1, 2, ... , n - 1, where n is the number of children.

Setting this property to a child causes the accordion to begin the transition animation to
display the specified child.

Changing the value of selectedIndex also changes the value of selectedChild.

Example

The following example detects when a child is selected and displays the child’s order in the
Output panel each time a header is selected:
// Create new Listener object.
var my_accListener:Object = new Object();
my_accListener.change = function() {

trace("Changed to different view");
// Assign label of child panel to variable.
var selectedChild_num:Number = my_acc.selectedIndex;
// Perform action based on selected child.
switch (selectedChild_num) {
case 0:

trace("One was selected");
break;

case 1:
trace("Two was selected");
break;

case 2:
trace("Three was selected");
break;

}
};
my_acc.addEventListener("change", my_accListener);

See also

Accordion.numChildren, Accordion.selectedChild
Accordion.selectedIndex 63

64 Accordion component (Flash Professional only)

3

CHAPTER 3

Alert component (Flash
Professional only)
The Alert component lets you display a window that presents the user with a message and
response buttons. The window has a title bar that you can fill with text, a message that you
can customize, and buttons whose labels you can change. An Alert window can have any
combination of Yes, No, OK, and Cancel buttons, and you can change the button labels by
using the Alert.okLabel, Alert.yesLabel, Alert.noLabel, and Alert.cancelLabel
properties. You cannot change the order of the buttons in an Alert window; the button order
is always OK, Yes, No, Cancel. An Alert window closes when a user clicks any of its buttons.

To display an Alert window, call the Alert.show() method. In order to call the method
successfully, the Alert component must be in the library. By dragging the Alert component
from the Components panel to the Stage and then deleting the component, you add the
component to the library without making it visible in the document.

The live preview for the Alert component is an empty window.

When you add an Alert component to an application, you can use the Accessibility panel to
make the component’s text and buttons accessible to screen readers. First, add the following
line of code to enable accessibility:
mx.accessibility.AlertAccImpl.enableAccessibility();

N
O

T
E

You enable accessibility for a component only once, regardless of how many instances
you have of the component.
65

Using the Alert component (Flash
Professional only)
You can use an Alert component whenever you want to announce something to a user. For
example, you could display an alert when a user doesn’t fill out a form properly, when a stock
hits a certain price, or when a user quits an application without saving the session.

Alert parameters
The Alert component has no authoring parameters. You must call the ActionScript
Alert.show() method to display an Alert window. You can use other ActionScript properties
to modify the Alert window in an application. For more information, see “Alert class (Flash
Professional only)” on page 71.

Creating an application with the Alert component
The following procedure explains how to add an Alert component to an application while
authoring. In this example, the Alert component appears when a stock hits a certain price.

To create an application with the Alert component:

1. Drag the Alert component from the Components panel to the current document’s library.

This adds the component to the library, but doesn’t make it visible in the application.
2. In the Actions panel, enter the following code in Frame 1 of the to define an event handler

for the click event:
import mx.controls.Alert;

// Define action after alert confirmation.
var myClickHandler:Function = function (evt_obj:Object) {
 if (evt_obj.detail == Alert.OK) {
 trace("start stock app");
 }
};

// Show alert dialog box.
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |

Alert.CANCEL, this, myClickHandler, "stockIcon", Alert.OK);
66 Alert component (Flash Professional only)

This code creates an Alert window with OK and Cancel buttons. When the user clicks
either button, Flash calls the myClickHandler function. The myClickHandler function
instructs Flash to trace “start stock app” when you click the OK button.

3. Select Control > Test Movie.

Customizing the Alert component (Flash
Professional only)
The Alert component positions itself in the center of the component that was passed as its
parent parameter. The parent must be a UIComponent object. If it is a movie clip, you can
register the clip as mx.core.View so that it inherits from UIComponent.

The Alert window automatically stretches horizontally to fit the message text or any buttons
that are displayed. If you want to display large amounts of text, include line breaks in the text.

The Alert component does not respond to the setSize() method.

Using styles with the Alert component
You can set style properties to change the appearance of an Alert component. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.

An Alert component supports the following styles:

N
O

T
E

The Alert.show() method includes an optional parameter that displays an icon in the
Alert window (in this example, an icon with the linkage identifier “stockIcon”). To
include this icon in your test example, create a symbol named stockIcon and set it to
Export for ActionScript in the Linkage Properties dialog box or the Create New
Symbol dialog box. The graphics for the stockIcon symbol should be aligned to
coordinates (0,0) in the symbol’s coordinate system.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values
are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen".

backgroundColor Both The background color. The default color is white for the
Halo theme and 0xEFEBEF (light gray) for the Sample
theme.
Customizing the Alert component (Flash Professional only) 67

The Alert component includes three different categories of text. Setting the text properties for
the Alert component itself provides default values for all three categories, as shown here:
import mx.controls.Alert;
_global.styles.Alert.setStyle("color", 0x000099);
Alert.show("This is a test alert", "Title");

borderStyle Both The Alert component uses a RectBorder instance as its
border and responds to the styles defined on that class.
For more information, see “RectBorder class”
on page 1063.
The Alert component has a component-specific
borderStyle setting of “alert” with the Halo theme and
“outset” with the Sample theme.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value is
0.

Style Theme Description
68 Alert component (Flash Professional only)

To set the text styles for one category individually, the Alert component provides static
properties that are references to a CSSStyleDeclaration instance.

The following example demonstrates how to set the title of an Alert component to be
italicized:
import mx.controls.Alert;
import mx.styles.CSSStyleDeclaration;

var titleStyles = new CSSStyleDeclaration();
titleStyles.setStyle("fontWeight", "bold");
titleStyles.setStyle("fontStyle", "italic");

Alert.titleStyleDeclaration = titleStyles;

Alert.show("Name is a required field", "Validation Error");

The default title style declarations set fontWeight to "bold". When you override the
titleStyleDeclaration property, this default is also overridden, so you must explicitly set
fontWeight to "bold" if that setting is desired.

Using skins with the Alert component
The Alert component extends the Window component and uses its title background skin for
the title background, a RectBorder class instance for its border, and Button skins for the visual
states of its buttons. To skin the buttons and title bar while authoring, modify the Flash UI
Components 2/Themes/MMDefault/Window Assets/Elements/TitleBackground and Flash
UI Components 2/Themes/MMDefault/Button Assets/ButtonSkin symbols. For more
information, see “About skinning components” in Using Components. The border and
background are provided by the RectBorder class by default. For information on skinning the
RectBorder class, see “RectBorder class” on page 1063.

Static property Text affected

buttonStyleDeclaration Button

messageStyleDeclaration Message

titleStyleDeclaration Title

N
O

T
E

Text styles set on an Alert component provide default text styles to its components
through style inheritance. For more information, see “Setting inheriting styles on a
container” in Using Components.
Customizing the Alert component (Flash Professional only) 69

An Alert component uses the following skin properties to dynamically skin the buttons and
title bar:

To set the title of an Alert component to a custom movie clip symbol:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to TitleBackground.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

6. The identifier is automatically filled out with TitleBackground.

7. Set the AS 2.0 class to mx.skins.SkinElement.

SkinElement is a simple class that can be used for all skin elements that don’t provide their
own ActionScript implementation. It provides movement and sizing functionality for
components of version 2 of the Macromedia Component Architecture.

8. Make sure that Export in First Frame is already selected.

9. Click OK.

10. Open the new symbol for editing.

11. Use the drawing tools to create a box with a red fill and black line.

12. Set the border style to hairline.

13. Set the box, including the border, so that is positioned at (0,0) and has a width of 100 and
height of 22.

The Alert component sets the proper width of the skin as needed, but it uses the existing
height as the height of the title.

14. Click the Back button to return to the main timeline.

Property Description Default value

buttonUp The up state of the buttons. ButtonSkin

buttonUpEmphasized The up state of the default button. ButtonSkin

buttonDown The pressed state of the buttons. ButtonSkin

buttonDownEmphasized The pressed state of the default button. ButtonSkin

buttonOver The rolled-over state of the buttons. ButtonSkin

buttonOverEmphasized The rolled-over state of the default
button.

ButtonSkin

titleBackground The window title bar. TitleBackground
70 Alert component (Flash Professional only)

15. Drag an Alert component to the Stage and delete it.

This action adds the Alert component to the library and makes it available at runtime.
16. Add ActionScript code to the main timeline to create a sample Alert instance.

import mx.controls.Alert;
Alert.show("This is a skinned Alert component","Title");

17. Select Control > Test Movie.

Alert class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
Window component > Alert

ActionScript Class Name mx.controls.Alert

To use the Alert component, you drag an Alert component to the Stage and delete it so that
the component is in the document library but not visible in the application. Then you call
Alert.show() to display an Alert window. You can pass parameters to Alert.show() that
add a message, a title bar, and buttons to the Alert window.

Because ActionScript is asynchronous, the Alert component is not blocking, which means
that the lines of ActionScript code that follow the call to Alert.show() run immediately. You
must add listeners to handle the click events that are broadcast when a user clicks a button
and then continue your code after the event is broadcast.

To understand more about the Alert class, see “Window component” on page 1465 and
“PopUpManager class” on page 987.

Method summary for the Alert class
The following table lists the method of the Alert class.

N
O

T
E

In operating environments that are blocking (for example, Microsoft Windows), a call to
Alert.show() does not return until the user has taken an action, such as clicking a button.

Method Description

Alert.show() Creates an Alert window with optional parameters.
Alert class (Flash Professional only) 71

Methods inherited from the UIObject class
The following table lists the methods the Alert class inherits from the UIObject class.

Methods inherited from the UIComponent class
The following table lists the methods the Alert class inherits from the UIComponent class.

Methods inherited from the Window class
The following table lists the methods the Alert class inherits from the Window class.

Method Description

UIObject.createClassObject

()

Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().
72 Alert component (Flash Professional only)

Property summary for the Alert class
The following table lists properties of the Alert class.

Properties inherited from the UIObject class
The following table lists the properties the Alert class inherits from the UIObject class. When
calling these properties from the Alert object, use the form Alert.propertyName.

Property Description

Alert.buttonHeight The height of each button, in pixels. The default value is
22.

Alert.buttonWidth The width of each button, in pixels. The default value is
100.

Alert.CANCEL A constant hexadecimal value indicating whether a
Cancel button should be displayed in the Alert window.

Alert.cancelLabel The label text for the Cancel button.

Alert.NO A constant hexadecimal value indicating whether a No
button should be displayed in the Alert window.

Alert.noLabel The label text for the No button.

Alert.OK A constant hexadecimal value indicating whether an
OK button should be displayed in the Alert window.

Alert.okLabel The label text for the OK button.

Alert.YES A constant hexadecimal value indicating whether a Yes
button should be displayed in the Alert window.

Alert.yesLabel The label text for the Yes button.

Property Description

UIObject.bottom Read-only.The position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object, relative
to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.
Alert class (Flash Professional only) 73

Properties inherited from the UIComponent class
The following table lists the properties the Alert class inherits from the UIComponent class.
When calling these properties from the Alert object, use the form Alert.propertyName.

Properties inherited from the Window class
The following table lists the properties the Alert class inherits from the Window class.

Event summary for the Alert class
The following table lists an event of the Alert class.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

Window.closeButton Indicates whether a close button is (true) or is not (false)
included on the title bar.

Window.content A reference to the content (root movie clip) of the window.

Window.contentPath Sets the name of the content to display in the window.

Window.title The text that appears in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Event Description

Alert.click Broadcast when a button in an Alert window is clicked.

Property Description
74 Alert component (Flash Professional only)

Events inherited from the UIObject class
The following table lists the events the Alert class inherits from the UIObject class. When
calling these events from the Alert object, use the form Alert.eventName.

Events inherited from the UIComponent class
The following table lists the events the Alert class inherits from the UIComponent class.
When calling these events from the Alert object, use the form Alert.eventName.

Events inherited from the Window class
The following table lists the events the Alert class inherits from the Window class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

Window.click Broadcast when the close button is clicked (released).

Window.complete Broadcast when a window is created.
Alert class (Flash Professional only) 75

Alert.buttonHeight
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.buttonHeight

Description

Property (class); a class (static) property that changes the height of the buttons. The default
value is 22.

Example

With an Alert component already in the library, this example resizes the buttons:
import mx.controls.Alert;

// Adjust button sizes.
Alert.buttonHeight = 50;
Alert.buttonWidth = 150;

// Show alert dialog box.
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |

Alert.CANCEL);

See also

Alert.buttonWidth

Alert.buttonWidth
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.buttonWidth
76 Alert component (Flash Professional only)

Description

Property (class); a class (static) property that changes the width of the buttons. The default
value is 100.

Example

With an Alert component already in the library, add this ActionScript to the first frame of the
main timeline to resize the buttons:
import mx.controls.Alert;

// Adjust button sizes.
Alert.buttonHeight = 50;
Alert.buttonWidth = 150;

// Show alert dialog box.
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |

Alert.CANCEL);

See also

Alert.buttonHeight

Alert.CANCEL
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.CANCEL

Description

Property (constant); a property with the constant hexadecimal value 0x8. This property can
be used for the flags or defaultButton parameter of the Alert.show() method. When
used as a value for the flags parameter, this property indicates that a Cancel button should
be displayed in the Alert window. When used as a value for the defaultButton parameter,
the Cancel button has initial focus and is triggered when the user presses Enter (Windows) or
Return (Macintosh). If the user tabs to another button, that button is triggered when the user
presses Enter.
Alert.CANCEL 77

Example

The following example uses Alert.CANCEL and Alert.OK as values for the flags parameter
and displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |

Alert.CANCEL, this);

Alert.cancelLabel
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.cancelLabel

Description

Property (class); a class (static) property that indicates the label text on the Cancel button.

Example

The following example sets the Cancel button’s label to “cancellation”:
Alert.cancelLabel = "cancellation";
78 Alert component (Flash Professional only)

Alert.click
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
var clickHandler:Object = function(eventObject:Object) {

// Insert code here.
}
Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,

defaultButton]]]]]])

Description

Event; broadcast to the registered listener when the OK, Yes, No, or Cancel button is clicked.

Version 2 components use a dispatcher/listener event model. The Alert component dispatches
a click event when one of its buttons is clicked and the event is handled by a function, also
called a handler, on a listener object (listenerObject) that you create. You call the
Alert.show() method and pass it the name of the handler as a parameter. When a button in
the Alert window is clicked, the listener is called.

When the event occurs, it automatically passes an event object (eventObject) to the handler.
Each event object has properties that contain information about the event. You can use these
properties to write code that handles the event. The Alert.click event’s event object has an
additional detail property whose value is Alert.OK, Alert.CANCEL, Alert.YES, or
Alert.NO, depending on which button was clicked. For more information, see
“EventDispatcher class” on page 499.
Alert.click 79

Example

With an Alert component already in the library, add this ActionScript to the first frame of the
main timeline to create an event handler called myClickHandler. The event handler is passed
to the Alert.show() method as the fifth parameter. The event object is captured by
myClickHandler in the evt parameter. The detail property of the event object is then used
in a trace statement to send the name of the button that was clicked (Alert.OK or
Alert.CANCEL) to the Output panel.
import mx.controls.Alert;

// Define button actions.
var myClickHandler:Function = function (evt_obj:Object) {
 switch (evt_obj.detail) {
 case Alert.OK :
 trace("You clicked: " + Alert.okLabel);
 break;
 case Alert.CANCEL :
 trace("You clicked: " + Alert.cancelLabel);
 break;
 }
};

// Display dialog box.
Alert.show("This is a test of errors", "Error", Alert.OK | Alert.CANCEL,

this, myClickHandler);

Alert.NO
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.NO
80 Alert component (Flash Professional only)

Description

Property (constant); a property with the constant hexadecimal value 0x2. This property can
be used for the flags or defaultButton parameter of the Alert.show() method. When
used as a value for the flags parameter, this property indicates that a No button should be
displayed in the Alert window. When used as a value for the defaultButton parameter, the
Cancel button has initial focus and is triggered when the user presses Enter (Windows) or
Return (Macintosh). If the user tabs to another button, that button is triggered when the user
presses Enter.

Example

The following example uses Alert.NO and Alert.YES as values for the flags parameter and
displays an Alert component with a No button and a Yes button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |

Alert.YES, this);

Alert.noLabel
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.noLabel

Description

Property (class); a class (static) property that indicates the label text on the No button.

Example

The following example sets the No button’s label to “nyet”:
Alert.noLabel = "nyet";
Alert.noLabel 81

Alert.NONMODAL
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.NONMODAL

Description

Property (constant); a property with the constant hexadecimal value 0x8000. This property
can be used for the flags parameter of the Alert.show() method. This property indicates
that an Alert window should be nonmodal, which allows users to interact with buttons and
instances underneath the displayed window. By default, windows generated with
Alert.show() are modal, which means that users cannot click anything except the currently
open window.

Example

The following example displays two Button component instances on the Stage. Clicking one
button opens a modal window, which prevents the user from further clicking the buttons
until the Alert window is closed. The second button opens a nonmodal window, which allows
the user to continue clicking the buttons underneath the currently open nonmodal Alert
window. To test this example, add instances of both the Alert component and the Button
component to the current document’s library and add the following code to Frame 1 of the
main timeline:
import mx.controls.Alert;

this.createClassObject(mx.controls.Button, "modal_button", 10, {_x:10,
_y:10});

this.createClassObject(mx.controls.Button, "nonmodal_button", 20, {_x:120,
_y:10});

modal_button.label = "modal";
modal_button.addEventListener("click", modalListener);
function modalListener(evt_obj:Object):Void {

var a:Alert = Alert.show("This is a modal Alert window", "Alert Test",
Alert.OK, this);
a.move(100, 100);

}

nonmodal_button.label = "nonmodal";
82 Alert component (Flash Professional only)

nonmodal_button.addEventListener("click", nonmodalListener);
function nonmodalListener(evt_obj:Object):Void {

var a:MovieClip = Alert.show("This is a nonmodal Alert window", "Alert
Test", Alert.OK | Alert.NONMODAL, this);
a.move(100, 100);

}

Alert.OK
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.OK

Description

Property (constant); a property with the constant hexadecimal value 0x4. This property can
be used for the flags or defaultButton parameter of the Alert.show() method. When
used as a value for the flags parameter, this property indicates that an OK button should be
displayed in the Alert window. When used as a value for the defaultButton parameter, the
OK button has initial focus and is triggered when the user presses Enter (Windows) or Return
(Macintosh). If the user tabs to another button, that button is triggered when the user presses
Enter.

Example

The following example uses Alert.OK and Alert.CANCEL as values for the flags parameter
and displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |

Alert.CANCEL, this);
Alert.OK 83

Alert.okLabel
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.okLabel

Description

Property (class); a class (static) property that indicates the label text on the OK button.

Example

The following example sets the OK button’s label to “okay”:
Alert.okLabel = "okay";

Alert.show()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,

defaultButton]]]]]])

Parameters

message The message to display.

title The text in the Alert title bar. This parameter is optional; if you omit it, the title bar
is blank.

flags An optional parameter that indicates the buttons to display in the Alert window. The
default value is Alert.OK, which displays an OK button. When you use more than one value,
separate the values with a | character. Use one or more of the following values: Alert.OK,
Alert.CANCEL, Alert.YES, Alert.NO.
84 Alert component (Flash Professional only)

You can also use Alert.NONMODAL to indicate that the Alert window is nonmodal. A
nonmodal window allows a user to interact with other windows in the application.

parent The parent window for the Alert component. The Alert window centers itself in the
parent window. Use the value null or undefined to specify the _root timeline. The parent
window must be a subclass of the UIComponent class, either as another Flash component
that is a subclass of UIComponent, or as a custom window that is a subclass of the
UIComponent (for more information see “About inheritance” in Learning ActionScript 2.0 in
Flash. This parameter is optional.

clickHandler A handler for the click events broadcast when the buttons are clicked. In
addition to the standard click event object properties, there is an additional detail property,
which contains the flag value of the button that was clicked (Alert.OK, Alert.CANCEL,
Alert.YES, Alert.NO). This handler can be a function or an object. For more information,
see “Using listeners to handle events” in Using Components.

icon A string that is the linkage identifier of a symbol in the library; this symbol is used as
an icon displayed to the left of the alert text. This parameter is optional.

defaultButton Indicates which button has initial focus and is clicked when a user presses
Enter (Windows) or Return (Macintosh). If a user tabs to another button, that button is
triggered when the Enter key is pressed.

This parameter can be one of the following values: Alert.OK, Alert.CANCEL, Alert.YES,
Alert.NO.

Returns

The Alert instance that is created.

Description

Method (class); a class (static) method that displays an Alert window with a message, an
optional title, optional buttons, and an optional icon. The title of the alert appears at the top
of the window and is left-aligned. The icon appears to the left of the message text. The
buttons are centered below the message text and the icon.

Example

The following code is a simple example of a modal Alert window with an OK button:
mx.controls.Alert.show("Hello, world!");
Alert.show() 85

The following code defines a click handler that sends a message to the Output panel about
which button was clicked. (You must have an Alert component in the library for this code to
display an alert; to add the component to the library, drag it to the Stage and then delete it):
import mx.controls.Alert;

// Define button actions.
var myClickHandler:Function = function (evt_obj:Object) {
 if (evt_obj.detail == Alert.OK) {
 trace(Alert.okLabel);
 } else if (evt_obj.detail == Alert.CANCEL) {
 trace(Alert.cancelLabel);
 }
};

// Display dialog box.
var dialog_obj:Object = Alert.show("Test Alert", "Test", Alert.OK |

Alert.CANCEL, null, myClickHandler, "testIcon", Alert.OK);

Alert.YES
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.YES

Description

Property (constant); a property with the constant hexadecimal value 0x1. This property can
be used for the flags or defaultButton parameter of the Alert.show() method. When
used as a value for the flags parameter, this property indicates that a Yes button should be
displayed in the Alert window. When used as a value for the defaultButton parameter, the
Yes button has initial focus and is triggered when the user presses Enter (Windows) or Return
(Macintosh). If the user tabs to another button, that button is triggered when the user presses
Enter.
86 Alert component (Flash Professional only)

Example

The following example uses Alert.NO and Alert.YES as values for the flags parameter and
displays an Alert component with a No button and a Yes button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |

Alert.YES, this);

Alert.yesLabel
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Alert.yesLabel

Description

Property (class); a class (static) property that indicates the label text on the Yes button.

Example

The following example sets the OK button’s label to “da”:
Alert.yesLabel = "da";
Alert.yesLabel 87

88 Alert component (Flash Professional only)

4

CHAPTER 4

Button component
The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. However, in the live preview a custom
icon is represented on the Stage by a gray square.

When you add the Button component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code:
mx.accessibility.ButtonAccImpl.enableAccessibility();

You enable accessibility for a component only once. regardless of how many instances you
have of the component.

Key Description

Shift+Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the click event.

Tab Moves focus to the next object.
89

Using the Button component
A button is a fundamental part of any form or web application. You can use buttons wherever
you want a user to initiate an event. For example, most forms have a Submit button. You
could also add Previous and Next buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use
as the icon. The symbol should be registered at 0,0 for appropriate layout on the button.
Select the icon symbol in the Library panel, open the Linkage dialog box from the Library
pop-up menu, and enter a linkage identifier. This is the value to enter for the icon parameter
in the Property inspector or Component inspector. You can also enter this value for the
Button.icon ActionScript property.

To designate a button as the default push button in an application (the button that receives
the click event when a user presses Enter), use FocusManager.defaultPushButton.

Button parameters
You can set the following authoring parameters for each Button component instance in the
Property inspector or Component inspector (Window > Component Inspector menu
option):

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value.

label sets the value of the text on the button; the default value is Button.

labelPlacement orients the label text on the button in relation to the icon. This parameter
can be one of four values: left, right, top, or bottom; the default value is right. For more
information, see Button.labelPlacement.

selected if the toggle parameter is true, this parameter specifies whether the button is
pressed (true) or released (false). The default value is false.

toggle turns the button into a toggle switch. If true, the button remains in the down state
when clicked and returns to the up state when clicked again. If false, the button behaves like
a normal push button. The default value is false.

You can set the following additional parameters for each Button component instance in the
Component inspector (Window > Component Inspector):

N
O

T
E

If an icon is larger than the button, it extends beyond the button’s borders.
90 Button component

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the Button component
using its properties, methods, and events. For more information, see “Button class”
on page 101.

Creating an application with the Button component
The following procedure explains how to add a Button component to an application while
authoring. In this example, the button displays a message when you click it.

To create an application with the Button component:

1. Drag a Button component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name my_button.
■ Enter Click me for the label parameter.
■ Enter BtnIcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a
linkage identifier to use as the icon parameter. In this example, the linkage identifier
is BtnIcon.

■ Set the toggle property to true.
3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

function clicked(){
trace("You clicked the button!");

}
my_button.addEventListener("click", clicked);

The last line of code calls a clicked event handler function for the “click” event. This uses
the method “EventDispatcher.addEventListener()” on page 501 with a custom function
to handle the event.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector will have no visible
effect.
Using the Button component 91

4. Select Control > Test Movie.

5. When you click the button, Flash displays the message “You clicked the button!”.

To create a Button using ActionScript:

1. Drag the Button component from the Components panel to the current document’s
library.

This adds the component to the library, but doesn’t make it visible in the application.
2. In the first frame of the main timeline, add the following ActionScript to the Actions panel

to create a Button instance:
this.createClassObject(mx.controls.Button, "my_button", 10,

{label:"Click me"});
my_button.move(20, 20);

The method UIObject.createClassObject() is used to create the Button instance
named my_button and specify a label property. Then, the code uses the method
UIObject.move() to position the button.

3. Now, add the following ActionScript to create an event listener and an event handler
function:
function clicked() {

trace("You clicked the button!");
}
my_button.addEventListener("click", clicked);

This uses the method “EventDispatcher.addEventListener()” on page 501 with a custom
function to handle the event.

4. Select Control > Test Movie.

5. When you click the button, Flash displays the message “You clicked the button!”.

As you use the Button component with other components, you can create more sophisticated
event handler functions. In this example, the “click” event causes the Accordion component to
change the display of the panels.

To use a Button event with another component:

1. Drag the Button component from the Components panel to the current document’s
library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Drag the Accordion component from the Components panel to the current document’s

library.
92 Button component

3. In the first frame of the main timeline, add the following ActionScript to the Actions panel
to create a Button instance:
this.createClassObject(mx.containers.Accordion, "my_acc", 0);
my_acc.move(10, 40);
my_acc.createChild(mx.core.View, "panelOne", {label: "Panel One"});
my_acc.createChild(mx.core.View, "panelTwo", {label: "Panel Two"});

this.createClassObject(mx.controls.Button, "panelOne_button", 10,
{label:"Panel One"});

panelOne_button.move(10, 10);
this.createClassObject(mx.controls.Button, "panelTwo_button", 20,

{label:"Panel Two"});
panelTwo_button.move(120, 10);

This process uses the method UIObject.createClassObject() to create the Button and
Accordion instances. Then, the code uses the method UIObject.move() to position the
instances.

4. Now, add the following ActionScript to create event listeners and event handler functions:
// Create Handler for the button event.
function changePanel(evt_obj:Object):Void {
 // Change Accordion view depending on button selected.
 switch (evt_obj.target._name) {
 case "panelOne_button" :
 my_acc.selectedIndex = 0;
 break;
 case "panelTwo_button" :
 my_acc.selectedIndex = 1;
 break;
 }
}

// Add Listeners for the buttons.
panelOne_button.addEventListener("click", changePanel);
panelTwo_button.addEventListener("click", changePanel);

This process uses the method EventDispatcher.addEventListener() with a custom
function to handle the events.

5. Select Control > Test Movie.

6. When you click a button, the Accordion changes the current panel.
Using the Button component 93

Customizing the Button component
You can transform a Button component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see
“Button class” on page 101). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

If an icon is larger than the button, the icon extends beyond the button’s borders.

Using styles with the Button component
You can set style properties to change the appearance of a button instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.

A Button component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values
are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen".

backgroundColor Sample The background color. The default value is 0xEFEBEF
(light gray).
The Halo theme uses 0xF8F8F8 (very light gray) for the
button background color when the button is up and
themeColor when the button is pressed. You can only
modify the up background color in the Halo theme by
skinning the button. See “Using skins with the Button
component” on page 95.

borderStyle Sample The Button component uses a RectBorder instance as
its border in the Sample theme and responds to the
styles defined in that class. See “RectBorder class”
on page 1063.
With the Halo theme, the Button component uses a
custom rounded border whose colors cannot be
modified except for themeColor.
94 Button component

Using skins with the Button component
The Button component includes 32 different skins that can be customized to correspond to
the border and icon in 16 different states. To skin the Button component while authoring,
create new movie clip symbols with the desired graphics and set the symbol linkage identifiers
using ActionScript. (For more information, see “Using ActionScript to draw Button skins”
on page 98.)

The default implementation of the Button skins provided with both the Halo and Sample
themes uses the ActionScript drawing API to draw the button states, and uses a single movie
clip symbol associated with one ActionScript class to provide all skins for the Button
component.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

Style Theme Description
Customizing the Button component 95

The Button component has many skins because a button has so many states, and a border and
icon for each state. The state of a Button instance is controlled by four properties and user
interaction. The following properties affect skins:

If a button is enabled, it displays its Over state when the pointer moves over it. The button
receives input focus and displays its Down state when it’s pressed. The button returns to its
Over state when the mouse is released. If the pointer moves off the button while the mouse is
pressed, the button returns to its original state and it retains input focus. If the toggle
parameter is set to true, the state of the button does not change until the mouse is released
over it.

If a button is disabled, it displays its disabled state, regardless of user interaction.

A Button component supports the following skin properties:

Property Description

emphasized Provides two different looks for Button instances and is typically
used to highlight one button, such as the default button in a form.

enabled Shows whether or not the button is allowing user interaction.

toggle Provides a selected and unselected value and uses different skins
to demonstrate the current value. For a Button instance whose
toggle property is set to false, the false skins are used. When the
toggle property is true, the skin depends on the selected
property.

selected When the toggle property is set to true, determines if the Button
is selected (true or false). Different skins are used to identify the
value and, by default, are the only way this value is depicted on
screen.

Property Description

falseUpSkin The up (normal) state.

falseDownSkin The pressed state.

falseOverSkin The over state.

falseDisabledSkin The disabled state.

trueUpSkin The toggled state.

trueDownSkin The pressed-toggled state.

trueOverSkin The over-toggled state.

trueDisabledSkin The disabled-toggled state.

falseUpSkinEmphasized The up (normal) state of an emphasized button.
96 Button component

The default value for all skin properties ending in “Skin” is ButtonSkin, and the default for
all “Icon” properties is undefined. The properties with the “Skin” suffix provide a
background and border, whereas those with the “Icon” suffix provide a small icon.

falseDownSkinEmphasized The pressed state of an emphasized button.

falseOverSkinEmphasized The over state of an emphasized button.

falseDisabledSkinEmphasized The disabled state of an emphasized button.

trueUpSkinEmphasized The toggled state of an emphasized button.

trueDownSkinEmphasized The pressed-toggled state of an emphasized button.

trueOverSkinEmphasized The over-toggled state of an emphasized button.

trueDisabledSkinEmphasized The disabled-toggled state of an emphasized button.

falseUpIcon The icon up state.

falseDownIcon The icon pressed state.

falseOverIcon The icon over state.

falseDisabledIcon The icon disabled state.

trueUpIcon The icon toggled state.

trueOverIcon The icon over-toggled state.

trueDownIcon The icon pressed-toggled state.

trueDisabledIcon The icon disabled-toggled state.

falseUpIconEmphasized The icon up state of an emphasized button.

falseDownIconEmphasized The icon pressed state of an emphasized button.

falseOverIconEmphasized The icon over state of an emphasized button.

falseDisabledIconEmphasized The icon disabled state of an emphasized button.

trueUpIconEmphasized The icon toggled state of an emphasized button.

trueOverIconEmphasized The icon over-toggled state of an emphasized button.

trueDownIconEmphasized The icon pressed-toggled state of an emphasized button.

trueDisabledIconEmphasized The icon disabled-toggled state of an emphasized button.

Property Description
Customizing the Button component 97

In addition to the icon skins, the Button component also supports a standard icon property.
The difference between the standard property and style property is that through the style
property you can set icons for the individual states, whereas with the standard property only
one icon can be set and it applies to all states. If a Button instance has both the icon property
and icon style properties set, the instance may not behave as anticipated.

To see an interactive demo showing when each skin is used, see Using Components Help.

Using ActionScript to draw Button skins
The default skins in both the Halo and Sample themes use the same skin element for all states
and draw the actual graphics through ActionScript. The Halo implementation uses an
extension of the RectBorder class and some custom drawing code to draw the states. The
Sample implementation uses the same skin and the same ActionScript class as the Halo
theme, with different properties set in ActionScript to alter the appearance of the Button.

To create an ActionScript class to use as the skin and provide different states, the skin can read
the borderStyle style property of the skin and emphasized property of the parent to
determine the state. The following table shows the border style that is set for each skin:

To create an ActionScript customized Button skin:

1. Create a new ActionScript class file.

For this example, name the file RedGreenBlueSkin.as.
2. Copy the following ActionScript to the file:

import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueSkin extends RectBorder
{

static var symbolName:String = "RedGreenBlueSkin";
static var symbolOwner:Object = RedGreenBlueSkin;

Property Border style

falseUpSkin falseup

falseDownSkin falsedown

falseOverSkin falserollover

falseDisabled falsedisabled

trueUpSkin trueup

trueDownSkin truedown

trueOverSkin truerollover

trueDisabledSkin truedisabled
98 Button component

function size():Void
{

var c:Number; // color
var borderStyle:String = getStyle("borderStyle");

switch (borderStyle) {
case "falseup":
case "falserollover":
case "falsedisabled":

c = 0x7777FF;
break;

case "falsedown":
c = 0x77FF77;
break;

case "trueup":
case "truedown":
case "truerollover":
case "truedisabled":

c = 0xFF7777;
break;

}

clear();
var thickness = _parent.emphasized ? 2 : 0;
lineStyle(thickness, 0, 100);
beginFill(c, 100);
drawRect(0, 0, __width, __height);
endFill();

}

// Required for skins.
static function classConstruct():Boolean
{

UIObjectExtensions.Extensions();
_global.skinRegistry["ButtonSkin"] = true;
return true;

}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

}

This class creates a square box based on the border style: a blue box for the false up,
rollover, and disabled states; a green box for the normal pressed state; and a red box for the
expanded child. It draws a hairline border in the normal case and a thick border if the
button is emphasized.
Customizing the Button component 99

3. Save the file.

4. Create a new FLA file and save it in the same folder as the AS file.

5. Create a new symbol by selecting Insert > New Symbol.

6. Set the name to ButtonSkin.

7. If the advanced view is not displayed, click the Advanced button.

8. Select Export for ActionScript.

The identifier is automatically filled out with ButtonSkin.
9. Set the AS 2.0 class to RedGreenBlueSkin.

10. Make sure that Export in First Frame is already selected, and click OK.

11. Drag a Button component to the Stage.

12. Select Control > Test Movie.

Using movie clips to customize Button skins
The example above demonstrates how to use an ActionScript class to customize the Button
skin, which is the method used by the skins provided in both the Halo and Sample themes.
However, because the example uses simple colored boxes, it is simpler in this case to use
different movie clip symbols as the skins.

To create movie clip symbols for Button skins:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to RedButtonSkin.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

The identifier is automatically filled out with RedButtonSkin.
6. Set the AS 2.0 class to mx.skins.SkinElement.

7. Make sure that Export in First Frame is already selected, and click OK.

8. Open the new symbol for editing.

9. Use the drawing tools to create a box with a red fill and black line.

10. Set the border style to hairline.

11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height
of 100.

The SkinElement class resizes the content as appropriate.
100 Button component

12. Repeat steps 2-11 and create green and blue skins, named accordingly.

13. Click the Back button to return to the main timeline.

14. Drag a Button component to the Stage.

15. Set the toggled property value to true to see all three skins.

16. Copy the following ActionScript code to the Actions panel with the Button instance
selected.
onClipEvent(initialize) {

falseUpSkin = "BlueButtonSkin";
falseDownSkin = "GreenButtonSkin";
falseOverSkin = "BlueButtonSkin";
falseDisabledSkin = "BlueButtonSkin";
trueUpSkin = "RedButtonSkin";
trueDownSkin = "RedButtonSkin";
trueOverSkin = "RedButtonSkin";
trueDisabledSkin = "RedButtonSkin";

}

17. Select Control > Test Movie.

Button class
Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton class >
Button

ActionScript Class Name mx.controls.Button

The properties of the Button class let you do the following at runtime: add an icon to a
button, create a text label, and indicate whether the button acts as a push button or as a
toggle switch.

Setting a property of the Button class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The Button component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” in Using Components.
Button class 101

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.Button.version);

The Button component class is different from the built-in ActionScript Button object.

Method summary for the Button class
There are no methods exclusive to the Button class.

Methods inherited from the UIObject class
The following table lists the methods the Button class inherits from the UIObject class. When
calling these methods from the Button object, use the form buttonInstance.methodName.

N
O

T
E

The code trace(myButtonInstance.version); returns undefined.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
102 Button component

Methods inherited from the UIComponent class
The following table lists the methods the Button class inherits from the UIComponent class.
When calling these methods from the Button object, use the form
buttonInstance.methodName.

Property summary for the Button class
The following table lists properties of the Button class.

Properties inherited from the SimpleButton class
The following table lists the properties the Button class inherits from the SimpleButton class.
When accessing these properties, use the form buttonInstance.propertyName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Property Description

SimpleButton.emphasized Indicates whether a button has the look of a
default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized
property is set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value
is false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false).
The default value is false.
Button class 103

Properties inherited from the UIObject class
The following table lists the properties the Button class inherits from the UIObject class.
When accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the Button class inherits from the UIComponent class.
When accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
104 Button component

Event summary for the Button class
There are no events exclusive to the Button class.

Events inherited from the SimpleButton class
The following table lists the events the Button class inherits from the SimpleButton class.

Events inherited from the UIObject class
The following table lists the events the Button class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Button class inherits from the UIComponent class.

Property Description

SimpleButton.click Broadcast when a button is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
Button class 105

Button.icon
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.icon

Description

Property; a string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither
the button nor the icon resizes automatically. If an icon is larger than a button, the icon
extends over the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage
in symbol-editing mode and enter 0 in both the X and Y boxes in the Property inspector. In
the Library panel, select the movie clip and select Linkage from the Library pop-up menu.
Select Export for ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.

Use the labelPlacement property to set the position of the icon in relation to the button.

Example

With a button on the Stage with instance name my_button, the following code assigns the
movie clip from the Library panel with the linkage identifier happiness to the Button
instance as an icon:
my_button.icon = "happiness";

N
O

T
E

The icon does not appear on the Stage in Flash. You must select Control > Test Movie to
see the icon.
106 Button component

You can also create the button and assign the icon entirely in ActionScript using the method
UIObject.createClassObject() (you still must have already created an icon for the button
with the linkage identifier happiness). First drag the Button component from the
Components panel to the current document’s library, so the component appears in the library,
but not on the Stage. Then, in the first frame of the main timeline, add the following
ActionScript:
this.createClassObject(mx.controls.Button, "my_button", 1, {icon:

"happiness"});

See also

Button.labelPlacement

Button.label
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.label

Description

Property; specifies the text label for a button instance. By default, the label appears centered
on the button. Calling this method overrides the label authoring parameter specified in the
Property inspector or the Component inspector. The default value is "Button".

Example

With a button on the Stage with instance name my_button, the following code sets the label
to “Test Button”:
my_button.label = "Test Button";
Button.label 107

You can also create the button and assign the label entirely in ActionScript using the method
UIObject.createClassObject(). First drag the Button component from the Components
panel to the current document’s library, so the component appears in the library, but not on
the Stage. Then, in the first frame of the main timeline, add the following ActionScript:
this.createClassObject(mx.controls.Button, "my_button", 1, {label: "Test

Button"});

See also

Button.labelPlacement

Button.labelPlacement
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.labelPlacement

Description

Property; sets the position of the label in relation to the icon. The default value is "right".
The following are the four possible values; the icon and label are always centered vertically and
horizontally within the bounding area of the button:

■ "right" The label is set to the right of the icon.
■ "left" The label is set to the left of the icon.
■ "bottom" The label is set below the icon.
■ "top" The label is set above the icon.
108 Button component

Example

With a button on the Stage with instance name my_button, and a symbol in the Library panel
with the linkage identifier happiness, the following code sets the label alignment to the left
of the icon:
my_button.icon = "happiness";
my_button.label = "Test Button";
my_button.labelPlacement = "left";

You can also create the button and set the alignment entirely in ActionScript using the
method UIObject.createClassObject(). First drag the Button component from the
Components panel to the current document’s library, so it appears in the library, but not on
the Stage. Then, in the first frame of the main timeline, add the following ActionScript:
this.createClassObject(mx.controls.Button, "my_button", 1, {label: "Test

Button", icon: "happiness", labelPlacement: "left"});
Button.labelPlacement 109

110 Button component

5

CHAPTER 5

CellRenderer API
The CellRenderer API is a set of properties and methods that the list-based components (List,
DataGrid, Tree, Menu, and ComboBox) use to manipulate and display custom cell content
for each of their rows. This customized cell can contain a prebuilt component, such as a
CheckBox component, or any class you create.

Understanding the List class
To use the CellRenderer API, you need an advanced understanding of the List class. The
DataGrid, Tree, Menu, and ComboBox components are extensions of the List class, so
understanding the List class lets you understand them as well.
109

About the composition of the List component
List components are composed of rows. These rows display rollover and selection highlights,
are used as hit states for row selection, and play a vital part in scrolling. Aside from selection
highlights and icons (such as the node icons and expander arrows of a Tree component), a row
consists of one cell (or, in the case of the DataGrid component, many cells). In the default
case, these cells are TextField objects that implement the CellRenderer API. However, you can
tell a List component to use a different class of component as the cell for each row. The only
requirement is that the class must implement the CellRenderer API, which the List
component uses for communicating with the cell.

The stacking order of a row in a List or DataGrid component

About the scrolling behavior of the List component
The List class uses a fairly complex algorithm for scrolling. A list only lays out as many rows as
it can display at once; items beyond the value of the rowCount property don’t get rows at all.
When the list scrolls, it moves all the rows up or down (depending on the scrolling direction).
The list then recycles the rows that are scrolled out of view; it reinitializes them and uses them
for the new rows being scrolled into view. To do this, it sets the value of the old row to the
new item in the view and moves the old row to where the new item is scrolled into view.

Because of this scrolling behavior, you cannot expect a cell to be used for only one value.
Recycling of rows means that the cell renderer must know how to completely reset its state
when it is set to a new value. For example, if your cell renderer creates an icon to display one
item, it might need to remove that icon when another item is rendered with it. Assume your
cell renderer is a container that will be filled with numerous item values over time, and it has
to know how to completely change itself from displaying one value to displaying another. In
fact, your cell should even know how to properly render undefined items, which might mean
removing all old content in the cell.

N
O

T
E

If a cell has button event handlers (onPress and so on), the background hit area may not
receive input necessary to trigger the events.
110 CellRenderer API

Using the CellRenderer API
You must write a class with four methods (CellRenderer.getPreferredHeight(),
CellRenderer.getPreferredWidth(), CellRenderer.setSize() and
CellRenderer.setValue()) that the list-based component uses to communicate with the
cell (if the class extends UIObject, you can use size() instead of
CellRenderer.setSize()). The class must be specified in the AS 2.0 Class text box in the
Linkage Properties dialog box of a movie clip symbol in your Flash application.

You can look at the CheckCellRenderer class that implements the Cell Renderer API for an
example; it’s located in First Run/classes/mx/controls/cells. Also, see the DataGrid component
documentation for CellRenderer related information, including “DataGrid performance
strategies” on page 256.

There are two methods and a property (CellRenderer.getCellIndex(),
CellRenderer.getDataLabel(), and CellRenderer.listOwner) that are given
automatically to a cell to allow it to communicate with the list-based component. For
example, suppose a cell contains a check box that, when selected, causes a row to be selected.
The cell renderer needs a reference to the list-based component that contains it in order to call
the component’s selectedIndex property. Also, the cell needs to know which item index it is
currently rendering so that it can set selectedIndex to the correct number; the cell can use
CellRenderer.listOwner and CellRenderer.getCellIndex() to do so. You do not need
to implement these ActionScript elements; the cell receives them automatically when it is
placed in the list-based component.
Using the CellRenderer API 111

Simple cell renderer example
This section presents an example of a cell renderer that displays multiple lines of text in a cell.

The following tutorial shows how to create a cell renderer class that displays multiple lines of
text in the cells of a DataGrid component.

The completed files, MultiLineCell.as and CellRenderer_tutorial.fla are located at
www.macromedia.com/go/component_samples.

Creating the MultiLineCell cell renderer class
A cell renderer class must implement the following methods:

■ CellRenderer.getPreferredHeight()

■ CellRenderer.getPreferredWidth()

The CellRenderer.getPreferredWidth() method is necessary for Menu components
or DataGrid headers only; otherwise, comment it out of the code, as shown in the
example.

■ CellRenderer.setSize()

If a cell renderer class extends UIObject, use implement size() instead, as shown in this
example.

■ CellRenderer.setValue()

A cell renderer class must also declare the methods and property received from the List class:

■ CellRenderer.getCellIndex()

■ CellRenderer.getDataLabel()

■ CellRenderer.listOwner

The following steps show how to create an ActionScript 2.0 cell renderer class file called
MultiLineCell.as and link it to a new movie clip symbol in a new Flash document. Then, you
can add a DataGrid component to the Flash document library. On the first frame, you add
ActionScript that creates the DataGrid dynamically and assigns the MultiLineCell class as the
cell renderer for one of its columns:

To create the multiLineCell cell renderer class:

1. In Flash, select File > New > ActionScript File (not Flash Document). Save the document
as MultiLineCell.as.

2. Enter the following code into MultiLineCell.as:
// ActionScript 2.0 class.
class MultiLineCell extends mx.core.UIComponent
{

private var multiLineLabel; // The label to be used for text.
112 CellRenderer API

http://www.macromedia.com/go/component_samples

private var owner; // The row that contains this cell.
private var listOwner; // The List, data grid or tree containing this
cell.

// Cell height offset from the row height total and preferred cell
width.
private static var PREFERRED_HEIGHT_OFFSET = 4;
private static var PREFERRED_WIDTH = 100;
// Starting depth.
private var startDepth:Number = 1;

// Constructor. Should be empty.
public function MultiLineCell()
{
}

/* UIObject expects you to fill in createChildren by instantiating all
the movie clip assets you might need upon initialization. In this case
we are creating one label*/
public function createChildren():Void
{

// The createLabel method is a useful method of UIObject and a handy
// way to make labels in components.
var c = multiLineLabel = this.createLabel("multiLineLabel",

startDepth);
// Links the style of the label to the style of the grid
c.styleName = listOwner;
c.selectable = false;
c.tabEnabled = false;
c.background = false;
c.border = false;
c.multiline = true;
c.wordWrap = true;

}

public function size():Void
{

/* By extending UIComponent which imports UIObject, you get setSize
automatically, however, UIComponent expects you to implement size().
Assume __width and __height are set for you now. You're going to
expand the cell to fit the whole rowHeight. The rowHeight itself is a
property of the list type component that we are rendering a cell in.
Since we want the rowHeight to fit two lines, when creating the list
type component using this cellRenderer class, make sure its rowHeight
property is set large enough that two lines of text can render within
it.*/

/*__width and __height are the underlying variables of the getter/
setters .width and .height.*/

var c = multiLineLabel;
Using the CellRenderer API 113

c.setSize(__width, __height);
}

// Provides the preferred height of the cell. Inherited method.
public function getPreferredHeight():Number
{

/* The cell is given a property, "owner", that references the row. It’s
always preferred that the cell take up most of the row's height. In
this case we will keep the cell slightly smaller.*/

return owner.__height - PREFERRED_HEIGHT_OFFSET;
}

// Called by the owner to set the value in the cell. Inherited method.
public function setValue(suggestedValue:String, item:Object,
selected:Boolean):Void
{

/* If item is undefined, nothing should be rendered in the cell, so set
the label as invisible. Note: For scrolling List type components like
a scrolling datagrid, the cells are intended to be empty as they
scroll just out of sight, and then the cell is reused again and set to
a new value producing an animated effect of scrolling. For this
reason, you cannot rely on any one cell always having data to show or
the same value.*/

if (item!=undefined){
multiLineLabel.text._visible = false;

}
multiLineLabel.text = suggestedValue;

}
// function getPreferredWidth :: only for menus and DataGrid headers
// function getCellIndex :: not used in this cell renderer
// function getDataLabel :: not used in this cell renderer

}

Creating an application to test the MultiLineCell cell
renderer class
In the following steps, you will create the DataGrid instance and implement the
MultiLineCell class.

To create an application with a DataGrid component that uses the
MultiLineCell cell renderer class:

1. In Flash, select File > New > Flash Document.

2. Select File > Save As, name the file cellRender_tutorial.fla, and save the file to the same
folder as the MultiLineCell.as file.

3. To create a new movieClip symbol to link to the MultiLineCell class, select Insert > New
Symbol.
114 CellRenderer API

4. Click the Advanced button in the lower-right corner of the Create New Symbol dialog box
to enable more options.

The Advanced button is available when you are in the basic mode of the Create New
Symbol dialog box. If you don’t see the Advanced button, you are probably already in the
Advanced view of the dialog box.

5. In the Name text box, type MultiLineCell.

The default value for Type is Movie Clip. Leave Movie Clip selected.
6. Click the Export for ActionScript check box in the Linkage section.

Enabling this option allows you to dynamically attach instances of this symbol to your
Flash documents during runtime. The Identifier text box will automatically show
MultiLineCell.

7. Set the ActionScript 2.0 Class to MultiLineCell (to match the class name of the
MultiLineCell cell renderer class created previously).

8. Enable the Export in first frame check box and click OK to apply your changes and close
the dialog box.

9. Drag the DataGrid component from the Components panel to the library.

The DataGrid instance will be created dynamically through ActionScript in the
following step.

10. Select the first frame on the main Timeline (make sure you are not still in the
MultiLineCell movie-clip editing mode).

11. In the Actions panel for the first frame, enter the following code to create a DataGrid
dynamically, assign data to the DataGrid, and assign your new cell renderer class:
// Create a new DataGrid component instance
this.createClassObject(mx.controls.DataGrid, "myGrid_dg", 1);

// Build a data provider for the data grid with four columns of data.
myDP = new Array();
var aLongString:String = "An example of a cell renderer class that

displays a multiple line TextField";
myDP.addItem({firstName:"Winston", lastName:"Elstad", note:aLongString,

item:100});
myDP.addItem({firstName:"Ric", lastName:"Dietrich", note:aLongString,

item:101});
myDP.addItem({firstName:"Ewing", lastName:"Canepa", note:aLongString,

item:102});

N
O

T
E

If you need to modify the MultiLineCell Movie Clip symbol’s Linkage properties at a
later time, you can right click the symbol in the document’s library and select
Properties or Linkage from the menu.
Using the CellRenderer API 115

myDP.addItem({firstName:"Kevin", lastName:"Wade", note:aLongString,
item:103});

myDP.addItem({firstName:"Kimberly", lastName:"Dietrich",
note:aLongString, item:104});

myDP.addItem({firstName:"AJ", lastName:"Bilow", note:aLongString,
item:105});

myDP.addItem({firstName:"Chuck", lastName:"Yushan", note:aLongString,
item:106});

myDP.addItem({firstName:"John", lastName:"Roo", note:aLongString,
item:107});

/* Assign the data provider to the DataGrid to populate it. Note: This
has to be done before applying the cellRenderers. */

myGrid_dg.dataProvider = myDP;

/* Set some basic grid properties. Note: The data grid's row height
should reflect the number of lines you expect to show in the
MultiLineCell cell renderer. The cell renderer will size to the row
height. This should be about 40 for 2 lines or 60 for 3 lines at
default text size.*/

myGrid_dg.setSize(430,200);
myGrid_dg.move(40,40);
myGrid_dg.rowHeight = 40; // Allows for 2 lines of text at default text

size.
myGrid_dg.getColumnAt(0).width = 70;
myGrid_dg.getColumnAt(1).width = 70;
myGrid_dg.getColumnAt(2).width = 220;
myGrid_dg.resizableColumns = true;
myGrid_dg.vScrollPolicy = "auto";
myGrid_dg.setStyle("backgroundColor", 0xD5D5FF);

// Assign cellRenderers.
myGrid_dg.getColumnAt(2).cellRenderer = "MultiLineCell";

12. Save the Flash document, and select Control > Test Movie.

A data grid appears. The third column of the data grid contains a multiple line cell.

The completed MultiLineCell cell renderer example.
116 CellRenderer API

Additional cell renderer examples
Additional examples of cell renderer classes that display a ComboBox and a CheckCell
component are also provided. These files are located in the CellRenderers_sample folder
within the Samples and Tutorials folder on your hard disk at www.macromedia.com/go/
component_samples.

The additional installed sample named CellRenderers_Sample displaying a ComboBox
and CheckBox.

Methods to implement for the CellRenderer API
You must write a class with the following methods so that the List, DataGrid, Tree, or Menu
component can communicate with the cell.

Method Description

CellRenderer.getPreferredHeight() Returns the preferred height of a cell.

CellRenderer.getPreferredWidth() The preferred width of a cell.

CellRenderer.setSize() Sets the width and height of a cell.

CellRenderer.setValue() Sets the content to be displayed in the cell.
Using the CellRenderer API 117

http://www.macromedia.com/go/component_samples
http://www.macromedia.com/go/component_samples

Methods provided by the CellRenderer API
The List, DataGrid, Tree, and Menu components give the following methods to the cell when
it is created within the component. You do not need to implement these methods.

Properties provided by the CellRenderer API
The List, DataGrid, Tree, and Menu component give the following properties to the cell
when it is created within the component. You do not need to implement these properties.

CellRenderer.getCellIndex()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getCellIndex()

Parameters

None.

Returns

An object with two fields: columnIndex and itemIndex.

Method Description

CellRenderer.getCellIndex() Returns an object with two fields, columnIndex and
itemIndex, that indicate the position of the cell.

CellRenderer.getDataLabel() Returns a string containing the name of the cell
renderer’s data field.

Property Description

CellRenderer.listOwner A reference to the List component that contains the
cell.

CellRenderer.owner A reference to the row that contains the cell.
118 CellRenderer API

Description

Method; returns an object with two fields, columnIndex and itemIndex, that locate the cell
in the component. Each field is an integer that indicates a cell’s column position and item
position. For any components other than the DataGrid component, the value of
columnIndex is always 0.

This method is provided by the List class; you do not have to implement it. Declare it in your
cell renderer class as follows, and use it in the functions in your cell renderer:
var getCellIndex:Function;

Example

This example edits a DataGrid component’s data provider from within a cell:
var index = getCellIndex();
var colName = listOwner.getColumnAt(index.columnIndex).columnName;
listOwner.dataProvider.editField(index.itemIndex, colName, someVal);

CellRenderer.getDataLabel()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getDataLabel()

Parameters

None.

Returns

A string.

Description

Method; returns a string containing the name of the cell renderer’s data field. For the
DataGrid component, this method returns the column name for the current cell.

This method is provided by the List class; you do not have to implement it. Declare it in your
cell renderer class as follows, and use it in the functions in your cell renderer:
var getDataLabel:Function;
CellRenderer.getDataLabel() 119

Example

The following code tells the cell the name of the data field that it is rendering. For example, if
the name of the data field currently being rendered by the cell is "Price", the variable p is
now equal to "Price":
var p = getDataLabel();

CellRenderer.getPreferredHeight()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getPreferredHeight()

Parameters

None.

Returns

The correct height for the cell.

Description

Method; returns the preferred height of a cell. This is especially important for getting the
right height of text within the cell. If you set this value higher than the rowHeight property of
the component, cells will bleed above and below the rows.

This method is not provided by the List class; you must implement it. It tells the rows of the
list how to center the cell and how to adjust the cell’s height if necessary. If necessary, you can
return a constant (for example, 22), or you can measure and return the height of the contents.
You can also return owner.height, which is the height of the row.

Example

This example returns the value 20, which indicates that the cell should be 20 pixels high:
function getPreferredHeight(Void) :Number
{
 return 20;
}

120 CellRenderer API

This example returns a value that is 4 pixels less that the height of the row:
function getPreferredHeight():Number
{
/* You know the cell is given a property, "owner", which is the row. It’s

always preferred for the cell to take up most of the row's height.
*/
return owner.__height - 4;
}

CellRenderer.getPreferredWidth()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getPreferredWidth()

Parameters

None.

Returns

A value (of type Number) that indicates the correct width of the cell.

Description

Method; the preferred width of a cell. If you specify a width greater than that of the
component, the cell may be cut off.

Implement this method for the Menu component. Your cell is sized to whatever the width of
the row is, except in a menu, which must measure the text for the width of the row. You can
also implement this method for the DataGrid component where the header renderer checks
whether or not to show the sort arrow.
CellRenderer.getPreferredWidth() 121

Example

This example returns the value multiplied by 3, which indicates that the cell should be three
times bigger than the length of the string it is rendering:
function getPreferredWidth():Number
{
 return myString.length*3;
}

This example comments out the getPreferredWidth() method:
// function getPreferredWidth :: only for a menu or datagrid

CellRenderer.listOwner
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.listOwner

Description

Property; a reference to the list that owns the cell. That list can be a DataGrid, Tree, List, or
Menu component.

This method is provided by the List class; you do not have to implement it. Declare it in your
cell renderer class as follows, and use it as a reference back to the list (or tree, menu, or grid):
var listOwner:MovieClip; // or UIObject, etc.

Example

This example finds the list’s selected item in a cell:
var s = listOwner.selectedItem;
122 CellRenderer API

CellRenderer.owner
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.owner

Description

Property; a reference to the row that contains the cell.

This method is provided by the List class; you do not have to implement it. Declare it in your
cell renderer class and use it as a reference:
var owner:MovieClip; // or UIObject, etc.

CellRenderer.setSize()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setSize(width, height)

Parameters

width A number that indicates the width at which to lay out the component.

height A number that indicates the height at which to lay out the component.

Returns

Nothing.
CellRenderer.setSize() 123

Description

Method; lets the list tell its cells the size at which they should lay themselves out. The cell
renderer should do layout so that it fits in the specified area, or the cell may bleed into other
parts of the list and appear broken.
If the cell renderer extends the UIObject class, you should implement the size() method
instead. Write the same function that you would write for setSize(), but use the width and
height properties instead of parameters.

Example

The following example sizes an image in the cell to fit within the bounds specified by the list:
function setSize(w:Number, h:Number):Void
{
 image._width = w-2;
 image._height = h-2;
 image._x = image._y = 1;
}

This example is in a cell renderer class that extends UIComponent (which extends UIObject),
so you must implement size() instead of setSize(), as follows:
// By extending UIComponent, you get setSize for free;
// however, UIComponent expects you to implement size().
// Assume __width and __height are set for you now.
// You’re going to expand the cell to fit the whole rowHeight.

function size():Void
{
// __width and __height are the underlying variables
// of the getters/setters .width and .height.

var c = multiLineLabel;
c._width = __width;
c._height = __height;

}

CellRenderer.setValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setValue(suggested, item, selected)
124 CellRenderer API

Parameters

suggested A value to be used for the cell renderer’s text, if any is needed.

item An object that is the entire item to be rendered. The cell renderer can use properties of
this object for rendering.

selected A string with the following possible values: "normal", "highlighted", and
"selected".

Returns

Nothing.

Description

Method; takes the values given and creates a representation of them in the cell. This resolves
any difference between what was displayed in the cell and what needs to be displayed in the
cell for the new item. (Remember that any cell could display many values during its time in
the list.) This is the most important CellRenderer method, and you must implement it in
every cell renderer.

The setValue() method is called frequently (for example, when a rollover, a selection,
column resizing, or scrolling occurs). It is important to remember that a cell might not exist
on the Stage and should not always be updated with data when setValue() is called. For
example, at any moment, a particular cell may be scrolled out of the display area or it might
be reused to render another value. For this reason, you cannot directly reference a specific cell
renderer instance in the grid, and you should write if statements in the body of setValue()
that allow code to run only if the item parameter is defined and a change has occurred. An
undefined item parameter indicates that the cell should be visibly empty and any items in the
cell should be assigned a _visible property of false. Cells can be required to be visibly
empty temporarily, such as when scrolling occurs in a DataGrid.

If a row is selected and the pointer is over it, the value of the selected parameter is
"highlighted", not "selected". This can cause problems if you’re trying to make the cell
renderer behave differently according to whether the row is in a selected state. To test whether
the current row is in a selected state, use the following code:
var reallySelected:Boolean = selected != "normal" && listOwner.selectedNode

== item;

Example

The following example shows how to use setValue() and editField() to reference a cell
renderer instance in a grid.
CellRenderer.setValue() 125

Because a cell might not exist on the Stage (it might be scrolled out of the display area or it
might be reused to render another value) at any time, you cannot directly reference a specific
cell renderer instance in the grid.

Instead, use the data provider to communicate with a specific cell in the grid. The data
provider holds all the state information about the grid. To display a given cell as enabled or
selected (checked), there should be a corresponding field in the data provider to hold that
information. The setValue() method of your cell renderer communicates changes in the
data provider’s state to the cell. The following is a setValue() implementation from a
theoretical cell renderer that renders a check box in the cells:
function setValue(str, itm, sel)
{
/* Assume the data provider has two relevant fields for this cell : checked

and enabled.
The form of such a data provider might look like this:
[
{field1:"DisplayMe", field2:"SomeString", checked:true, enabled:false}
{field1:"DisplayMe", field2:"SomeString", checked:false, enabled:true}
{field1:"DisplayMe", field2:"SomeString", checked:true, enabled:true}
]
*/

/* Hide anything normally rendered in the cell if itm is undefined.
Otherwise update the cell contents with the new data.

*/
if (itm == undefined){

myCheck._visible = false;
}else{

// redundancy checking
if (myCheck.selected!=itm.checked){

myCheck.selected = itm.checked;
}
if (myCheck.enabled!=itm.enabled){

myCheck.enabled = itm.enabled;
}

}
}

126 CellRenderer API

If you want to enable the check box on the second row, you communicate through the data
provider. Any change to the data provider (when made through a DataProvider method such
as DataProvider.editField()) calls setValue() to refresh the display of the grid. This
code would be written in the Flash application, either on a frame, on an object, or in another
class file (but not in the cell renderer class file):
// calls setValue() again
myGrid.editField(1, "enabled", true);

The following example loads an image in a loader component within the cell, depending on
the value passed:
function setValue(suggested, item, selected) : Void
{
/* Hide anything normally rendered in the cell if item is undefined.

Otherwise update the cell contents with the new data.
*/

if (item == undefined){
loader._visible = false;

}else{
// clear the loader
loader.contentPath = undefined;
// the list has URLs for different images in its data provider
if (suggested!=undefined){

loader.contentPath = suggested;
}

}

}

The following example is from a multiline text cell renderer:
function setValue(suggested:String, item:Object, selected:Boolean):Void
{
/* Hide anything normally rendered in the cell if item is undefined.

Otherwise update the cell contents with the new data.
*/

if (item == undefined){
multiLineLabel._visible = false;

}else{
// adds the text to the label
multiLineLabel.text = suggested;

}
}

CellRenderer.setValue() 127

The following example is from a radio button renderer. If the item parameter is undefined,
then the cell may be scrolled out of the display area and should be visibly empty. An if
statement is used to determine if the item parameter is undefined. If the item parameter is
undefined, the radio button is hidden by setting its _visible property to false; otherwise,
the radio button is updated with the new data and appears.
function setValue(str:String, item:Object, sel:String) : Void {
/* Hide anything normally rendered in the cell if item is undefined.

Otherwise update the cell contents with the new data.
*/

if (item == undefined) {
radio._visible = false; }

else {
trace(item.data + " " + item.label + " " + item.state + " " + sel);
radio.label = item.label;
radio.data = item.data;
radio.selected = item.state;
radio._visible = true;

}
}

128 CellRenderer API

6

CHAPTER 6

CheckBox component
A check box is a square box that can be selected or deselected. When it is selected, a check
mark appears in the box. You can add a text label to a check box and place it to the left, right,
top, or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input
focus. The state of a check box does not change until the mouse is released over the
component. Additionally, the check box has two disabled states, selected and deselected,
which do not allow mouse or keyboard interaction.

If a check box is disabled, it displays its disabled appearance, regardless of user interaction. In
the disabled state, a button doesn’t receive mouse or keyboard input.

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance
has focus, you can use the following keys to control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.CheckBoxAccImpl.enableAccessibility();

Key Description

Shift+Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the click event.

Tab Moves focus to the next element.
129

You enable accessibility for a component only once, regardless of how many instances you
have of the component. For more information, see Chapter 19, “Creating Accessible
Content,” in Using Flash.

Using the CheckBox component
A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies
for the customer to select; each hobby would have a check box beside it.

CheckBox parameters
You can set the following authoring parameters for each CheckBox component instance in the
Property inspector or in the Component inspector:

label sets the value of the text for the check box; the default value is CheckBox.

labelPlacement orients the label text for the check box. This parameter can be one of four
values: left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

selected sets the initial value of the check box to checked (true) or unchecked (false). The
default value is false.

You can write ActionScript to control these and additional options for the CheckBox
component using its properties, methods, and events. For more information, see “CheckBox
class” on page 135.

Creating an application with the CheckBox
component
The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a
query that searches for possible dating matches for the customer. The query form must have a
check box labeled Restrict Age that permits customers to restrict their search to a specified age
group. When the Restrict Age check box is selected, the customer can then enter the
minimum and maximum ages into two text fields. (These text fields are enabled only when
the check box is selected.)
130 CheckBox component

To create an application with the CheckBox component:

1. Drag two TextInput components from the Components panel to the Stage.

2. In the Property inspector, enter the instance names minimumAge and maximumAge.

3. Drag a CheckBox component from the Components panel to the Stage.

4. In the Property inspector, do the following:

■ Enter restrictAge for the instance name.
■ Enter Restrict Age for the label parameter.

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
var restrictAgeListener:Object = new Object();
restrictAgeListener.click = function (evt:Object) {

minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

};
restrictAge.addEventListener("click", restrictAgeListener);

This code creates a click event handler that enables and disables the minimumAge and
maximumAge text field components, which have already been placed on Stage. For more
information, see CheckBox.click and “TextInput component” on page 1209.

To create a check box using ActionScript:

1. Drag the CheckBox component from the Components panel to the current document’s
library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Drag the TextInput component from the Components panel to the current document’s

library.

3. In the first frame of the main Timeline, add the following ActionScript to the Actions panel
to create and position component instances:
this.createClassObject(mx.controls.CheckBox, "testAge_ch", 1,

{label:'Age Range', selected:true});
this.createClassObject(mx.controls.TextInput, "minimumAge_ti", 2,

{restrict:[0-9], text:18, maxChars:2});
minimumAge_ti.move(20, 30);
this.createClassObject(mx.controls.TextInput, "maximumAge_ti", 3,

{restrict:[0-9], text:55, maxChars:2});
maximumAge_ti.move(20, 60);

This script uses the method “UIObject.createClassObject()” on page 1362 to create the
CheckBox instance named restrictAge, and specifies a label property. Then, the code uses
the method “UIObject.move()” on page 1375 to position the button.
Using the CheckBox component 131

4. Now, add the following ActionScript to create an event listener and an event handler
function:
// Create handler for checkBox event.
function checkboxHandler(evt_obj:Object) {
 minimumAge_ti.enabled = evt_obj.target.selected;
 maximumAge_ti.enabled = evt_obj.target.selected;
}
// Add Listener.
testAge_ch.addEventListener("click", checkboxHandler);

This code creates a click event handler that enables and disables the minimumAge and
maximumAge text field components. For more information, see CheckBox.click,
“EventDispatcher.addEventListener()” on page 501 and “TextInput component”
on page 1209.

Customizing the CheckBox component
You can transform a CheckBox component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class.
Resizing the check box does not change the size of the label or the check box icon; it only
changes the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

Using styles with the CheckBox component
You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.
132 CheckBox component

A CheckBox component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component.
Possible values are "haloGreen", "haloBlue",
and "haloOrange". The default value is
"haloGreen".

color Both The text color. The default value is 0x0B333C
for the Halo theme and blank for the Sample
theme.

disabledColor Both The color for text when the component is
disabled. The default color is 0x848384
(dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font.
This style must be set to true if fontFamily refers
to an embedded font. Otherwise, the embedded
font is not used. If this style is set to true and
fontFamily does not refer to an embedded font,
no text is displayed. The default value is false.

fontFamily Both The font name for text. The default value is
"_sans".

fontSize Both The point size for the font. The default value is
10.

fontStyle Both The font style: either "normal" or "italic". The
default value is "normal".

fontWeight Both The font weight: either "none" or "bold". The
default value is "none". All components can also
accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to
getStyle() return "none".

textDecoration Both The text decoration: either "none" or
"underline". The default value is "none".

symbolBackgroundColor Sample The background color of the check box. The
default value is 0xFFFFFF (white).

symbolBackgroundDisabledColor Sample The background color of the check box when
disabled. The default value is 0xEFEEEF (light
gray).

symbolBackgroundPressedColor Sample The background color of the check box when
pressed. The default value is 0xFFFFFF (white).
Customizing the CheckBox component 133

Using skins with the CheckBox component
The CheckBox component uses symbols in the library to represent the button states. To skin
the CheckBox component while authoring, modify symbols in the Library panel. The
CheckBox component skins are located in the Flash UI Components 2/Themes/MMDefault/
CheckBox Assets/states folder in the library of either the HaloTheme.fla file or the
SampleTheme.fla file. For more information, see “About skinning components” in
Using Components.

A CheckBox component uses the following skin properties:

Each of these skins corresponds to the icon indicating the CheckBox state. The CheckBox
component does not have a border or background.

To create movie clip symbols for CheckBox skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the CheckBox Assets folder to the library for your document.

symbolColor Sample The color of the check mark. The default value is
0x000000 (black).

symbolDisabledColor Sample The color of the disabled check mark. The
default value is 0x848384 (dark gray).

Property Description

falseUpSkin The up (normal) unchecked state. The default is CheckFalseUp.

falseDownSkin The pressed unchecked state. The default is CheckFalseDown.

falseOverSkin The over unchecked state. The default is CheckFalseOver.

falseDisabledSkin The disabled unchecked state. The default is CheckFalseDisabled.

trueUpSkin The toggled checked state. The default is CheckTrueUp.

trueDownSkin The pressed checked state. The default is CheckTrueDown.

trueOverSkin The over checked state. The default is CheckTrueOver.

trueDisabledSkin The disabled checked state. The default is CheckTrueDisabled.

Style Theme Description
134 CheckBox component

4. Expand the CheckBox Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the CheckFalseDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.

For example, repeat the color change for the inner box of the CheckTrueDisabled symbol.
8. Click the Back button to return to the main timeline.

9. Drag a CheckBox component to the Stage.

For this example, drag two instances to show the two new skin symbols.
10. Set the CheckBox instance properties as desired.

For this example, set one CheckBox instance to true, and use ActionScript to set both
CheckBox instances to disabled.

11. Select Control > Test Movie.

CheckBox class
Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton class >
Button component > CheckBox

ActionScript Class Name mx.controls.CheckBox

The properties of the CheckBox class let you create a text label and position it to the left,
right, top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

The CheckBox component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” in Using Components.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.CheckBox.version);

N
O

T
E

The code trace(myCheckBoxInstance.version); returns undefined.
CheckBox class 135

Method summary for the CheckBox class
There are no methods exclusive to the CheckBox class.

Methods inherited from the UIObject class
The following table lists the methods the CheckBox class inherits from the UIObject class.
When calling these methods from the CheckBox object, use the form
checkBoxInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the CheckBox class inherits from the UIComponent
class. When calling these methods from the CheckBox object, use the form
checkBoxInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
136 CheckBox component

Property summary for the CheckBox class
The following table lists properties of the CheckBox class.

Properties inherited from the UIObject class
The following table lists the properties the CheckBox class inherits from the UIObject class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description

CheckBox.label Specifies the text that appears next to a check box.

CheckBox.labelPlacement Specifies the orientation of the label text in relation to a
check box.

CheckBox.selected Specifies whether the check box is selected (true) or
deselected (false).

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.
CheckBox class 137

Properties inherited from the UIComponent class
The following table lists the properties the CheckBox class inherits from the UIComponent
class. When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Properties inherited from the SimpleButton class
The following table lists the properties the CheckBox class inherits from the SimpleButton
class. When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Properties inherited from the Button class
The following table lists the properties the CheckBox class inherits from the Button class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance
of a default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized
property is set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value
is false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false).
The default value is false.

Property Description

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.
138 CheckBox component

Event summary for the CheckBox class
The following table lists an event of the CheckBox class.

Events inherited from the UIObject class
The following table lists the events the CheckBox class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the CheckBox class inherits from the UIComponent class.

Event Description

CheckBox.click Triggered when the mouse is clicked (released) over the
check box, or if the check box has focus and the Spacebar is
pressed.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
CheckBox class 139

Events inherited from the SimpleButton class
The following table lists the event the CheckBox class inherits from the SimpleButton class.

CheckBox.click
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.click = function(eventObject:Object) {

// ...
};
checkBoxInstance.addEventListener("click", listenerObject);

Usage 2:
on (click) {

// ...
}

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check
box, or if the check box has focus and the Spacebar is pressed.

Event Description

SimpleButton.click Broadcast when a button is clicked.
140 CheckBox component

The first usage example uses a dispatcher-listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, click), and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. The event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the addEventListener() method (see
EventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a CheckBox
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the check box
myCheckBox, sends “_level0.myCheckBox” to the Output panel:
on (click) {

trace(this);
}

Example

The following example enables a button when the check box is selected. This example
assumes you have a Button component instance on the Stage with instance name
submit_button, and a CheckBox component instance on the Stage with the instance name
agree_ch. Add the following code to the first frame of the main timeline:
agree_ch.label = "I agree";
submit_button.enabled = false;

// Create Listener Object.
var form_obj:Object = new Object();

// Assign function to Listener Object.
form_obj.click = function(event_obj:Object) {
 submit_button.enabled = event_obj.target.selected;
};

// Add Listener.
agree_ch.addEventListener("click", form_obj);
CheckBox.click 141

The following code sends a message to the Output panel when checkBoxInstance is clicked.
The on() handler must be attached directly to checkBoxInstance:
on (click) {

trace("check box component was clicked");
}

See also

EventDispatcher.addEventListener()

CheckBox.label
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
checkBoxInstance.label

Description

Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the
Parameters tab of the Component inspector.

The CheckBox component does not allow multiline labels.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:
checkBox.label = "Remove from list";
trace(checkBox.label)
142 CheckBox component

This example creates the check box in ActionScript, and then resizes the label when checked.
For this example, drag a CheckBox component from the Components panel to the current
document’s library (so the CheckBox component appears in your library, but not on the
Stage). Then add the following ActionScript to the first frame of the main timeline:
this.createClassObject(mx.controls.CheckBox, "my_ch", 10, {label:"Resize

CheckBox instance"});

function checkboxHandler(evt_obj:Object):Void {
 trace("before: " + evt_obj.target.width +"px wide");
 evt_obj.target.setSize(200, evt_obj.target.height);
 trace("after: " + evt_obj.target.width+"px wide");
}
my_ch.addEventListener("click", checkboxHandler);

See also

CheckBox.labelPlacement

CheckBox.labelPlacement
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
checkBoxInstance.labelPlacement

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

■ "right" The check box is pinned to the upper-left corner of the bounding area. The
label is set to the right of the check box. This is the default value.

■ "left" The check box is pinned to the upper-right corner of the bounding area. The
label is set to the left of the check box.
CheckBox.labelPlacement 143

■ "bottom" The label is set below the check box. The check box and label are centered
horizontally and vertically.

■ "top" The label is placed below the check box. The check box and label are centered
horizontally and vertically.

You can change the bounding area of a component while authoring by using the
Transform command or at runtime using the UIObject.setSize() property. For more
information, see “Customizing the CheckBox component” on page 132.

Example

The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

The following example uses ActionScript to create check box instances. The check box
instance right_ch has its label and labelPlacement properties set within the method
“UIObject.createClassObject()” on page 1362. The check box instance left_ch has its label
and labelPlacement properties set in separate declarations. Drag the CheckBox component
from the Components panel to the current document’s library (so the component appears in
your library, but not on the Stage). Then add the following ActionScript to the first frame of
the main timeline:
this.createClassObject(mx.controls.CheckBox, "right_ch", 1, {label:"Right",

labelPlacement:"right"});
right_ch.move(10, 10);
this.createClassObject(mx.controls.CheckBox, "left_ch", 2);
left_ch.label= "Left";
left_ch.labelPlacement = "left";
left_ch.move(10, 30);

See also

CheckBox.label
144 CheckBox component

CheckBox.selected
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
checkBoxInstance.selected

Description

Property; a Boolean value that selects (true) or deselects (false) the check box.

Example

The following example shows a check box that has its selected property set to true, by
default, and then uses the selected property within an event handler function to respond to
the user clicking the check box. Drag the CheckBox component to the Stage. Give the
component instance the name my_ch. Then, add the following code to the Actions panel of
the first frame of the main timeline:
my_ch.selected = true;

var checkboxListener:Object = new Object();
checkboxListener.click = function(evt_obj:Object) {
 if (evt_obj.target.selected) {
 evt_obj.target.label = "Selected!";
 } else {
 evt_obj.target.label = "Unselected!";
 }
};
my_ch.addEventListener("click", checkboxListener);
CheckBox.selected 145

146 CheckBox component

7

CHAPTER 7

Collection interface (Flash
Professional only)
The collection class is distributed in the common classes library as a compiled clip symbol. To
access this class, select Window > Common Libraries > Classes, which contains the compiled
clip UtilsClasses.

Collection class (Flash Professional only)
ActionScript Class Name mx.utils.Collection

The collection interface lets you programmatically manage a group of related items, called
collection items. Each collection item in this set has properties that are described in the
metadata of the collection item class definition.

Components can expose properties as collections, which you can manipulate while authoring
by using the Values dialog box from the Component inspector. Using this dialog box, you can
add items, remove items, change properties of items, and change the position of items within
the collection. For more information on collections and collection items, see “About the
Collection tag” in Using Components.

You typically use the collection interface with components that use the Collection metadata
tag to create collection properties. Although you can create, access, and delete Collection
instances programmatically, collections are most often used in the context of a component.
Flash MX Professional 2004 provides implementations of both collection-related interfaces
(CollectionImpl for Collection, and IteratorImpl for Iterator).
147

Method summary for the Collection interface
The following table lists the methods of the Collection interface.

Collection.addItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.addItem(item)

Parameters

item The object to be added to the collection. If item is null, it is not added to the
collection.

Returns

A Boolean value of true if the collection was changed as a result of the operation.

Description

Method; adds a new item to the end of the collection.

Method Description

Collection.addItem() Adds a new item to the end of the collection.

Collection.contains() Indicates whether the collection contains the specified
item.

Collection.clear() Removes all elements from the collection.

Collection.getItemAt() Returns an item within the collection by using its index.

Collection.getIterator() Returns an iterator over the elements in the collection.

Collection.getLength() Returns the number of items in the collection.

Collection.isEmpty() Indicates whether the collection is empty.

Collection.removeItem() Removes the specified item from the collection.
148 Collection interface (Flash Professional only)

Example

The following example calls addItem():
on (click) {
import CompactDisc;

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
myCD = new CompactDisc();
myCD.Artist = "John Coltrane";
myCD.Title = "Giant Steps";

var wasAdded:Boolean = myColl.addItem(myCD);

}

Collection.contains()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.contains(item)

Parameters

item The object whose presence in the collection is to be tested.

Returns

A Boolean value of true if the collection contains item.

Description

Method; indicates whether the collection contains the specified item. For Flash to consider
the objects as equal, they must refer to the same object. If item is a different object,
Collection.contains() returns false, even if the object’s properties are all equal.
Collection.contains() 149

Example

The following example calls contains():
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

var itr:mx.utils.Iterator = myColl.getIterator();
while (itr.hasNext()) {

var cd:CompactDisc = CompactDisc(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;

if(myColl.contains(cd)) {
trace("myColl contains " + title);

}
else {

trace("myColl does not contain " + title);
}

}

Collection.clear()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.clear()

Returns

Nothing.

Description

Method; removes all of the elements from the collection.

Example

The following example calls clear():
on (click) {

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
myColl.clear();

}

150 Collection interface (Flash Professional only)

Collection.getItemAt()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.getItemAt(index)

Parameters

index A number that indicates the location of item within the collection. This is a zero-
based index, so 0 retrieves the first item, 1 retrieves the second item, and so on.

Returns

An object containing a reference to the specified collection item, or null if index is out of
bounds.

Description

Method; returns an item within the collection by using its index.

Example

The following example calls getItemAt():
//...

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
var myCD = CompactDisc(myColl.getItemAt(0));
if (myCD !=null) {

trace("Retrieved " + myCD.Title);
}

//...
Collection.getItemAt() 151

Collection.getIterator()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.getIterator()

Returns

An Iterator object that you can use to step through the collection.

Description

Method; returns an iterator over the elements in the collection. There are no guarantees
concerning the order in which the elements are returned (unless this collection is an instance
of a class that provides a guarantee).

Example

The following example calls getIterator():
on (click) {

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

var itr:mx.utils.Iterator = myColl.getIterator();
while (itr.hasNext()) {

var cd:CompactDisk = CompactDisc(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;

trace("Title: " + title + " - Artist: " + artist);
}

}

152 Collection interface (Flash Professional only)

Collection.getLength()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.getLength()

Returns

The number of items in the collection.

Description

Method; returns the number of items in the collection.

Example

The following example calls getLength():
//...
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
trace ("Collection size is: " + myColl.getLength());
//...

Collection.isEmpty()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.isEmpty()

Returns

A Boolean value of true if the collection is empty.
Collection.isEmpty() 153

Description

Method; indicates whether the collection is empty.

Example

The following example calls isEmpty():
on (click) {

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
if (myColl.isEmpty()) {

trace("No CDs in the collection");
}

}
//...

Collection.removeItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
collection.removeItem(item)

Parameters

item The object to be removed from the collection.

Returns

A Boolean value of true if item was removed successfully.

Description

Method; removes the specified item from the collection. Because Collection.removeItem()
dynamically reduces the size of the collection, do not call this method while looping through
an iterator.
154 Collection interface (Flash Professional only)

Example

The following example calls removeItem():
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

// get this from a text input box
var removeArtist:String = _parent.tArtistToRemove.text;
var removeSize:Number = 0;

if (myColl.isEmpty()) {
trace("No CDs in the collection");

}
else {

var toRemove:Array = new Array();
var itr:mx.utils.Iterator = myColl.getIterator();
var cd:CompactDisc = new CompactDisc();
var title:String = "";
var artist:String = "";
while (itr.hasNext()) {

cd = CompactDisc(itr.next());
title = cd.Title;
artist = cd.Artist;
if(artist == removeArtist) {

// mark this artist for deletion
removeSize = toRemove.push(cd);
trace("*** Marked for deletion: " + artist + "|" + title);

}
}
// after while loop, remove the bad ones
var removeCD:CompactDisc = new CompactDisc();
for(i = 0; i < removeSize; i++) {

removeCD = toRemove[i];
trace("Removing: " + removeCD.Artist + "|" + removeCD.Title);
myColl.removeItem(removeCD);

}
}

Collection.removeItem() 155

156 Collection interface (Flash Professional only)

8

CHAPTER 8

ComboBox component
A combo box allows a user to make a single selection from a pop-up list. A combo box can be
static or editable. An editable combo box allows a user to enter text directly into a text field at
the top of the list, as well as selecting an item from a pop-up list. If the pop-up list hits the
bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the
top of the combo box. It doesn’t matter if the selection is made with the mouse or the
keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are
handled according to the rules of the TextInput component (see “TextInput component”
on page 1209), with the exception of the following keys:

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You
can also use the following keys to control a static combo box:

Key Description

Control+Down
Arrow

Opens the drop-down list and gives it focus.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Down
Arrow

Opens the drop-down list and gives it focus.

Control+Up
Arrow

Closes the drop-down list, if open in the stand-alone and browser versions of
Flash Player.

Down Arrow Moves the selection down one item.
157

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You
can also use the following keys to control a drop-down list:

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box in test mode.

Enter Closes the drop-down list and returns focus to the combo box.

Home Moves the selection to the top of the list.

Page Down Moves the selection down one page.

Page Up Moves the selection up one page.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Up
Arrow

If the drop-down list is open, focus returns to the text box and the drop-
down list closes in the stand-alone and browser versions of Flash Player.

Down Arrow Moves the selection down one item.

End Moves the insertion point to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the
drop-down list closes.

Escape If the drop-down list is open, focus returns to the text box and the
drop-down list closes in test mode.

Home Moves the insertion point to the beginning of the text box.

Page Down Moves the selection down one page.

Page Up Moves the selection up one page.

Tab Moves focus to the next object.

Shift+End Selects the text from the insertion point to the End position.

Shift+Home Selects the text from the insertion point to the Home position.

Shift+Tab Moves focus to the previous object.

Up Arrow Moves the selection up one item.

N
O

T
E

The page size used by the Page Up and Page Down keys is one less than the number of
items that fit in the display. For example, paging down through a ten-line drop-down list
will show items 0-9, 9-18, 18-27, and so on, with one item overlapping per page.

Key Description
158 ComboBox component

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component inspector during authoring. However,
the drop-down list does not open in the live preview, and the first item is displayed as the
selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ComboBoxAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances the
component has. For more information, see Chapter 19, “Creating Accessible Content,” in
Using Flash.

Using the ComboBox component
You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address
form. You can use an editable combo box for more complex scenarios. For example, in an
application that provides driving directions, you could use an editable combo box for a user to
enter her origin and destination addresses. The drop-down list would contain her previously
entered addresses.

ComboBox parameters
You can set the following authoring parameters for each ComboBox component instance in
the Property inspector or in the Component inspector (Window > Component Inspector
menu option):

data associates a data value with each item in the ComboBox component. The data parameter
is an array.

editable determines if the ComboBox component is editable (true) or only selectable
(false). The default value is false.

labels populates the ComboBox component with an array of text values.

rowCount sets the maximum number of items that can be displayed in the list. The default
value is 5.
Using the ComboBox component 159

You can set the following additional parameters for each ComboBox component instance in
the Component inspector (Window > Component Inspector):

restrict indicates the set of characters that a user can enter in the text field of a combo box.
The default value is undefined. See “ComboBox.restrict” on page 194.

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to set additional options for ComboBox instances using the
methods, properties, and events of the ComboBox class. For more information, see
“ComboBox class” on page 165.

Creating an application with the ComboBox
component
The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to select from in its
pop-up list.

To create an application with the ComboBox component:

1. Drag a ComboBox component from the Components panel to the Stage.

2. Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage during authoring. Typically, you would
only change the width of a combo box to fit its entries.

3. Select the combo box and, in the Property inspector, enter the instance name comboBox.

4. In the Component inspector or Property inspector, do the following:

■ Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the
label parameter field to open the Values dialog box. Then click the plus sign to
add items.

■ Enter MN.swf, OR.swf, and NH.swf for the data parameter.
These are imaginary SWF files that, for example, you could load when a user selects a
city from the combo box.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
160 ComboBox component

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
function change(evt){

trace(evt.target.selectedItem.label);
}
comboBox.addEventListener("change", this);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.

To create a ComboBox component using ActionScript:

1. Drag the ComboBox component from the Components panel to the current document’s
library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Select the first frame in the main Timeline, open the Actions panel, and enter the

following code:
this.createClassObject(mx.controls.ComboBox, "my_cb", 10);

my_cb.addItem({data:1, label:"One"});
my_cb.addItem({data:2, label:"Two"});

This script uses the method “UIObject.createClassObject()” on page 1362 to create the
ComboBox instance, and then uses “ComboBox.addItem()” on page 171 to add list items
to the ComboBox.

3. Now add an event listener and event handler function to respond when a ComboBox item
is selected:
// Create listener object.
var cbListener:Object = new Object();
// Create event handler function.
cbListener.change = function (evt_obj:Object) {
 trace("Currently selected item is: " +

evt_obj.target.selectedItem.label);
}
// Add event listener.
my_cb.addEventListener("change", cbListener);

4. Select Control >Test Movie, and click an item in the combo box to see a message in the
Output panel.
Using the ComboBox component 161

Customizing the ComboBox component
You can transform a ComboBox component horizontally and vertically while authoring.
While authoring, select the component on the Stage and use the Free Transform tool or any of
the Modify > Transform commands.

If text is too long to fit in the combo box, the text is clipped to fit. You must resize the combo
box while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area. The hit area responds by opening or
closing the drop-down list.

Using styles with the ComboBox component
You can set style properties to change the appearance of a ComboBox component. If the name
of a style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.

The combo box has two unique styles: openDuration and openEasing. Other styles are
passed to the button, text box, and drop-down list of the combo box through those individual
components, as follows:

■ The button is a Button instance and uses its styles. (See “Using styles with the Button
component” on page 94.)

■ The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput
component” on page 1212.)

■ The drop-down list is an List instance and uses its styles. (See “Using styles with the List
component” on page 766.)
162 ComboBox component

A ComboBox component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

backgroundColor Both The background color. The default color is white.

borderStyle Both The Button subcomponent uses two RectBorder
instances for its borders and responds to the styles
defined on that class. See “RectBorder class”
on page 1063.
In the Halo theme, the ComboBox component uses a
custom rounded border for the collapsed portion of the
ComboBox. The colors of this portion of the ComboBox
can be modified only through skinning. See “Using
skins with the ComboBox component” on page 164.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both Boolean value that indicates whether the font specified
in fontFamily is an embedded font. This style must be
set to true if fontFamily refers to an embedded font.
Otherwise, the embedded font is not used. If this style is
set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".
Customizing the ComboBox component 163

The following example demonstrates how to use List styles to control the behavior of the pop-
up portion of a ComboBox component.
// comboBox is an instance of the ComboBox component on Stage.
comboBox.setStyle("alternatingRowColors", [0xFFFFFF, 0xBFBFBF]);

Using skins with the ComboBox component
The ComboBox component uses symbols in the library to represent the button states and has
skin variables for the down arrow. These skins are located in the Flash UI Components 2/
Themes/MMDefault/ComboBox Assets/States folder of the HaloTheme.fla and
SampleTheme.fla files. The information below describes these skins and provides steps for
customizing them.

The ComboBox component also uses scroll bar skins for the drop-down list’s scroll bar and
two RectBorder class instances for the border around the text input and drop-down list. For
information on customizing these skins, see “Using skins with the UIScrollBar component”
on page 1394 and “RectBorder class” on page 1063. For more information on the methods
available to skin components, see “About skinning components” in Using Components.

A ComboBox component uses the following skin properties:

openDuration Both The duration, in milliseconds, of the transition
animation. The default value is 250.

openEasing Both A reference to a tweening function that controls the
animation. Defaults to sine in/out. For more information,
see “Customizing component animations” in Using
Components.

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. The default is
ComboDownArrowDisabled.

ComboDownArrowDownName The down arrow’s down state. The default is
ComboDownArrowDown.

ComboDownArrowUpName The down arrow’s up state. The default is ComboDownArrowOver.

ComboDownArrowOverName The down arrow’s over state. The default is ComboDownArrowUp.

Style Theme Description
164 ComboBox component

To create movie clip symbols for ComboBox skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the ComboBox Assets folder to the library for your document.

4. Expand the ComboBox Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ComboDownArrowDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.

8. Click the Back button to return to the main timeline.

9. Drag a ComboBox component to the Stage.

10. Set the ComboBox instance properties as desired.

For this example, use ActionScript to set the ComboBox to disabled.
11. Select Control > Test Movie.

ComboBox class
Inheritance MovieClip > UIObject class > UIComponent class > ComboBase >
ComboBox

ActionScript Class Name mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the methods, properties, and events of each subcomponent are available directly
from the ComboBox component and are listed in the summary tables for the ComboBox
class.

The drop-down list in a combo box is provided either as an array or as a data provider. If you
use a data provider, the list changes at runtime. You can change the source of the ComboBox
data dynamically by switching to a new array or data provider.
ComboBox class 165

Items in a combo box list are indexed by position, starting with the number 0. An item can be
one of the following:

■ A primitive data type.
■ An object that contains a label property and a data property

If the item is a primitive data type other than String, it is converted to a string. If an item is an
object, the label property must be a string and the data property can be any ActionScript
value.

ComboBox methods to which you supply items have two parameters, label and data, that
refer to the properties above. Methods that return an item return it as an object.

A combo box defers the instantiation of its drop-down list until a user interacts with it.
Therefore, a combo box may appear to respond slowly on first use.

Use the following code to programmatically access the ComboBox component’s drop-down
list and override the delay:
var foo = myComboBox.dropdown;

Accessing the pop-up list may cause a pause in the application. This may occur when the user
first interacts with the combo box, or when the above code runs.

Method summary for the ComboBox class
The following table lists methods of the ComboBox class.

N
O

T
E

An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the label property.

Method Description

ComboBox.addItem() Adds an item to the end of the list.

ComboBox.addItemAt() Adds an item to the end of the list at the specified index.

ComboBox.close() Closes the drop-down list.

ComboBox.getItemAt() Returns the item at the specified index.

ComboBox.open() Opens the drop-down list.

ComboBox.removeAll() Removes all items in the list.

ComboBox.removeItemAt() Removes an item from the list at the specified location.

ComboBox.replaceItemAt() Replaces the content of the item at the specified index.

ComboBox.sortItems() Sorts the list using a compare function.

ComboBox.sortItemsBy() Sorts the list using a field of each item.
166 ComboBox component

Methods inherited from the UIObject class
The following table lists the methods the ComboBox class inherits from the UIObject class.
When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the ComboBox class inherits from the UIComponent
class. When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
ComboBox class 167

Property summary for the ComboBox class
The following table lists properties of the ComboBox class.

Properties inherited from the UIObject class
The following table lists the properties the ComboBox class inherits from the UIObject class.
When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the
combo box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-
down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-
down list.

ComboBox.length Read-only; the length of the drop-down list.

ComboBox.restrict The set of characters that a user can enter in the text field of a
combo box.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of text in the text box.

ComboBox.textField A reference to the TextInput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only.The position of the right edge of the object,
relative to the right edge of its parent.
168 ComboBox component

Properties inherited from the UIComponent class
The following table lists the properties the ComboBox class inherits from the UIComponent
class. When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Event summary for the ComboBox class
The following table lists events of the ComboBox class.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a
result of user interaction.

ComboBox.close Broadcast when the list of the combo box begins to retract.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRollOut Broadcast when the pointer rolls off a pop-up list item.

ComboBox.itemRollOver Broadcast when a drop-down list item is rolled over.

Property Description
ComboBox class 169

Events inherited from the UIObject class
The following table lists the events the ComboBox class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the ComboBox class inherits from the UIComponent
class.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
170 ComboBox component

ComboBox.addItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.addItem(label[, data])
comboBoxInstance.addItem({label:label[, data:data]})
comboBoxInstance.addItem(obj);

Parameters

label A string that indicates the label for the new item.

data The data for the item; it can be of any data type. This parameter is optional.

obj An object with a label property and an optional data property.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

Example

With a ComboBox component instance named my_cb, add the following ActionScript to the
Actions panel for the first frame of the main timeline. This ActionScript creates a ComboBox
with three items; each has a data value and a label string. When you test the SWF file, and
click one of the items, the Output panel displays the identity of the “target” the data value and
the label:
// Add Items to Combo Box.
my_cb.addItem("this is an Item");
my_cb.addItem({data:2, label:"second value"});
my_cb.addItem({data:3, label:"third value"});

// Add event listener and event handler function.
var cbListener:Object = new Object();
cbListener.change = function(evt_obj:Object):Void {
 var currentlySelected:Object = evt_obj.target.selectedItem;
 trace(evt_obj.target);
 trace("data: "+currentlySelected.data);
 trace("label: "+currentlySelected.label);
};
my_cb.addEventListener("change", cbListener);
ComboBox.addItem() 171

ComboBox.addItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.addItemAt(index, label[, data])

comboBoxInstance.addItemAt(index, {label:label[, data:data]})

comboBoxInstance.addItemAt(index, obj);

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the
index of the new item).

label A string that indicates the label for the new item.

data The data for the item; it can be of any data type. This parameter is optional.

obj An object with label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list at the index specified by the index parameter.
Indices greater than ComboBox.length are ignored.

Example

Start with a ComboBox component instance named my_cb, and a Button component
instance named my_btn. Add the following ActionScript to the Actions panel for the first
frame of the main timeline. When you test the SWF file, click the combo box to see two items
in it. Then click the button, and the next time you click the combo box, you’ll see that it
added another item labeled “first value”:
my_cb.addItem({data:2, label:"second value"});
my_cb.addItem({data:3, label:"third value"});

var btnListener:Object = new Object();
btnListener.click = function() {

my_cb.addItemAt(0, {data:1, label:"first value"});
};
my_btn.addEventListener("click", btnListener);
172 ComboBox component

ComboBox.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the ComboBox.selectedIndex or
ComboBox.selectedItem property changes as a result of user interaction.

Using a dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, change) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. Finally, you call
addEventListener() (see EventDispatcher.addEventListener()) on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

Example

With a ComboBox component instance my_cb on the Stage, the following example sends the
instance name of the component that generated the change event to the Output panel:
// Add Item to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create Listener Object.
var cbListener:Object = new Object();
ComboBox.change 173

// Assign function to Listener Object.
cbListener.change = function(event_obj:Object) {
 trace("Value changed to: "+event_obj.target.selectedItem.label);
};

// Add Listener.
my_cb.addEventListener("change", cbListener);

See also

EventDispatcher.addEventListener()

ComboBox.close()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the drop-down list.

Example

With a ComboBox component instance my_cb on the Stage, and a Button component
instance my_button, the following example closes the drop-down list of the my_cb combo box
when the my_button button is clicked:
my_cb.addItem({data:2, label:"second value"});
my_cb.addItem({data:3, label:"third value"});

var btnListener:Object = new Object();
btnListener.click = function() {

my_cb.close();
};
my_button.addEventListener("click", btnListener);
174 ComboBox component

See also

ComboBox.open()

ComboBox.close
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.close = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("close", listenerObject)

Description

Event; broadcast to all registered listeners when the drop-down list of the combo box is fully
retracted.

Using a dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, close) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. Finally, you call
the addEventListener() method on the component instance that broadcasts the event to
register the listener with the instance. When the instance dispatches the event, the listener is
called.

For more information, see “EventDispatcher class” on page 499.
ComboBox.close 175

Example

With a ComboBox component instance my_cb on the Stage, the following example sends a
message to the Output panel when the drop-down list opens or closes:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create Listener Object.
var cbListener:Object = new Object();
cbListener.open = function(evt_obj:Object) {
 trace("The ComboBox has opened.");
}
cbListener.close = function(evt_obj:Object){
 trace("The ComboBox has closed.");
}

// Add Listener.
my_cb.addEventListener("open", cbListener);
my_cb.addEventListener("close", cbListener);

// Open the combo box.
my_cb.open();

See also

EventDispatcher.addEventListener()

ComboBox.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider API. The default value is []. The List
component and the ComboBox component share the dataProvider property, and changes
to this property are immediately available to both components.
176 ComboBox component

The List component, like other data-aware components, adds methods to the Array object’s
prototype so that they conform to the DataProvider API (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used
to broadcast model changes to multiple components.

If the array contains objects, the labelField or labelFunction property is accessed to
determine what parts of the item to display. The default value is "label", so if such a field
exists, it is chosen for display; if not, a comma-separated list of all fields is displayed.

Any instance that implements the DataProvider API is eligible as a data provider for a List
component. This includes Flash Remoting RecordSet objects, Firefly DataSet components,
and so on.

Example

This example uses an array of strings to populate the drop-down list for the ComboBox
component instance my_cb:
my_cb.dataProvider = [{data:1, label:"First Item"}, {data:2, label:"Second

Item"}];
/* is the same as
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

*/

This example creates a data provider array and assigns it to the dataProvider property:
var myDP:Array = new Array();
list.dataProvider = myDP;

for (var i:Number = 0; i < accounts.length; i++) {
 // These changes to the DataProvider will be broadcast to the list.
 myDP.addItem({label: accounts[i].name,
 data: accounts[i].accountID});
}

N
O

T
E

If the array contains strings at each index, and not objects, the list is not able to sort the
items and maintain the selection state. Any sorting causes the selection to be lost.
ComboBox.dataProvider 177

ComboBox.dropdown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.dropdown

Description

Property (read-only); returns a reference to the list contained by the combo box. The List
subcomponent isn’t instantiated in the combo box until it needs to be displayed. However,
when you access the dropdown property, the list is created.

Example

With a ComboBox component instance my_cb on the Stage, and two movie clip symbols in
the library with Linkage ID values set to dw_id and fl_id, the following ActionScript uses
the dropdown property to add icons to each item in the drop-down list:
// Set the dropdown width to accommodate the label sizes.
my_cb.dropdownWidth = 200;

// Set the iconField style within the ComboBox's dropdown property.
// The dropdown property is a reference to the List component within the

ComboBox
// so we can set List styles for the CB.
my_cb.dropdown.setStyle("iconField", "pIcon");

// Add Items to List.
my_cb.addItem({label:"Dreamweaver 1", pIcon:"dw_id"});
my_cb.addItem({label:"Flash 1", pIcon:"fl_id"});
my_cb.addItem({label:"Flash 2", pIcon:"fl_id"});

See also

ComboBox.dropdownWidth
178 ComboBox component

ComboBox.dropdownWidth
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.dropdownWidth

Description

Property; the width limit of the drop-down list, in pixels. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).

Example

With a ComboBox component instance my_cb on the Stage, the following ActionScript sets
the drop-down list width to accommodate the labels:
// Set the dropdown width to accommodate the label sizes.
my_cb.dropdownWidth = 200;

// Add Items to List.
my_cb.addItem("ComboBox");
my_cb.addItem({data:2, label:"This is a long label"});
my_cb.addItem({data:3, label:"This has an even longer label"});

See also

ComboBox.dropdown

ComboBox.editable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.editable
ComboBox.editable 179

Description

Property; indicates whether the combo box is editable (true) or not (false). In an editable
combo box, a user can enter values into the text box that do not appear in the drop-down list.
If a combo box is not editable, you cannot enter text into the text box. The text box displays
the text of the item in the list. The default value is false.

Making a combo box editable clears the combo box text field. It also sets the selected index
(and item) to undefined. To make a combo box editable and still retain the selected item, use
the following code:
var ix:Number = myComboBox.selectedIndex;
myComboBox.editable = true; // Clears the text field.
myComboBox.selectedIndex = ix; // Copies the label back into the text field.

Example

With a ComboBox component instance my_cb on the Stage, the following ActionScript
creates a combo box list and two listeners. The first listener handles clicking the “Add new
item” label to make the combo box field editable. The second listener handles the user
pressing the Enter key to add their entry to the combo box list:
// Add items to the combo box list.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:-1, label:"Add new item..."});

// Respond to the user clicking "Add new item".
function changeListener(evt_obj:Object) {
 if (evt_obj.target.selectedItem.data == -1) {
 evt_obj.target.editable = true;
 } else if (evt_obj.target.selectedIndex != undefined) {
 evt_obj.target.editable = false;
 evt_obj.target.setFocus();
 }
}
my_cb.addEventListener("change", changeListener);

// Respond to the user pressing the Enter key after adding a new item name.
function enterListener(evt_obj:Object) {
 if (evt_obj.target.value != '') {
 evt_obj.target.addItem({data:'', label:evt_obj.target.value});
 }
 evt_obj.target.editable = false;
 evt_obj.target.selectedIndex = evt_obj.target.dataProvider.length-1;
 evt_obj.target.setFocus();
}
my_cb.addEventListener("enter", enterListener);
180 ComboBox component

ComboBox.enter
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.enter = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("enter", listenerObject)

Description

Event; broadcast to all registered listeners when the user presses the Enter key in the text box.
This event is a TextInput event that is broadcast only from editable combo boxes. For more
information, see TextInput.enter.

Using a dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, enter) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. Finally, you call
the addEventListener() method on the component instance that broadcasts the event to
register the listener with the instance. When the instance dispatches the event, the listener
is called.

For more information, see “EventDispatcher class” on page 499.
ComboBox.enter 181

Example

With a ComboBox component instance my_cb on the Stage, the following ActionScript
creates a combo box list and two listeners. The first listener handles clicking the “Add new
item” label to make the combo box field editable. The second listener handles the user
pressing the Enter key to add their entry to the combo box list:
// Add items to the combo box list.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:-1, label:"Add new item..."});

// Respond to the user clicking "Add new item".
function changeListener(evt_obj:Object) {
 if (evt_obj.target.selectedItem.data == -1) {
 evt_obj.target.editable = true;
 } else if (evt_obj.target.selectedIndex != undefined) {
 evt_obj.target.editable = false;
 evt_obj.target.setFocus();
 }
}
my_cb.addEventListener("change", changeListener);

// Respond to the user pressing the Enter key after adding a new item name.
function enterListener(evt_obj:Object) {
 if (evt_obj.target.value != '') {
 evt_obj.target.addItem({data:'', label:evt_obj.target.value});
 }
 evt_obj.target.editable = false;
 evt_obj.target.selectedIndex = evt_obj.target.dataProvider.length-1;
 evt_obj.target.setFocus();
}
my_cb.addEventListener("enter", enterListener);

See also

EventDispatcher.addEventListener()

ComboBox.getItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.getItemAt(index)
182 ComboBox component

Parameters

index The index of the item to retrieve. The index must be a number greater than or equal
to 0, and less than the value of ComboBox.length.

Returns

The indexed item object or value. The value is undefined if the index is out of range.

Description

Method; retrieves the item at a specified index.

Example

With a ComboBox component instance my_cb on the Stage, the following ActionScript
displays the label for the first combo box item in the Output panel:
//Add Item to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

trace(my_cb.getItemAt(1).label);

ComboBox.itemRollOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.itemRollOut = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("itemRollOut", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOut event has an
index property. The index is the number of the item that the pointer rolled off.

Description

Event; broadcast to all registered listeners when the pointer rolls off pop-up list items. This is
a List event that is broadcast from a combo box. For more information, see
List.itemRollOut.
ComboBox.itemRollOut 183

Using a dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, itemRollOut) and the event is handled by a function, also
called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. For more
information, see “EventDispatcher class” on page 499.

Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.

Example

With a ComboBox instance my_cb on the Stage, the following ActionScript sends a message
to the Output panel that indicates the item index and the event when the pointer rolls on or
off an item:
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create Listener Object.
var cbListener:Object = new Object();
cbListener.itemRollOver = function(evt_obj:Object) {
 trace("index: "+evt_obj.index+", event: "+evt_obj.type);
};
cbListener.itemRollOut = function(evt_obj:Object) {
 trace("index: "+evt_obj.index+", event: "+evt_obj.type);
};

// Add Listener.
my_cb.addEventListener("itemRollOver", cbListener);
my_cb.addEventListener("itemRollOut", cbListener);

See also

ComboBox.itemRollOver, EventDispatcher.addEventListener()
184 ComboBox component

ComboBox.itemRollOver
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.itemRollOver = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("itemRollOver", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOver event has an
index property. The index is the number of the item that the pointer rolled over.

Description

Event; broadcast to all registered listeners when the pointer rolls over pop-up list items. This is
a List event that is broadcast from a combo box. For more information, see
List.itemRollOver.

Using the dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, itemRollOver) and the event is handled by a function, also
called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. For more
information, see “EventDispatcher class” on page 499.

Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.
ComboBox.itemRollOver 185

Example

With a ComboBox instance my_cb on the Stage, the following ActionScript sends a message
to the Output panel that indicates the item index and the event when the pointer rolls on or
off an item:
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create Listener Object.
var cbListener:Object = new Object();
cbListener.itemRollOver = function(evt_obj:Object) {
 trace("index: " + evt_obj.index + ", event: " + evt_obj.type);
};
cbListener.itemRollOut = function(evt_obj:Object) {
 trace("index: " + evt_obj.index + ", event: " + evt_obj.type);
};

// Add Listener.
my_cb.addEventListener("itemRollOver", cbListener);
my_cb.addEventListener("itemRollOut", cbListener);

See also

ComboBox.itemRollOut, EventDispatcher.addEventListener()

ComboBox.labelField
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.labelField

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is
a property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.
186 ComboBox component

Example

The following example sets the dataProvider property to an array of strings and sets the
labelField property to indicate that the name field should be used as the label for the
drop-down list:
my_cb.dataProvider = [
 {name:"Gary", gender:"male"},
 {name:"Susan", gender:"female"}];

my_cb.labelField = "name";

See also

List.labelFunction

ComboBox.labelFunction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.labelFunction

Description

Property; a function that computes the label of a data provider item. You must define the
function. The default value is undefined.

Example

The following example creates a data provider and then defines a function to specify what to
use as the label in the drop-down list:
myComboBox.dataProvider = [
 {firstName:"Nigel", lastName:"Pegg", age:"really young"},
 {firstName:"Gary", lastName:"Grossman", age:"young"},
 {firstName:"Chris", lastName:"Walcott", age:"old"},
 {firstName:"Greg", lastName:"Yachuk", age:"really old"}];

myComboBox.labelFunction = function(itemObj){
return (itemObj.lastName + ", " + itemObj.firstName);

}

ComboBox.labelFunction 187

See also

List.labelField

ComboBox.length
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List
component that is available from a ComboBox instance. For more information, see
List.length. The default value is 0.

Example

The following example stores the value of length to a variable:
var dropdownItemCount:Number = myComboBox.length;

ComboBox.open()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.open()

Parameters

None.

Returns

Nothing.
188 ComboBox component

Description

Method; opens the drop-down list.

Example

With a ComboBox component instance my_cb on the Stage, and a Button component
instance my_button, the following example opens the drop-down list of the my_cb combo
box when the my_button button is clicked:
my_cb.addItem({data:2, label:"second value"});
my_cb.addItem({data:3, label:"third value"});

var btnListener:Object = new Object();
btnListener.click = function() {

my_cb.open();
};
my_button.addEventListener("click", btnListener);

See also

ComboBox.close()

ComboBox.open
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.open = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("open", listenerObject)
ComboBox.open 189

Description

Event; broadcast to all registered listeners when the drop-down list is completely open.

Using the dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, open) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. For more
information, see “EventDispatcher class” on page 499.

Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.

Example

With a ComboBox component instance my_cb on the Stage, the following example sends a
message to the Output panel when the drop-down list opens or closes:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create Listener Object.
var cbListener:Object = new Object();
cbListener.open = function(evt_obj:Object) {
 trace("The ComboBox has opened.");
}
cbListener.close = function(evt_obj:Object){
 trace("The ComboBox has closed.");
}

// Add Listener.
my_cb.addEventListener("open", cbListener);
my_cb.addEventListener("close", cbListener);

// Open the combo box.
my_cb.open();

See also

ComboBox.close, EventDispatcher.addEventListener()
190 ComboBox component

ComboBox.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example

With a ComboBox instance my_cb on the Stage, and a Button component instance
clear_button on the Stage, the following ActionScript positions the combo box and button
beside each other. When you click the combo box, you’ll see a list of items. When you click
the button, it clears the combo box’s items:
my_cb.move(10, 10);
clear_button.move(120, 10);

// Create dataprovider.
var myDP_array:Array = new Array();
myDP_array.push({data:1, label:"First Item"});
myDP_array.push({data:2, label:"Second Item"});

my_cb.dataProvider = myDP_array;

// Define event listener object.
var clearListener:Object = new Object();
clearListener.click = function(evt_obj:Object){
 my_cb.removeAll();
}

// Add Listener.
clear_button.addEventListener("click", clearListener);
ComboBox.removeAll() 191

See also

ComboBox.removeItemAt(), ComboBox.replaceItemAt()

ComboBox.removeItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.removeItemAt(index)

Parameters

index A number that indicates the position of the item to remove. The index is zero-based.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one. This is a method of the List component
that is available from an instance of the ComboBox component.

Example

With a ComboBox instance my_cb on the Stage, and a Button component instance
clear_button on the Stage, the following ActionScript positions the combo box and button
beside each other. When you click the combo box, you’ll see a list of two items. When you
click the button, it clears the combo box’s second item (at index position 1, because the value
is zero-based):
my_cb.move(10, 10);
clear_button.move(120, 10);

// Create dataprovider.
var myDP_array:Array = new Array();
myDP_array.push({data:1, label:"First Item"});
myDP_array.push({data:2, label:"Second Item"});

my_cb.dataProvider = myDP_array;
192 ComboBox component

// Define event listener object.
var clearListener:Object = new Object();
clearListener.click = function(evt_obj:Object){
 my_cb.removeItemAt(1);
}

// Add Listener.
clear_button.addEventListener("click", clearListener);

See also

ComboBox.removeAll(), ComboBox.replaceItemAt()

ComboBox.replaceItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.replaceItemAt(index, label[, data])

comboBoxInstance.replaceItemAt(index, {label:label[, data:data]})

comboBoxInstance.replaceItemAt(index, obj);

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the
index of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional.

obj An object with label and data properties.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index. This is a method of the List
component that is available from the ComboBox component.
ComboBox.replaceItemAt() 193

Example

With a ComboBox component instance my_cb, and a TextInput component instance
label_ti on the Stage, the following ActionScript code adds the user input to the combo box
when the user presses the Enter key:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Create listener for user pressing Enter key on the Text Input field.
var tiListener:Object = new Object();
tiListener.enter = function(evt_obj:Object) {
 my_cb.replaceItemAt(my_cb.selectedIndex, {label:evt_obj.target.text});
 // Needed to refresh recently modified ComboBox entry
 my_cb.selectedIndex = my_cb.selectedIndex;
};
label_ti.addEventListener("enter", tiListener);

See also

ComboBox.removeAll(), ComboBox.removeItemAt()

ComboBox.restrict
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.restrict

Description

Property; indicates the set of characters that a user can enter in the text field of a combo box.
The default value is undefined. If this property is null or an empty string (""), a user can
enter any character. If this property is a string of characters, the user can enter only characters
in the string; the string is scanned from left to right. You can specify a range by using a
dash (-).

If the string begins with a caret (^), all characters that follow the caret are considered
unacceptable characters. If the string does not begin with a caret, the characters in the string
are considered acceptable.
194 ComboBox component

You can use the backslash (\) to enter a hyphen (-), caret (^), or backslash (\) character, as
shown here:
\^
\-
\\

When you enter a backslash in the Actions panel within double quotation marks, it has a
special meaning for the Actions panel’s double-quote interpreter. It signifies that the character
following the backslash should be treated “as is.” For example, you could use the following
code to enter a single quotation mark:
var leftQuote = "\’";

The Actions panel’s restrict interpreter also uses the backslash as an escape character.
Therefore, you may think that the following should work:
myText.restrict = "0-9\-\^\\";

However, since this expression is surrounded by double quotation marks, the value 0-9-^\ is
sent to the restrict interpreter, and the restrict interpreter doesn’t understand this value.

Because you must enter this expression within double quotation marks, you must not only
provide the expression for the restrict interpreter, but you must also escape the expression so
that it will be read correctly by the Actions panel’s built-in interpreter for double quotation
marks. To send the value 0-9\-\^\\ to the restrict interpreter, you must enter the
following code:
myCombo.restrict = "0-9\\-\\^\\\\";

The restrict property restricts only user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

Example

With a ComboBox component instance my_cb, the following ActionScript restricts the entry
of characters to numbers 0-9, dashes, and dots:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});

// Enable editing of combo box.
my_cb.editable = true;

// Restrict the characters that can be entered into combo box.
my_cb.restrict = "0-9\\-\\.\\ ";
ComboBox.restrict 195

In the following example, the first line of code limits the text field to uppercase letters,
numbers, and spaces. The second line of code allows all characters except lowercase letters.
my_combo.restrict = "A-Z 0-9";
my_combo.restrict = "^a-z";

The following code allows a user to enter the characters “0 1 2 3 4 5 6 7 8 9 - ^ \” in the
instance myCombo. You must use a double backslash to escape the characters -, ^, and \. The
first \ escapes the double quotation marks, and the second \ tells the interpreter that the next
character should not be treated as a special character.
myCombo.restrict = "0-9\\-\\^\\\\";

ComboBox.rowCount
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.rowCount

Description

Property; the maximum number of rows visible in the drop-down list before the combo box
inserts a scroll bar. The default value is 5.

If the number of items in the drop-down list is greater than the rowCount property, the list
resizes and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than
the rowCount property, it resizes to the number of items in the list.

This behavior differs from the List component, which always shows the number of rows
specified by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.
196 ComboBox component

Example

With a ComboBox component instance my_cb, the following ActionScript sets the combo
box to show the first three items, and add a scrollbar to see the fourth:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:3, label:"Third Item"});
my_cb.addItem({data:4, label:"Fourth Item"});

// Display scroll bar if ComboBox has more than 3 items.
my_cb.rowCount = 3;

ComboBox.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

// Your code here.
};
comboBoxInstance.addEventListener("scroll", listenerObject);

Event object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values, "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox component.
ComboBox.scroll 197

Using a dispatcher/listener event model, a component instance (comboBoxInstance)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. For more
information, see “EventDispatcher class” on page 499.

Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.

Example

With a ComboBox component instance my_cb, the following example sends a message to the
Output panel that indicates the index of the item that the list scrolled to:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:3, label:"Third Item"});
my_cb.addItem({data:4, label:"Fourth Item"});

// Display scroll bar if ComboBox has more than 2 items.
my_cb.rowCount = 3;

// Create Listener Object.
var cbListener:Object = new Object();
cbListener.scroll = function(evt_obj:Object) {
 trace("The list had been scrolled to item # "+evt_obj.position);
};

// Add Listener.
my_cb.addEventListener("scroll", cbListener);

See also

EventDispatcher.addEventListener()
198 ComboBox component

ComboBox.selectedIndex
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.selectedIndex

Description

Property; the index number of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays the
label of that item in the combo box’s text box.

If you assign an out-of-range value to this property, Flash ignores it. Entering text into the text
field of an editable combo box sets selectedIndex to undefined.

Example

With a ComboBox component instance my_cb, the following code selects the last item in the
list (otherwise, by default it would display the first item):
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:3, label:"Third Item"});
my_cb.addItem({data:4, label:"Fourth Item"});

// Select last item on the list.
my_cb.selectedIndex = my_cb.length-1;

See also

ComboBox.selectedItem
ComboBox.selectedIndex 199

ComboBox.selectedItem
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.selectedItem

Description

Property; the value of the selected item in the drop-down list.

If the combo box is editable, selectedItem returns undefined if the user enters any text in
the text box. The property only has a value if you select an item from the drop-down list or set
the value using ActionScript. If the combo box is static, the value of selectedItem is always
valid; it returns undefined if there are no items in the list.

Example

With a ComboBox component instance my_cb, the following example shows the values for
the selectedItem data and label properties:
// Add Items to List.
my_cb.addItem({data:1, label:"First Item"});
my_cb.addItem({data:2, label:"Second Item"});
my_cb.addItem({data:3, label:"Third Item"});
my_cb.addItem({data:4, label:"Fourth Item"});

var cbListener:Object = new Object();
cbListener.change = function(evt_obj:Object) {
 var item_obj:Object = my_cb.selectedItem;
 var i:String;
 for (i in item_obj) {
 trace(i + ":\t" + item_obj[i]);
 }
 trace("");
};
my_cb.addEventListener("change", cbListener);

See also

ComboBox.dataProvider, ComboBox.selectedIndex
200 ComboBox component

ComboBox.sortItems()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
comboBoxInstance.sortItems([compareFunc], [optionsFlag])

Parameters

compareFunc A reference to a function that compares two items to determine their sort
order. For details, see Array.sort() in ActionScript 2.0 Language Reference. This parameter
is optional.

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

■ Array.DESCENDING, which sorts highest to lowest.
■ Array.CASEINSENSITIVE, which sorts without regard to case.
■ Array.NUMERIC, which sorts numerically if the two elements being compared are

numbers. If they aren’t numbers, use a string comparison (which can be case-insensitive if
that flag is specified).

■ Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two
objects in the array are identical or have identical sort fields.

■ Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines
options 3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.
ComboBox.sortItems() 201

Description

Method; sorts the items in the combo box according to the specified compare function or
according to the specified sort options.

Example

This example sorts according to uppercase labels. The items a and b are passed to the function
and contain label and data fields:
myComboBox.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

The following example uses the upperCaseFunc() function defined above, along with the
optionsFlag parameter to sort the elements of a ComboBox instance named myComboBox:
myComboBox.addItem("Mercury");
myComboBox.addItem("Venus");
myComboBox.addItem("Earth");
myComboBox.addItem("planet");
myComboBox.sortItems(upperCaseFunc, Array.DESCENDING);
// The resulting sort order of myComboBox will be:
// Venus
// planet
// Mercury
// Earth

ComboBox.sortItemsBy()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
comboBoxInstance.sortItemsBy(fieldName, order [optionsFlag])

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is
usually "label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or
descending order ("DESC").
202 ComboBox component

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional, but if
used, should replace the order parameter.

The following are possible values for optionsFlag:

■ Array.DESCENDING, which sorts highest to lowest.
■ Array.CASEINSENSITIVE, which sorts without regard to case.
■ Array.NUMERIC, which sorts numerically if the two elements being compared are

numbers. If they aren’t numbers, use a string comparison (which can be case-insensitive if
that flag is specified).

■ Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two
objects in the array are identical or have identical sort fields.

■ Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines
options 3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the combo box alphabetically or numerically, in the specified order,
using the specified field name. If the fieldName items are a combination of text strings and
integers, the integer items are listed first. The fieldName parameter is usually "label" or
"data", but advanced programmers may specify any primitive value. If you want, you can use
the optionsFlag parameter to specify a sorting style.
ComboBox.sortItemsBy() 203

Example

The following examples are based on a ComboBox instance named myComboBox, which
contains four elements labeled "Apples", "Bananas", "cherries", and "Grapes":
// First, populate the ComboBox with the elements.
myComboBox.addItem("Bananas");
myComboBox.addItem("Apples");
myComboBox.addItem("cherries");
myComboBox.addItem("Grapes");

// The following statement sorts using the order parameter set to "ASC",
// and results in a sort that places "cherries" at the bottom of the list
// because the sort is case-sensitive.
myComboBox.sortItemsBy("label", "ASC");
// resulting order: Apples, Bananas, Grapes, cherries

// The following statement sorts using the order parameter set to "DESC",
// and results in a sort that places "cherries" at the top of the list
// because the sort is case-sensitive.
myComboBox.sortItemsBy("label", "DESC");
// resulting order: cherries, Grapes, Bananas, Apples

// The following statement sorts using the optionsFlag parameter set to
// Array.CASEINSENSITIVE. Note that an ascending sort is the default

setting.
myComboBox.sortItemsBy("label", Array.CASEINSENSITIVE);
// resulting order: Apples, Bananas, cherries, Grapes

// The following statement sorts using the optionsFlag parameter set to
// Array.CASEINSENSITIVE | Array.DESCENDING.
myComboBox.sortItemsBy("label", Array.CASEINSENSITIVE | Array.DESCENDING);
// resulting order: Grapes, cherries, Bananas, Apples
204 ComboBox component

ComboBox.text
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example

The following example sets the current text value of an editable combo box:
my_cb.addItem("Arkansas");
my_cb.addItem("Georgia");

my_cb.editable = true;
my_cb.text = "California";

ComboBox.textField
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.textField

Description

Property (read-only); a reference to the TextInput component contained by the ComboBox
component.

This property lets you access the underlying TextInput component so that you can
manipulate it. For example, you might want to change the selection of the text box or restrict
the characters that can be entered in it.
ComboBox.textField 205

Example

The following code restricts the text box of myComboBox so that it only accept numbers to
maximum of six characters:
// Add Items to List.
my_cb.addItem({data:0xFFFFFF, label:"white"});
my_cb.addItem({data:0x000000, label:"black"});

my_cb.editable = true;

// Restrict what can be entered into textfield to only 0-9.
my_cb.restrict = "0-9";

// Limit input to 6 characters.
my_cb.textField.maxChars = 6;

ComboBox.value
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
comboBoxInstance.value

Description

Read-only property; if the combo box is editable, value returns the item label. If the combo
box is static, value returns the item data.

Example

The following example puts the data into the combo box by setting the dataProvider
property. It then displays the value in the Output panel. Finally, it selects "California" and
displays it in the Output panel while the combo box is editable, and then displays "CA" when
the combo box is not editable.
my_cb.dataProvider = [
 {label:"Alaska", data:"AK"},
 {label:"California", data:"CA"},
 {label:"Washington", data:"WA"}];
my_cb.editable = true;
my_cb.selectedIndex = 1;
trace('Editable value is "California": ' + my_cb.value);
my_cb.editable = false;
my_cb.selectedIndex = 1;
trace('Non-editable value is "CA": ' + my_cb.value);
206 ComboBox component

9

CHAPTER 9

Data binding classes (Flash
Professional only)
The data binding classes provide the runtime functionality for the data binding feature in
Flash Professional 8. You can visually create and configure data bindings in the Flash
authoring environment by using the Bindings tab in the Component inspector, or you can
programmatically create and configure bindings by using the classes in the mx.data.binding
package.

For an overview of data binding and how to visually create data bindings in the Flash
authoring tool, see “Data binding (Flash Professional only)” in Using Flash.

Making data binding classes available at
runtime (Flash Professional only)
To compile your SWF file, your library must contain SWC files that contain the byte code for
the data binding classes and web service classes. If you create data bindings in Flash while
authoring, the relevant component classes are automatically added to the library. If you work
with data binding and web services at runtime, you must add the classes to your FLA file’s
library. You can get these SWC files from the Classes common library.

To add the SWC files to your library:

1. Select the Classes library (Window > Common Libraries > Classes).

2. Open the library for your document (Window > Library).

3. Drag the appropriate SWC files (DataBindingClasses, WebServiceClasses, or both) from
the Classes library into your document’s library.

For more information on these classes, see “Binding class (Flash Professional only)”
on page 208 and “Web service classes (Flash Professional only)” on page 1413.
207

Classes in the mx.data.binding package
(Flash Professional only)
The following table lists the classes in the mx.data.binding package:

Binding class (Flash Professional only)
ActionScript Class Name mx.data.binding.Binding

The Binding class defines an association between two endpoints, a source and a destination.
It listens for changes to the source endpoint and copies the changed data to the destination
endpoint each time the source changes.

You can write custom bindings by using the Binding class (and supporting classes), or use the
Bindings tab in the Component inspector.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

Class Description

Binding class (Flash
Professional only)

Creates a binding between two endpoints.

ComponentMixins class (Flash
Professional only)

Adds data binding functionality to components.

CustomFormatter class (Flash
Professional only)

The base class for creating custom formatter classes.

CustomValidator class (Flash
Professional only)

The base class for creating custom validator classes.

DataType class (Flash
Professional only)

Provides read and write access to data fields of a
component property.

EndPoint class (Flash
Professional only)

Defines the source or destination of a binding.

TypedValue class (Flash
Professional only)

Contains a data value and information about the value’s data
type.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file. For more information, see “Making data binding classes available at runtime
(Flash Professional only)” on page 207.
208 Data binding classes (Flash Professional only)

Method summary for the Binding class
The following table lists the methods of the Binding class.

Constructor for the Binding class
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
new Binding(source, destination, [format], [isTwoWay])

Parameters

source A source endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required
Endpoint fields (see “EndPoint class (Flash Professional only)” on page 220).

destination The destination endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required
Endpoint fields.

format An optional object that contains formatting information. The object must have the
following properties:

■ cls An ActionScript class that extends the class mx.data.binding.DataAccessor.
■ settings An object whose properties provide optional settings for the formatter class

specified by cls.

isTwoWay An optional Boolean value that specifies whether the new Binding object is
bidirectional (true) or not (false). The default value is false.

Returns

Nothing.

Method Description

Binding.execute() Fetches the data from the source component, formats it, and
assigns it to the destination component.
Constructor for the Binding class 209

Description

Constructor; creates a new Binding object. You can bind data to any ActionScript object that
has properties and emits events including, but not limited to, components.
A binding object exists as long as the innermost movie clip contains both the source and
destination components. For example, if movie clip named A contains components X and Y,
and there is a binding between X and Y, then the binding is in effect as long as movie clip
A exists.

Example

In this example, the text property of a TextInput component (src_txt) is bound to the text
property of another TextInput component (dest_txt). When the src_txt text field loses
focus (that is, when the focusOut event is generated), the value of its text property is copied
into dest_txt.text.
import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest = new EndPoint();
dest.component = dest_txt;
dest.property = "text";

new Binding(src, dest);

The following example demonstrates how to create a Binding object that uses a custom
formatter class. For more information, see “CustomFormatter class (Flash Professional only)”
on page 212.
import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest = new EndPoint();
dest.component = text_dest;
dest.property = "text";

new Binding(src, dest, {cls: mx.data.formatters.Custom, settings:
{classname: "com.mycompany.SpecialFormatter"}});

N
O

T
E

It’s not necessary to retain a reference to the new Binding object. As soon as the Binding
object is created, it immediately begins listening for “changed” events emitted by either
endpoint. In some cases, however, you might want to save a reference to the new
Binding object, so that you can call its execute() method at a later time (see
Binding.execute()).
210 Data binding classes (Flash Professional only)

Binding.execute()
Availability

Flash Player 6.

Edition

Flash MX Professional 2004.

Usage
myBinding.execute([reverse])

Parameters

reverse A Boolean value that specifies whether the binding should also be executed from
the destination to the source (true), or only from the source to the destination (false). By
default, this value is false.

Returns

A null value if the binding executed successfully; otherwise, the method returns an array of
error message strings that describe the errors that prevented the binding from executing.

Description

Method; fetches the data from the source component and assigns it to the destination
component. If the binding uses a formatter, then the data is formatted before being assigned
to the destination.

This method also validates the data and causes either a valid or invalid event to be emitted
by the destination and source components. Data is assigned to the destination even if it’s
invalid, unless the destination is read-only.

If the reverse parameter is set to true and the binding is two-way, then the binding is
executed in reverse (from the destination to the source).

Example

The following code, attached to a Button component instance, executes the binding in reverse
(from the destination component to the source component) when the button is clicked.
on(click) {

_root.myBinding.execute(true);
}

Binding.execute() 211

CustomFormatter class (Flash
Professional only)
ActionScript Class Name mx.data.binding.CustomFormatter

The CustomFormatter class defines two methods, format() and unformat(), that provide
the ability to transform data values from a specific data type to String, and vice versa. By
default, these methods do nothing; you must implement them in a subclass of
mx.data.binding.CustomFormatter.

To create your own custom formatter, you first create a subclass of CustomFormatter that
implements format() and unformat() methods. You can then assign that class to a binding
between components either by creating a new Binding object with ActionScript (see “Binding
class (Flash Professional only)” on page 208), or by using the Bindings tab in the Component
inspector. For information on assigning a formatter class using the Component inspector, see
“Schema formatters” in Using Flash.

You can also assign a formatter class to a component property on the Schema tab of the
Component inspector. However, in that case, the formatter is used only when the data is
needed in the form of a string. In contrast, formatters assigned with the Bindings panel, or
created with ActionScript, are used whenever when the binding is executed.

For an example of writing and assigning a custom formatter using ActionScript, see “Sample
custom formatter” on page 212.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

Sample custom formatter
The following example demonstrates how to create a custom formatter class and then apply it
to a binding between two components by using ActionScript. In this example, the current
value of a NumericStepper component (its value property) is bound to the current value of a
TextInput component (its text property). The custom formatter class formats the current
numeric value of the NumericStepper component (for example, 1, 2, or 3) as its English word
equivalent (for example, “one”, “two”, or “three”) before assigning it to the TextInput
component.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file.
212 Data binding classes (Flash Professional only)

To create and use a custom formatter:

1. In Flash, create a new ActionScript file.
2. Add the following code to the file:

// NumberFormatter.as
class NumberFormatter extends mx.data.binding.CustomFormatter {

// Format a Number, return a String
function format(rawValue) {

var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(1, 2, 3);
returnValue = 0;
for (var i = 0; i<strArray.length; i++) {

if (rawValue == numArray[i]) {
returnValue = strArray[i];
break;

}
}
return returnValue;

} // convert a formatted value, return a raw value
function unformat(formattedValue) {

var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(1, 2, 3);
returnValue = "invalid";
for (var i = 0; i<strArray.length; i++) {

if (formattedValue == strArray[i]) {
returnValue = numArray[i];
break;

}
}
return returnValue;

}
}

3. Save the ActionScript file as NumberFormatter.as.
4. Create a new Flash (FLA) file.
5. From the Components panel, drag a TextInput component to the Stage and name it

textInput. Then drag a NumericStepper component to the Stage and name it stepper.
6. Open the Timeline and select the first frame on Layer 1.
7. In the Actions panel, add the following code to the Actions panel:

import mx.data.binding.*;
var x:NumberFormatter;
var customBinding = new Binding({component:stepper, property:"value",

event:"change"}, {component:textInput, property:"text",
event:"enter,change"}, {cls:mx.data.formatters.Custom,
settings:{classname:"NumberFormatter"}});

The second line of code (var x:NumberFormatter) ensures that the byte code for your
custom formatter class is included in the compiled SWF file.
CustomFormatter class (Flash Professional only) 213

8. Select Window > Common Libraries > Classes to open the Classes library.

9. Select Window > Library to open your document’s library.

10. Drag DataBindingClasses from the Classes library to your document’s library.

This makes the data binding runtime classes available for your document.
11. Save the FLA file to the same folder that contains NumberFormatter.as.

12. Test the file (Control > Test Movie).

Click the buttons on the NumericStepper component and watch the contents of the
TextInput component update.

Method summary for the CustomFormatter class
The following table lists the methods of the CustomFormatter class.

CustomFormatter.format()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

rawData The data to be formatted.

Returns

A formatted value.

Method Description

CustomFormatter.format() Converts from a raw data type to a new object.

CustomFormatter.unformat() Converts from a string, or other data type, to a raw
data type.
214 Data binding classes (Flash Professional only)

Description

Method; converts from a raw data type to a new object.

This method is not implemented by default. You must define it in your subclass of
mx.data.binding.CustomFormatter.

For more information, see “Sample custom formatter” on page 212.

CustomFormatter.unformat()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

formattedData The formatted data to convert back to the raw data type.

Returns

An unformatted value.

Description

Method; converts from a string, or other data type, to the raw data type. This transformation
should be the exact inverse transformation of CustomFormatter.format().

This method is not implemented by default. You must define it in your subclass of
mx.data.binding.CustomFormatter.

For more information, see “Sample custom formatter” on page 212.
CustomFormatter.unformat() 215

CustomValidator class (Flash
Professional only)
ActionScript Class Name mx.data.binding.CustomValidator

You use the CustomValidator class when you want to perform custom validation of a data
field contained by a component.

To create a custom validator class, you first create a subclass of
mx.data.binding.CustomValidator that implements a method named validate(). This
method is automatically passed a value to be validated. For more information about how to
implement this method, see CustomValidator.validate().

Next, you assign your custom validator class to a field of a component by using the
Component inspector’s Schema tab. For an example of creating and using a custom validator
class, see the Example section in the CustomValidator.validate() entry.

To assign a custom validator:

1. In the Component inspector, select the Schema tab.

2. Select the field you want to validate, and then select Custom from the Data Type
pop-up menu.

3. Select the Validation Options field (at the bottom of the Schema tab), and click the
magnifying glass icon to open the Custom Validation Settings dialog box.

4. In the ActionScript Class text box, enter the name of the custom validator class you created.

In order for the class you specify to be included in the published SWF file, it must be in
the classpath.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

Method summary for the CustomValidator class
The following table lists the methods of the CustomValidator class.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in
your FLA file.

Method Description

CustomValidator.validate() Performs validation on data.

CustomValidator.validationError() Reports validation errors.
216 Data binding classes (Flash Professional only)

CustomValidator.validate()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

value The data to be validated; it can be of any type.

Returns

Nothing.

Description

Method; called automatically to validate the data contained by the value parameter. You
must implement this method in your subclass of CustomValidator; the default
implementation does nothing.

You can use any ActionScript code to examine and validate the data. If the data is not valid,
this method should call this.validationError() with an appropriate message. You can call
this.validationError() more than once if there are several validation problems with
the data.

Since validate() might be called repeatedly, avoid adding code that takes a long time to
complete. Your implementation of this method should only check for validity, and then report
any errors using CustomValidator.validationError(). Similarly, your implementation
should not take any action as a result of the validation test, such as alerting the end user.
Instead, create event listeners for valid and invalid events and alert the end user from those
event listeners (see the example below).

Example

The following procedure demonstrates how to create and use a custom validator class. The
validate() method of the CustomValidator class OddNumbersOnly.as determines any
value that is not an odd number to be invalid. The validation occurs whenever a change
occurs in the value of a NumericStepper component, which is bound to the text property of
a Label component.
CustomValidator.validate() 217

To create and use a custom validator class:

1. In Flash, create a new ActionScript (AS) file.

2. Add the following code to the AS file:
class OddNumbersOnly extends mx.data.binding.CustomValidator
{

public function validate(value) {
// make sure the value is of type Number
var n = Number(value);
if (String(n) == "NaN") {

this.validationError("'" + value + "' is not a number.");
return;

}
// make sure the number is odd
if (n % 2 == 0) {

this.validationError("'" + value + "' is not an odd number.");
return;

}
// data is OK, no need to do anything, just return

}
}

3. Save the AS file as OddNumbersOnly.as.

4. Create a new Flash (FLA) file.

5. Open the Components panel.

6. Drag a NumericStepper component from the Components panel to the Stage and name
it stepper.

7. Drag a Label component to the Stage and name it textLabel.

8. Drag a TextArea component to the Stage and name it status.

9. Select the NumericStepper component, and open the Component inspector.

10. Select the Bindings tab in the Component inspector, and click the Add Binding (+) button.

11. Select the Value property (the only one) in the Add Bindings dialog box, and click OK.

12. In the Component inspector, double-click Bound To in the Binding Attributes pane of the
Bindings tab to open the Bound To dialog box.

13. In the Bound To dialog box, select the Label component in the Component Path pane and
its text property in the Schema Location pane. Click OK.

14. Select the Label component on the Stage, and click the Schema tab in the Component
inspector.

N
O

T
E

The name of the AS file must match the name of the class.
218 Data binding classes (Flash Professional only)

15. In the Schema Attributes pane, select Custom from the Data Type pop-up menu.

16. Double-click the Validation Options field in the Schema Attributes pane to open the
Custom Validation Settings dialog box.

17. In the ActionScript Class text box, enter OddNumbersOnly, which is the name of the
ActionScript class you created previously. Click OK.

18. Open the Timeline and select the first frame on Layer 1.

19. Open the Actions panel.

20.Add the following code to the Actions panel:
function dataIsInvalid(evt) {

if (evt.property == "text") {
status.text = evt.messages;

}
}

function dataIsValid(evt) {
if (evt.property == "text") {

status.text = "OK";
}

}

textLabel.addEventListener("valid", dataIsValid);
textLabel.addEventListener("invalid", dataIsInvalid);

21. Save the FLA file as OddOnly.fla to the same folder that contains OddNumbersOnly.as.

22.Test the SWF file (Control > Test Movie).

Click the arrows on the NumericStepper component to change its value. Notice the
message that appears in the TextArea component when you choose even and odd
numbers.

CustomValidator.validationError()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
CustomValidator.validationError() 219

Usage
this.validationError(errorMessage)

Parameters

errorMessage A string that contains the error message to be reported.

Returns

Nothing.

Description

Method; called from the validate() method of your subclass of CustomValidator to report
validation errors. If you don’t call validationError(), a valid event is generated when
validate() finishes executing. If you call validationError() one or more times from
within the validate(), an invalid event is generated after validate() returns.

Each message you pass to validationError() is available in the messages property of the
event object that was passed to the invalid event handler.

Example

See the Example section for CustomValidator.validate().

EndPoint class (Flash Professional only)
ActionScript Class Name mx.data.binding.EndPoint

The EndPoint class defines the source or destination of a binding. EndPoint objects define a
constant value, component property, or particular field of a component property, from which
you can get data, or to which you can assign data. They can also define an event, or list of
events, that a Binding object listens for; when the specified event occurs, the binding executes.

When you create a new binding with the Binding class constructor, you pass it two EndPoint
objects: one for the source and one for the destination.
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

N
O

T
E

This method can be invoked only from within a custom validator class; the keyword this
refers to the current CustomValidator object.
220 Data binding classes (Flash Professional only)

The EndPoint objects, srcEndPoint and destEndPoint, might be defined as follows:
var srcEndPoint = new mx.data.binding.EndPoint();
var destEndPoint = new mx.data.binding.EndPoint();
srcEndPoint.component = source_txt;
srcEndPoint.property = "text";
srcEndPoint.event = "focusOut";
destEndPoint.component = dest_txt;
destEndPoint.property = "text";

In English, the above code means “When the source text field loses focus, copy the value of its
text property into the text property of the destination text field.”

You can also pass generic ActionScript objects to the Binding constructor, rather than passing
explicitly constructed EndPoint objects. The only requirement is that the objects define the
required EndPoint properties, component and property. The following code is equivalent to
that shown above.
var srcEndPoint = {component:source_txt, property:"text"};
var destEndPoint = {component:dest_txt, property:"text"};
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

Property summary for the EndPoint class
The following table lists the properties of the EndPoint class.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file.

Method Description

EndPoint.component A reference to a component instance.

EndPoint.constant A constant value.

EndPoint.event The name of an event, or array of event names, that the component
emits when the data changes.

EndPoint.location The location of a data field within the property of the component
instance.

EndPoint.property The name of a property of the component instance specified by
EndPoint.component.
EndPoint class (Flash Professional only) 221

Constructor for the EndPoint class
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
new EndPoint()

Returns

Nothing.

Description

Constructor; creates a new EndPoint object.

Example

This example creates a new EndPoint object named source_obj and assigns values to its
component and property properties:
var source_obj = new mx.data.binding.EndPoint();
source_obj.component = myTextField;
source_obj.property = "text";

EndPoint.component
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
endPointObj.component

Description

Property; a reference to a component instance.
222 Data binding classes (Flash Professional only)

Example

This example assigns an instance of the List component (listBox1) as the component
parameter of an EndPoint object.
var sourceEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.component = listBox1;

EndPoint.constant
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
endPoint_src.constant

Description

Property; a constant value assigned to an EndPoint object. This property can be applied only
to EndPoint objects that are the source, not the destination, of a binding between
components. The value can be of any data type that is compatible with the destination of the
binding. If this property is specified, all other EndPoint properties for the specified EndPoint
object are ignored.

Example

In this example, the string constant value “hello” is assigned to an EndPoint object’s
constant property:
var sourceEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.constant = "hello";

EndPoint.event
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
EndPoint.event 223

Usage
endPointObj.event

Description

Property; specifies the name of an event, or an array of event names, generated by the
component when data assigned to the bound property changes. When the event occurs, the
binding executes.

The specified event only applies to components that are used as the source of a binding, or as
the destination of a two-way binding. For more information about creating two-way
bindings, see “Binding class (Flash Professional only)” on page 208.

Example

In this example, the text property of one TextInput (src_txt) component is bound to the
same property of another TextInput component (dest_txt). The binding is executed when
either the focusOut or enter event is emitted by the src_txt component.
var source = {component:src_txt, property:"text", event:["focusOut",

"enter"]};
var dest = {component:myTextArea, property:"text"};
var newBind = new mx.data.binding.Binding(source, dest);

EndPoint.location
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
endPointObj.location

Description

Property; specifies the location of a data field within the property of the component instance.
There are four ways to specify a location: as a string that contains an XPath expression, as a
string that contains an ActionScript path, as an array of strings, or as an object.

XPath expressions can only be used when the data is an XML object. (See Example 1 below.)
For a list of supported XPath expressions, see “Adding bindings using path expressions” in
Using Flash.
224 Data binding classes (Flash Professional only)

For XML and ActionScript objects, you can also specify a string that contains an ActionScript
path. An ActionScript path contains the names of fields separated by dots (for example,
"a.b.c").

You can also specify an array of strings as a location. Each string in the array “drills down”
another level of nesting. You can use this technique with both XML and ActionScript data.
(See Example 2 below.) When used with ActionScript data, an array of strings is equivalent to
use of an ActionScript path; that is, the array ["a","b","c"] is equivalent to "a.b.c".

If you specify an object as the location, the object must specify two properties: path and
indices. The path property is an array of strings, as discussed above, except that one or more
of the specified strings may be the special token "[n]". For each occurrence of this token in
path, there must be a corresponding index item in indices. As the path is evaluated, the
indices are used to index into arrays. The index item can be any EndPoint object. This type of
location can be applied to ActionScript data only—not XML. (See Example 3 below.)

Example

Example 1: This example uses an XPath expression to specify the location of a node named
zip in an XML object:
var sourceEndPoint = new mx.databinding.EndPoint();
var sourcObj = new Object();
sourceObj.xml = new XML("<zip>94103</zip>");
sourceEndPoint.component = sourceObj;
sourceEndPoint.property = "xml";
sourceEndPoint.location = "/zip";

Example 2: This example uses an array of strings to “drill down” to a nested movie clip
property:
var sourceEndPoint = new mx.data.binding.EndPoint();
// Assume movieClip1.ball.position exists.
sourceEndPoint.component = movieClip1;
sourceEndPoint.property = "ball";
// Access movieClip1.ball.position.x.
sourceEndPoint.location = ["position","x"];

Example 3: This example shows how to use an object to specify the location of a data field in
a complex data structure:
var city = new Object();
city.theaters = [{theater: "t1", movies: [{name: "Good,Bad,Ugly"},

{name:"Matrix Reloaded"}]}, {theater: "t2", movies: [{name: "Gladiator"},
{name: "Catch me if you can"}]}];

var srcEndPoint = new EndPoint();
srcEndPoint.component = city;
srcEndPoint.property = "theaters";
srcEndPoint.location = {path: ["[n]","movies","[n]","name"], indices:

[{constant:0},{constant:0}]};
EndPoint.location 225

EndPoint.property
Availability

Flash Player 6 (6.0.79.0)

Edition

Flash MX Professional 2004.

Usage
endPointObj.property

Description

Property; specifies a property name of the component instance specified by
EndPoint.component that contains the bindable data.

Example

This example binds the text property of one TextInput component (text_1) to the same
property in another TextInput component (text_2).
var sourceEndPoint = {component:text_1, property:"text"};
var destEndPoint = {component:text_2, property:"text"};
new Binding(sourceEndPoint, destEndPoint);

ComponentMixins class (Flash
Professional only)
ActionScript Class Name mx.data.binding.ComponentMixins

The ComponentMixins class defines properties and methods that are automatically added to
any object that is the source or destination of a binding, or to any component that’s the target
of a ComponentMixins.initComponent() method call. These properties and methods do
not affect normal component functionality; rather, they add functionality that is useful with
data binding.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

N
O

T
E

EndPoint.component and EndPoint.property must combine to form a valid ActionScript
object/property combination.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file.
226 Data binding classes (Flash Professional only)

Method summary for the ComponentMixins class
The following table lists the methods of the ComponentMixins class.

ComponentMixins.getField()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.getField(propertyName, [location])

Parameters

propertyName A string that contains the name of a property of the specified component.

location An optional parameter that indicates the location of a field within the
component property. This is useful if propertyName specifies a complex data structure and
you are interested in a particular field of that structure. The location property can take one
of three forms:

■ A string that contains an XPath expression. This is only valid for XML data structures. For
a list of supported XPath expressions, see “Adding bindings using path expressions” in
Using Flash.

Method Description

ComponentMixins.getField() Returns an object for getting and setting the value
of a field at a specific location in a component
property.

ComponentMixins.initComponent() Adds the ComponentMixins methods to a
component.

ComponentMixins.refreshDestinations() Executes all the bindings that have this object as
the source endpoint.

ComponentMixins.refreshFromSources() Executes all bindings that have this component as
the destination endpoint.

ComponentMixins.validateProperty() Checks to see if the data in the indicated property
is valid.
ComponentMixins.getField() 227

■ A string that contains field names, separated by dots—for example, "a.b.c". This form is
permitted for any complex data (ActionScript or XML).

■ An array of strings, where each string is a field name—for example, ["a", "b", "c"].
This form is permitted for any complex data (ActionScript or XML).

Returns

A DataType object.

Description

Method; returns a DataType object whose methods you can use to get or set the data value in
the component property at the specified field location. For more information, see “DataType
class (Flash Professional only)” on page 233.

Example

This example uses the DataType.setAsString() method to set the value of a field located in
a component’s property. In this case the property (results) is a complex data structure.
import mx.data.binding.*;
var field : DataType = myComponent.getField("results", "po.address.name1");
field.setAsString("Teri Randall");

See also

DataType.setAsString()

ComponentMixins.initComponent()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mx.data.binding.ComponentMixins.initComponent(componentInstance)

Parameters

componentInstance A reference to a component instance.

Returns

Nothing.
228 Data binding classes (Flash Professional only)

Description

Method (static); adds all the ComponentMixins methods to the component specified by
componentInstance. This method is called automatically for all components involved in a
data binding. To make the ComponentMixins methods available for a component that is not
involved in a data binding, you must explicitly call this method for that component.

Example

The following code makes the ComponentMixins methods available to a DataSet
component:
mx.data.binding.ComponentMixins.initComponent(_root.myDataSet);

ComponentMixins.refreshDestinations()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.refreshDestinations()

Parameters

None.

Returns

Nothing.

Description

Method; executes all the bindings for which componentInstance is the source EndPoint
object. This method lets you execute bindings whose sources do not emit a “data changed”
event.

Example

The following example executes all the bindings for which the DataSet component instance
named user_data is the source EndPoint object:
user_data.refreshDestinations();
ComponentMixins.refreshDestinations() 229

ComponentMixins.refreshFromSources()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.refreshFromSources()

Parameters

None.

Returns

Nothing.

Description

Method; executes all bindings for which componentInstance is the destination EndPoint
object. This method lets you execute bindings that have constant sources, or sources that do
not emit a “data changed” event.

Example

The following example executes all the bindings for which the ListBox component instance
named cityList is the destination EndPoint object:
cityList.refreshFromSources();

ComponentMixins.validateProperty()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.validateProperty(propertyName)
230 Data binding classes (Flash Professional only)

Parameters

propertyName A string that contains the name of a property that belongs to
componentInstance.

Returns

An array, or null.

Description

Method; determines if the data in propertyName is valid based on the property’s schema
settings. The property’s schema settings are those specified on the Schema tab in the
Component inspector.

The method returns null if the data is valid; otherwise, it returns an array of error messages
as strings.

Validation applies only to fields that have schema information available. If a field is an object
that contains other fields, each “child” field is validated, and so on, recursively. Each
individual field dispatches a valid or invalid event, as necessary. For each data field
contained by propertyName, this method dispatches valid or invalid events, as follows:

■ If the value of the field is null, and is not required, the method returns null. No events
are generated.

■ If the value the field is null, and is required, an error is returned and an invalid event
is generated.

■ If the value of the field is not null and the field’s schema does not have a validator, the
method returns null; no events are generated.

■ If the value is not null and the field’s schema does define a validator, the data is processed
by the validator object. If the data is valid, a valid event is generated and null is
returned; otherwise, an invalid event is generated and an array of error strings
is returned.

Example

The following example shows how to use validateProperty() to make sure that text
entered by a user is of a valid length. You’ll determine the valid length by setting the
Validation Options for the String data type in the Component inspector’s Schema tab. If the
user enters a string of invalid length in the text field, the error messages returned by
validateProperty() are displayed in the Output panel.
ComponentMixins.validateProperty() 231

To validate text entered by a user in a TextInput component:

1. Drag a TextInput component from the Components panel to the Stage, and name it
zipCode_txt.

2. Select the TextInput component and, in the Component inspector, click the Schema tab.

3. In the Schema Tree pane (the top pane of the Schema tab), select the text property.

4. In the Schema Attributes pane (the bottom pane of the Schema tab), select ZipCode from
the Data Type pop-up menu.

5. Open the Timeline if it is not already open.

6. Click the first frame on Layer 1 in the Timeline, and open the Actions panel (Window >
Actions).

7. Add the following code to the Actions panel:
// Add ComponentMixin methods to TextInput component.
// Note that this step is only necessary if the component
// isn’t already involved in a data binding,
// either as the source or destination.
mx.data.binding.ComponentMixins.initComponent(zipCode_txt);
// Define event listener function for component:
validateResults = function (eventObj) {

var errors:Array = eventObj.target.validateProperty("text");
if (errors != null) {

trace(errors);
}

};
// Register listener function with component:
zipCode_txt.addEventListener("enter", validateResults);

8. Select Window > Common Libraries > Classes to open the Classes library.

9. Select Window > Library to open your document’s library.

10. Drag DataBindingClasses from the Classes library to your document’s library.

This step makes the data binding runtime classes available to the SWF file at runtime.
11. Test the SWF file by selecting Control > Test Movie.

In the TextInput component on the Stage, enter an invalid United States zip code—for
example, one that contains all letters, or one that contains fewer than five numbers.
Notice the error messages displayed in the Output panel.
232 Data binding classes (Flash Professional only)

DataType class (Flash Professional only)
ActionScript Class Name mx.data.binding.DataType

The DataType class provides read and write access to data fields of a component property. To
get a DataType object, you call the ComponentMixins.getField() method on a component.
You can then call methods of the DataType object to get and set the value of the field.

If you get and set field values directly on the component instance instead of using DataType
class methods, the data is provided in its “raw” form. In contrast, when you get or set field
values using DataType methods, the values are processed according to the field’s schema
settings.

For example, the following code gets the value of a component’s property directly and assigns
it to a variable. The variable, propVar, contains whatever “raw” value is the current value of
the property propName.
var propVar = myComponent.propName;

The next example gets the value of the same property by using the DataType.getAsString()
method. In this case, the value assigned to stringVar is the value of propName after being
processed according to its schema settings, and then returned as a string.
var dataTypeObj:mx.data.binding.DataType =

myComponent.getField("propName");
var stringVar: String = dataTypeObj.getAsString();

For more information about how to specify a field’s schema settings, see “Working with
schemas in the Schema tab (Flash Professional only)” in Using Flash.

You can also use the methods of the DataType class to get or set fields in various data types.
The DataType class automatically converts the raw data to the requested type, if possible. For
example, in the code example above, the data that’s retrieved is converted to the String type,
even if the raw data is a different type.

The ComponentMixins.getField() method is available for components that have been
included in a data binding (either as a source, destination, or an index), or that have been
initialized with ComponentMixins.initComponent(). For more information, see
“ComponentMixins class (Flash Professional only)” on page 226.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file.
DataType class (Flash Professional only) 233

Method summary for the DataType class
The following table lists the methods of the DataType class.

Property summary for the DataType class
The following table lists the properties of the DataType class.

DataType.encoder
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Method Description

DataType.getAnyTypedValue() Fetches the current value of the field.

DataType.getAsBoolean() Fetches the current value of the field as a Boolean value.

DataType.getAsNumber() Fetches the current value of the field as a number.

DataType.getAsString() Fetches the current value of the field as a String value.

DataType.getTypedValue() Fetches the current value of the field in the form of the
requested data type.

DataType.setAnyTypedValue() Sets a new value in the field.

DataType.setAsBoolean() Sets the field to the new value, which is given as a Boolean
value.

DataType.setAsNumber() Sets the field to the new value, which is given as a number.

DataType.setAsString() Sets the field to the new value, which is given as a string.

DataType.setTypedValue() Sets a new value in the field.

Property Description

DataType.encoder Provides a reference to the encoder object associated with
this field.

DataType.formatter Provides a reference to the formatter object associated with
this field.

DataType.kind Provides a reference to the Kind object associated with this
field.
234 Data binding classes (Flash Professional only)

Usage
dataTypeObject.encoder

Description

Property; provides a reference to the encoder object associated with this field, if one exists.
You can use this property to access any properties and methods defined by the specific
encoder applied to the field in the Component inspector’s Schema tab.

If no encoder was applied to the field in question, then this property returns undefined.

For more information about the encoders provided with Flash, see “Schema encoders” in
Using Flash.

Example

The following example assumes that the field being accessed (isValid) uses the Boolean
encoder (mx.data.encoders.Bool). This encoder is provided with Flash and contains a
property named trueStrings that specifies which strings should be interpreted as true
values. The code below sets the trueStrings property for a field’s encoder to be the strings
“Yes” and “Oui”.
var myField:mx.data.binding.DataType = dataSet.getField("isValid");
myField.encoder.trueStrings = "Yes,Oui";

DataType.formatter
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.formatter

Description

Property; provides a reference to the formatter object associated with this field, if one exists.
You can use this property to access any properties and methods for the formatter object
applied to the field in the Component inspector’s Schema tab.

If no formatter was applied to the field in question, this property returns undefined.

For more information about the formatters provided with Flash, see “Schema formatters” in
Using Flash.
DataType.formatter 235

Example

This example assumes that the field being accessed is using the Number Formatter
(mx.data.formatters.NumberFormatter) provided with Flash Professional 8. This
formatter contains a property named precision that specifies how many digits to display
after the decimal point. This code sets the precision property to two decimal places for a
field using this formatter.
var myField:DataType = dataGrid.getField("currentBalance");
myField.formatter.precision = 2;

DataType.getAnyTypedValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.getAnyTypedValue(suggestedTypes)

Parameters

suggestedTypes An array of strings that specify, in descending order of desirability, the
preferred data types for the field.

Returns

The current value of the field, in the form of one of the data types specified in the
suggestedTypes array.

Description

Method; fetches the current value of the field, using the information in the field’s schema to
process the value. If the field can provide a value as the first data type specified in the
suggestedTypes array, the method returns the field’s value as that data type. If not, the
method attempts to extract the field’s value as the second data type specified in the
suggestedTypes array, and so on.

If you specify null as one of the items in the suggestedTypes array, the method returns the
value of the field in the data type specified in the Schema tab of the Component inspector.
Specifying null always results in a value being returned, so only use null at the end of
the array.
236 Data binding classes (Flash Professional only)

If a value can’t be returned in the form of the one of the suggested types, it is returned in the
type specified in the Schema tab.

Example

This example attempts to get the value of a field (productInfo.available) in an
XMLConnector component’s results property first as a number or, if that fails, as a string.
import mx.data.binding.DataType;
import mx.data.binding.TypedValue;
var f: DataType = myXmlConnector.getField("results",

"productInfo.available");
var b: TypedValue = f.getAnyTypedValue(["Number", "String"]);

See also

ComponentMixins.getField()

DataType.getAsBoolean()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.getAsBoolean()

Parameters

None.

Returns

A Boolean value.

Description

Method; fetches the current value of the field and converts it to Boolean form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a Boolean value, and assigned to a variable:
var dataTypeObj:mx.data.binding.DataType =

myComponent.getField("propName");
var propValue:Boolean = dataTypeObj.getAsBoolean();
DataType.getAsBoolean() 237

DataType.getAsNumber()
Availability

Flash Player 6.

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.getAsNumber()

Parameters

None.

Returns

A number.

Description

Method; fetches the current value of the field and converts it to Number form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a number, and assigned to a variable:
var dataTypeObj:mx.data.binding.DataType =

myComponent.getField("propName");
var propValue:Number = dataTypeObj.getAsNumber();

See also

DataType.getAnyTypedValue()

DataType.getAsString()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.getAsString()
238 Data binding classes (Flash Professional only)

Parameters

None.

Returns

A string.

Description

Method; fetches the current value of the field and converts it to String form, if necessary.

Example

In this example, a property named propName that belongs to a component named
myComponent is retrieved as a string and assigned to a variable:
var dataTypeObj:mx.data.binding.DataType =

myComponent.getField("propName");
var propValue:String = dataTypeObj.getAsString();

See also

DataType.getAnyTypedValue()

DataType.getTypedValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.getTypedValue(requestedType)

Parameters

requestedType A string containing the name of a data type, or null.

Returns

A TypedValue object (see “TypedValue class (Flash Professional only)” on page 245).

Description

Method; returns the value of the field in the specified form, if the field can provide its value in
that form. If the field cannot provide its value in the requested form, the method returns
null.
DataType.getTypedValue() 239

If null is specified as requestedType, the method returns the value of the field in its
default type.

Example

The following example returns the value of the field converted to the Boolean data type. This
is stored in the bool variable.
var bool:TypedValue = field.getTypedValue("Boolean");

DataType.kind
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.kind

Description

Property; provides a reference to the Kind object associated with this field. You can use this
property to access properties and methods of the Kind object.

DataType.setAnyTypedValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.setAnyTypedValue(newTypedValue)

Parameters

newTypedValue A TypedValue object value to set in the field. For more information, see
“TypedValue class (Flash Professional only)” on page 245.
240 Data binding classes (Flash Professional only)

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

■ The data provided cannot be converted to the data type of this field (for example, "abc"
cannot be converted to Number).

■ The data is an acceptable type but does not meet the validation criteria of the field.
■ The field is read-only.

Description

Method; sets a new value in the field, using the information in the field’s schema to process
the field.

This method operates by first calling DataType.setTypedValue() to set the value. If that
fails, the method checks to see if the destination object is willing to accept String, Boolean, or
Number data, and if so, attempts to use the corresponding ActionScript conversion functions.

Example

The following example creates a new TypedValue object (a Boolean value), and then assigns
that value to a DataType object named field. Any errors that occur are assigned to the
errors array.
import mx.data.binding.*;
var t:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setAnyTypedValue (t);

See also

DataType.setTypedValue()

DataType.setAsBoolean()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.setAsBoolean(newBooleanValue)

N
O

T
E

The actual text of an error message varies depending on the data type, formatters,
and encoders that are defined in the field’s schema.
DataType.setAsBoolean() 241

Parameters

newBooleanValue A Boolean value.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a Boolean value. The value is
converted to, and stored as, the data type that is appropriate for this field.

Example

The following example sets a variable named bool to the Boolean value true. It then sets the
value referenced by field to true.
var bool: Boolean = true;
field.setAsBoolean (bool);

DataType.setAsNumber()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.setAsNumber(newNumberValue)

Parameters

newNumberValue A number.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a number. The value is converted to,
and stored as, the data type that is appropriate for this field.
242 Data binding classes (Flash Professional only)

Example

The following example sets a variable named num to the Number value of 32. It then sets the
value referenced by field to num.
var num: Number = 32;
field.setAsNumber (num);

DataType.setAsString()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAsString(newStringValue)

Parameters

newStringValue A string.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a string. The value is converted to,
and stored as, the data type that is appropriate for this field.

Example

The following example sets the variable stringVal to the string "The new value". It then
sets the value of field to the string.
var stringVal: String = "The new value";
field.setAsString (stringVal);
DataType.setAsString() 243

DataType.setTypedValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataTypeObject.setTypedValue(newTypedValue)

Parameters

newTypedValue A TypedValue object value to set in the field.

For more information about TypedValue objects, see “TypedValue class (Flash Professional
only)” on page 245.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

■ The data provided is not an acceptable type.
■ The data provided cannot be converted to the data type of this field (for example, "abc"

cannot be converted to Number).
■ The data is an acceptable type but does not meet the validation criteria of the field.
■ The field is read-only.

Description

Method; sets a new value in the field, using the information in the field’s schema to process
the field. This method behaves similarly to DataType.setAnyTypedValue(), except that it
doesn’t try as hard to convert the data to an acceptable data type. For more information, see
DataType.setAnyTypedValue().

N
O

T
E

 The actual text of an error message varies depending on the data type, formatters,
and encoders that are defined in the field’s schema.
244 Data binding classes (Flash Professional only)

Example

The following example creates a new TypedValue object (a Boolean value), and then assigns
that value to a DataType object named field. Any errors that occur are assigned to the
errors array.
import mx.data.binding.*;
var bool:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setTypedValue (bool);

See also

DataType.setTypedValue()

TypedValue class (Flash Professional
only)
ActionScript Class Name mx.data.binding.TypedValue

A TypedValue object contains a data value, along with information about the value’s data
type. TypedValue objects are provided as parameters to, and are returned from, various
methods of the DataType class. The data type information in the TypedValue object helps
DataType objects decide when and how they need to do type conversion.

For an overview of the classes in the mx.data.binding package, see “Classes in the
mx.data.binding package (Flash Professional only)” on page 208.

Property summary for the TypedValue class
The following table lists the properties of the TypedValue class.

N
O

T
E

To make this class available at runtime, you must include the data binding classes in your
FLA file.

Property Description

TypedValue.type Contains the schema associated with the TypedValue object’s value.

TypedValue.typeName Names the data type of the TypedValue object’s value.

TypedValue.value Contains the data value of the TypedValue object.
TypedValue class (Flash Professional only) 245

Constructor for the TypedValue class
Availability

Flash Player 6 (6.0.79.0).

Usage
new mx.data.binding.TypedValue(value, typeName, [type])

Parameters

value A data value of any type.

typeName A string that contains the name of the value’s data type.

type An optional Schema object that describes in more detail the schema of the data. This
field is required only in certain circumstances, such as when setting data into a DataSet
component’s dataProvider property.

Description

Constructor; creates a new TypedValue object.

TypedValue.type
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
typedValueObject.type

Description

Property; contains the schema associated with the TypedValue object’s value.

Example

This example displays null in the Output panel:
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.type);
246 Data binding classes (Flash Professional only)

TypedValue.typeName
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
typedValueObject.typeName

Description

Property; contains the name of the data type of the TypedValue object’s value.

Example

This example displays Boolean in the Output panel:
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.typeName);

TypedValue.value
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
typedValueObject.value

Description

Property; contains the data value of the TypedValue object.

Example

This example displays true in the Output panel:
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.value);
TypedValue.value 247

248 Data binding classes (Flash Professional only)

10

CHAPTER 10

DataGrid component (Flash
Professional only)
The DataGrid component lets you create powerful data-enabled displays and applications.
You can use the DataGrid component to instantiate a recordset (retrieved from a database
query in Macromedia ColdFusion, Java, or .Net) using Macromedia Flash Remoting and
display it in columns. You can also use data from a data set or from an array to fill a DataGrid
component. Version 2 of the DataGrid component has been improved to include horizontal
scrolling, better event support (including event support for editable cells), enhanced sorting
capabilities, and performance optimizations.

You can resize and customize characteristics such as the font, color, and borders of columns in
a grid. You can use a custom movie clip as a cell renderer for any column in a grid. (A cell
renderer displays the contents of a cell.) You can use scroll bars to move through data in a grid;
you can also turn off scroll bars and use the DataGrid methods to create a page view style
display. For more information about customization, see “DataGridColumn class (Flash
Professional only)” on page 300.

When you add the DataGrid component to an application, you can use the Accessibility
panel to make the component accessible to screen readers. First, you must add the following
line of code to enable accessibility for the DataGrid component:
mx.accessibility.DataGridAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances the
component has. For more information, see Chapter 19, “Creating Accessible Content,” in
Using Flash.
249

Interacting with the DataGrid component
(Flash Professional only)
You can use the mouse and the keyboard to interact with a DataGrid component.

If DataGrid.sortableColumns and DataGridColumn.sortOnHeaderRelease are both
true, clicking in a column header causes the grid to sort based on the column’s cell values.

If DataGrid.resizableColumns is true, clicking in the area between columns lets you resize
columns.

Clicking in an editable cell sends focus to that cell; clicking a non-editable cell has no effect
on focus. An individual cell is editable when both the DataGrid.editable and
DataGridColumn.editable properties of the cell are true.

When a DataGrid instance has focus either from clicking or tabbing, you can use the
following keys to control it:

Key Description

Down Arrow When a cell is being edited, the insertion point shifts to the end of
the cell’s text. If a cell is not editable, the Down Arrow key handles
selection as the List component does.

Up Arrow When a cell is being edited, the insertion point shifts to the
beginning of the cell’s text. If a cell is not editable, the Up Arrow key
handles selection as the List component does.

Right Arrow When a cell is being edited, the insertion point shifts one character
to the right. If a cell is not editable, the Right Arrow key does nothing.

Left Arrow When a cell is being edited, the insertion point shifts one character
to the left. If a cell is not editable, the Left Arrow key does nothing.

Return/Enter/
Shift+Enter

When a cell is editable, the change is committed, and the insertion
point is moved to the cell on the same column, next row (up or down,
depending on the shift toggle).

Shift+Tab/Tab Moves focus to the previous item. When the Tab key is pressed,
focus cycles from the last column in the grid to the first column on
the next line. When Shift+Tab is pressed, cycling is reversed. All the
text in the focused cell is selected.
250 DataGrid component (Flash Professional only)

Using the DataGrid component (Flash
Professional only)
You can use the DataGrid component as the foundation for numerous types of data-driven
applications. You can easily display a formatted tabular view of a database query (or other
data), but you can also use the cell renderer capabilities to build more sophisticated and
editable user interface pieces. The following are practical uses for the DataGrid component:

■ A webmail client
■ Search results pages
■ Spreadsheet applications such as loan calculators and tax form applications

Understanding the design of the DataGrid
component
The DataGrid component extends the List component. When you design an application with
the DataGrid component, it is helpful to understand how the List class underlying it was
designed. The following are some fundamental assumptions and requirements that
Macromedia used when developing the List class:

■ Keep it small, fast, and simple.
Don’t make something more complicated than absolutely necessary. This was the prime
design directive. Most of the requirements listed below are based on this directive.

■ Lists have uniform row heights.
Every row must be the same height; the height can be set during authoring or at runtime.

■ Lists must scale to thousands of records.
■ Lists don’t measure text.

This creates a horizontal scrolling issue for List and Tree components; for more
information, see “Understanding the design of the List component” on page 762. The
DataGrid component, however, supports "auto" as an hScrollPolicy value, because it
measures columns (which are the same width per item), not text.
The fact that lists don’t measure text explains why lists have uniform row heights. Sizing
individual rows to fit text would require intensive measuring. For example, if you wanted
to accurately show the scroll bars on a list with nonuniform row height, you’d need to
premeasure every row.
Using the DataGrid component (Flash Professional only) 251

■ Lists perform worse as a function of their visible rows.
Although lists can display 5000 records, they can’t render 5000 records at once. The more
visible rows (specified by the rowCount property) you have on the Stage, the more work
the list must to do to render. Limiting the number of visible rows, if at all possible, is the
best solution.

■ Lists aren’t tables.
DataGrid components are intended to provide an interface for many records. They’re not
designed to display complete information; they’re designed to display enough information
so that users can drill down to see more. The message view in Microsoft Outlook is a
prime example. You don’t read the entire e-mail in the grid; the message would be difficult
to read and the client would perform terribly. Outlook displays enough information so
that a user can drill into the post to see the details.

Understanding the DataGrid component: data model
and view
Conceptually, the DataGrid component is composed of a data model and a view that displays
the data. The data model consists of three main parts:

■ DataProvider
This is a list of items with which to fill the data grid. Any array in the same frame as a
DataGrid component is automatically given methods (from the DataProvider API) that
let you manipulate data and broadcast changes to multiple views. Any object that
implements the DataProvider API can be assigned to the DataGrid.dataProvider
property (including recordsets, data sets, and so on). The following code creates a data
provider called myDP:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

■ Item
This is an ActionScript object used for storing the units of information in the cells of a
column. A data grid is really a list that can display more than one column of data. A list
can be thought of as an array; each indexed space of the list is an item. For the DataGrid
component, each item consists of fields. In the following code, the content between curly
braces ({}) is an item:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});
252 DataGrid component (Flash Professional only)

■ Field
Identifiers that indicate the names of the columns within the items. This corresponds to
the columnNames property in the columns list. In the List component, the fields are
usually label and data, but in the DataGrid component the fields can be any identifier.
In the following code, the fields are name and price:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

The view consists of three main parts:

■ Row
This is a view object responsible for rendering the items of the grid by laying out cells.
Each row is laid out horizontally below the previous one.

■ Column
Columns are fields that are displayed in the grid; the fields each correspond to the
columnName property of each column.
Each column is a view object (an instance of the DataGridColumn class) responsible for
displaying each column—for example, width, color, size, and so on.
There are three ways to add columns to a data grid: assign a DataProvider object to
DataGrid.dataProvider (this automatically generates a column for each field in the first
item), set DataGrid.columnNames to specify which fields are displayed, or use the
constructor for the DataGridColumn class to create columns and call
DataGrid.addColumn() to add them to the grid.
To format columns, either set up style properties for the entire data grid, or define
DataGridColumn objects, set up their style formats individually, and add them to the
data grid.

■ Cell
This is a view object responsible for rendering the individual fields of each item. To
communicate with the data grid, these components must implement the CellRenderer
API (see “CellRenderer API” on page 109). For a basic data grid, a cell is a built-in
ActionScript TextField object.

DataGrid parameters
You can set the following authoring parameters for each DataGrid component instance in the
Property inspector or in the Component inspector:

editable is a Boolean value that indicates whether the grid is editable (true) or not (false).
The default value is false.
Using the DataGrid component (Flash Professional only) 253

multipleSelection is a Boolean value that indicates whether multiple items can be selected
(true) or not (false). The default value is false.

rowHeight indicates the height of each row, in pixels. Changing the font size does not change
the row height. The default value is 20.

You can write ActionScript to control these and additional options for the DataGrid
component using its properties, methods, and events. For more information, see “DataGrid
class (Flash Professional only)” on page 262.

Creating an application with the DataGrid component
To create an application with the DataGrid component, you must first determine where your
data is coming from. The data for a grid can come from a recordset that is fed from a database
query in Macromedia ColdFusion, Java, or .Net using Flash Remoting. Data can also come
from a data set or an array. To pull the data into a grid, you set the DataGrid.dataProvider
property to the recordset, data set, or array. You can also use the methods of the DataGrid and
DataGridColumn classes to create data locally. Any Array object in the same frame as a
DataGrid component copies the methods, properties, and events of the DataProvider API.

To use Flash Remoting to add a DataGrid component to an application:

1. In Flash, select File > New and select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.

3. In the Property inspector, enter the instance name myDataGrid.

4. In the Actions panel on Frame 1, enter the following code:
myDataGrid.dataProvider = recordSetInstance;

The Flash Remoting recordset recordSetInstance is assigned to the dataProvider
property of myDataGrid.

5. Select Control > Test Movie.

To use a local data provider to add a DataGrid component to an application:

1. In Flash, select File > New and then select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.

3. In the Property inspector, enter the instance name myDataGrid.

N
O

T
E

When you bind data to the DataGrid component using the Data components, the object
binds columns backward (similar to looping over an object or array). Therefore, to order
the data in the DataGrid component differently, you must explicitly define columns.
254 DataGrid component (Flash Professional only)

4. In the Actions panel on Frame 1, enter the following code:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});
myDataGrid.dataProvider = myDP;

The name and price fields are used as the column headings, and their values fill the cells
in each row.

5. Select Control > Test Movie.

To specify columns and add sorting for a DataGrid component in an
application:

1. In Flash, select File > New and then select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.

3. In the Property inspector, enter the instance name myDataGrid.

4. In the Actions panel on Frame 1, enter the following code:
var myDataGrid:mx.controls.DataGrid;

// Create columns to enable sorting of data.
myDataGrid.addColumn("name");
myDataGrid.addColumn("score");

var myDP_array:Array = new Array({name:"Clark", score:3135},
{name:"Bruce", score:403}, {name:"Peter", score:25})

myDataGrid.dataProvider = myDP_array;

// Create listener object for DataGrid.
var listener_obj:Object = new Object();
listener_obj.headerRelease = function(evt_obj:Object) {
 switch (evt_obj.target.columns[evt_obj.columnIndex].columnName) {
 case "name" :
 myDP_array.sortOn("name", Array.CASEINSENSITIVE);
 break;
 case "score" :
 myDP_array.sortOn("score", Array.NUMERIC);
 break;
 }
};

// Add listener to DataGrid.
myDataGrid.addEventListener("headerRelease", listener_obj);

5. Select Control > Test Movie.
Using the DataGrid component (Flash Professional only) 255

To create a DataGrid component instance using ActionScript:

1. Drag the DataGrid component from the Components panel to the current document’s
library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Select the first frame in the main Timeline, open the Actions panel, and enter the following

code:
this.createClassObject(mx.controls.DataGrid, "my_dg", 10,

{columnNames:["name", "score"]});
my_dg.setSize(140, 100);
my_dg.move(10, 40);

This script uses the UIObject.createClassObject() method to create the DataGrid
instance and then sizes and positions the grid.

3. Create an array, add data to the array, and identify the array as the data provider for the
data grid:
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

4. Select Control > Test Movie.

DataGrid performance strategies
Performance can quickly become a major concern when you are using the DataGrid
component because the size of the data it displays can be scalable. A data grid that displays a
hundred rows on a fast computer with a fast connection to the data source may look
acceptable to you. A month later, when the data has increased to several thousand rows, a user
may have a much different experience. Also, the user may have a slower computer on a slow
connection to your data source.

Here are some suggestions for avoiding common performance pitfalls when using the
DataGrid component.

■ Build and bind a data structure rather than add columns directly.
There are two ways to add columns and data to the DataGrid component: by binding a
pre-made data structure (an array of objects) through the DataGrid.dataProvider
property or by using DataGrid class methods such as DataGrid.addColumn() and
DataGrid.addItem(). Whenever possible, you should bind to a pre-made data structure
using the DataGrid.dataProvider property because it allows DataGrid to create all the
columns it needs before attempting to draw them on the screen.
256 DataGrid component (Flash Professional only)

You may be tempted to make a for loop to call DataGrid.addColumn() for all the
columns needed. Although this seems like a simple and obvious approach, do not use it.
Each time that DataGrid.addColumn() is called, the data grid adds event listeners, sorts,
and redraws itself to present the new column. Creating 20 columns using
DataGrid.addColumn() causes DataGrid to sort itself and redraw 20 times needlessly.
Building your data structure in ActionScript requires no rendering or events to account
for. When you assign it to the dataProvider property of the DataGrid component, all of
the drawing is completed in just one pass.

■ Provide a drill-down mechanism for detailed data.
The DataGrid component interface allows users to search quickly so that they can search
for more details. Provide only the data needed to perform the initial search, and.detailed
information for any particular row or cell can be provided in a second search step. This
process minimizes not only the initial data required to fill the data grid but also minimizes
the amount of information that users must read to locate what they are looking for. When
a row or item of interest is selected in the data grid, a second call can be made to the data
source to get related details. Those details can be appear better in some other UI
mechanism, such as a collection of multiline text fields and graphics.

■ Avoid cycles of data manipulation between the data source and the data grid.
If it is possible, and if it meets long-term database needs, storing the data in much the
same format and order in which it appears can avoid unnecessary memory allocation and
processing time on the user’s computer and speed up data-grid response time.

■ Avoid queries that return every row in the database.
Users rarely want to see every record that is available every time they access the data. It’s
important to understand what the consumers of your data are looking for and give them
the means to narrow down their search. If they usually look only at the most recent
records for a given week for a particular subject, display that smaller group of data as a
default, with the ability to widen the view of the data.
Consider paging potentially large amounts of data to limit its size by providing a subset of
data that might normally be returned from a query. For instance, rather than viewing all
10,000 rows of data that might be returned by a query from your database, a subset of the
first 20 rows might be called for, and additional navigation buttons might trigger a call to
fill the data grid with the next 20 records.
DataGrid performance strategies 257

■ Separate data processing from CellRenderer processing.
The CellRenderer API lets you display custom cell content in a data grid. A functional
requirement might require that you populate the data grid with a ComboBox component
or other UI control conditionally. For example, based on a selection in column two, you
may repopulate or auto-select options in column four. Whenever possible, it is important
to separate this conditional logic and repopulating of controls from the process of
rendering the content of the cell. Each time the mouse rolls over the cell, the cell is
selected, or data is changed, the content of the cell or the entire cell is likely to be redrawn
to keep it up to date. This means that any code you put in CellRenderer is run over and
over again, so you should keep processing in CellRenderer as light as possible. If you do
have to add code to CellRenderer, it is better to call a function from CellRenderer that
detects what updates need to be made and makes them in the most efficient manner.

■ Use UIObject.doLater() to access properties after the data grid has finished drawing.
A data grid instance needs to finish drawing and loading data before you can access all the
properties of the data grid (such as focusedCell and others). Because there is no
“complete” event for a DataGrid, you can use UIObject.doLater(), instead, to call a
function that accesses the data grid properties. UIObject.doLater() will execute the
function only after the data grid properties are available. See DataGrid.focusedCell for
an example.

Customizing the DataGrid component
(Flash Professional only)
You can transform a DataGrid component horizontally and vertically during authoring and
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). If there is no horizontal scroll bar, column widths adjust
proportionally. If column (and therefore, cell) size adjustment occurs, text in the cells may
be clipped.
258 DataGrid component (Flash Professional only)

Using styles with the DataGrid component
You can set style properties to change the appearance of a DataGrid component. The
DataGrid component inherits styles from the List component. (See “Using styles with the List
component” on page 766.) The DataGrid component also supports the following styles:

Style Theme Description

backgroundColor Both The background color, which can be set for the whole
grid or for each column.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is
0xDDDDDD (medium gray).

borderStyle Both The DataGrid component uses a RectBorder instance
as its border and responds to the styles defined on
that class. See “RectBorder class” on page 1063.
The default border style value is "inset".

headerColor Both The color of the column headers. The default value is
0xEAEAEA (light gray)

headerStyle Both A CSS style declaration for the column header that
can be applied to a grid or column to customize the
header styles.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. For example (using a DataGrid
instance my_dg):
my_dg.setStyle("fontFamily", "yourFont");
my_dg.embedFonts=true;
Otherwise, the embedded font is not used. If this style
is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".
Customizing the DataGrid component (Flash Professional only) 259

Setting styles for an individual column
Color and text styles can be set for the grid as a whole or for a column. You can use the
following syntax to set a style for a particular column:
grid.getColumnAt(3).setStyle("backgroundColor", 0xFF00AA);

Setting header styles
You can set header styles through headerStyle, which is a style property itself. To do this,
you create an instance of CSSStyleDeclaration, set the appropriate properties on that
instance for the header, and then assign the CSSStyleDeclaration to the headerStyle
property, as shown in the following example.
import mx.styles.CSSStyleDeclaration;
var headerStyles = new CSSStyleDeclaration();
headerStyles.setStyle("fontStyle", "italic");
grid.setStyle("headerStyle", headerStyles);

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

vGridLines Both A Boolean value that indicates whether to show
vertical grid lines (true) or not (false). The default
value is true.

hGridLines Both A Boolean value that indicates whether to show
horizontal grid lines (true) or not (false). The default
value is false.

vGridLineColor Both The color of the vertical grid lines. The default value is
0x666666 (medium gray).

hGridLineColor Both The color of the horizontal grid lines. The default value
is 0x666666 (medium gray).

Style Theme Description
260 DataGrid component (Flash Professional only)

Setting styles for all DataGrid components in a document
The DataGrid class inherits from the List class, which inherits from the ScrollSelectList class.
The default class-level style properties are defined on the ScrollSelectList class, which the
Menu component and all List-based components extend. You can set new default style values
on this class directly, and these new settings are reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the DataGrid components only, you can create a new instance of
CSSStyleDeclaration and store it in _global.styles.DataGrid.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.DataGrid == undefined) {

_global.styles.DataGrid = new CSSStyleDeclaration();
}
_global.styles.DataGrid.setStyle("backgroundColor", 0xFF00AA);

When you create a new class-level style declaration, you lose all default values provided by the
ScrollSelectList declaration, including backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.DataGrid;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles, see “Setting styles for a component class” in
Using Components.

Using skins with the DataGrid component
The skins that the DataGrid component uses to represent its visual states are included in the
subcomponents that constitute the data grid (scroll bars and RectBorder). For information
about their skins, see “Using skins with the UIScrollBar component” on page 1394 and
“RectBorder class” on page 1063.
Customizing the DataGrid component (Flash Professional only) 261

DataGrid class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List component > DataGrid

ActionScript Class Name mx.controls.DataGrid

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.DataGrid.version);

Method summary for the DataGrid class
The following table lists methods of the DataGrid class.

N
O

T
E

The code trace(myDataGridInstance.version); returns undefined.

Method Description

DataGrid.addColumn() Adds a column to the data grid.

DataGrid.addColumnAt() Adds a column to the data grid at a specified location.

DataGrid.addItem() Adds an item to the data grid.

DataGrid.addItemAt() Adds an item to the data grid at a specified location.

DataGrid.editField() Replaces the cell data at a specified location.

DataGrid.getColumnAt() Gets a reference to a column at a specified location.

DataGrid.getColumnIndex() Gets a reference to the DataGridColumn object at the
specified index.

DataGrid.removeAllColumns() Removes all columns from a data grid.

DataGrid.removeColumnAt() Removes a column from a data grid at a specified location.

DataGrid.replaceItemAt() Replaces an item at a specified location with another item.

DataGrid.spaceColumnsEqually() Spaces all columns equally.
262 DataGrid component (Flash Professional only)

Methods inherited from the UIObject class
The following table lists the methods the DataGrid class inherits from the UIObject class.
When calling these methods, use the form dataGridInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the DataGrid class inherits from the UIComponent
class. When calling these methods, use the form dataGridInstance.methodName.

Methods inherited from the List class
The following table lists the methods the DataGrid class inherits from the List class. When
calling these methods, use the form dataGridInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.
DataGrid class (Flash Professional only) 263

Property summary for the DataGrid class
The following table lists the properties of the DataGrid class.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified
compare function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Property Description

DataGrid.columnCount Read-only; the number of columns that are displayed.

DataGrid.columnNames An array of field names within each item that are displayed
as columns.

DataGrid.dataProvider The data model for a data grid.

DataGrid.editable A Boolean value that indicates whether the data grid is
editable (true) or not (false).

DataGrid.focusedCell Defines the cell that has focus.

DataGrid.headerHeight The height of the column headers, in pixels.

DataGrid.hScrollPolicy Indicates whether a horizontal scroll bar is present ("on"),
not present ("off"), or appears when necessary ("auto").

DataGrid.resizableColumns A Boolean value that indicates whether the columns are
resizable (true) or not (false).

DataGrid.selectable A Boolean value that indicates whether the data grid is
selectable (true) or not (false).

DataGrid.showHeaders A Boolean value that indicates whether the column
headers are visible (true) or not (false).

DataGrid.sortableColumns A Boolean value that indicates whether the columns are
sortable (true) or not (false).

Method Description
264 DataGrid component (Flash Professional only)

Properties inherited from the UIObject class
The following table lists the properties the DataGrid class inherits from the UIObject class.
When accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the DataGrid class inherits from the UIComponent
class. When accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to
the bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of
the object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of
the object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible
(true) or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
DataGrid class (Flash Professional only) 265

Properties inherited from the List class
The following table lists the properties the DataGrid class inherits from the List class. When
accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for the
label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or
not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is
read-only.

List.selectedItems The selected item objects in a multiple-selection list. This
property is read-only.

List.vPosition Scrolls the list so the topmost visible item is the number assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not
displayed ("off"), or displayed when needed ("auto").
266 DataGrid component (Flash Professional only)

Event summary for the DataGrid class
The following table lists the events of the DataGrid class.

Events inherited from the UIObject class
The following table lists the events the DataGrid class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the DataGrid class inherits from the UIComponent class.

Event Description

DataGrid.cellEdit Broadcast when the cell value has changed.

DataGrid.cellFocusIn Broadcast when a cell receives focus.

DataGrid.cellFocusOut Broadcast when a cell loses focus.

DataGrid.cellPress Broadcast when a cell is pressed (clicked).

DataGrid.change Broadcast when an item has been selected.

DataGrid.columnStretch Broadcast when a user resizes a column horizontally.

DataGrid.headerRelease Broadcast when a user clicks (releases) a header.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
DataGrid class (Flash Professional only) 267

Events inherited from the List class
The following table lists the events the DataGrid class inherits from the List class.

DataGrid.addColumn()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.addColumn(dataGridColumn)

myDataGrid.addColumn(name)

Parameters

dataGridColumn An instance of the DataGridColumn class.

name A string that indicates the name of a new DataGridColumn object to be inserted.

Returns

A reference to the DataGridColumn object that was added, or returns the string that indicates
the name of the new column.

Description

Method; adds a new column to the end of the data grid. For more information, see
“DataGridColumn class (Flash Professional only)” on page 300.

Event Description

List.change Broadcast whenever user interaction causes the selection
to change.

List.itemRollOut Broadcast when the mouse pointer rolls over and then off
of list items.

List.itemRollOver Broadcast when the mouse pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.
268 DataGrid component (Flash Professional only)

Example

This example shows three different ways of creating columns for a DataGrid component.
With a DataGrid instance named my_dg on the Stage, paste the following code in the first
frame of the main timeline (notice that it imports the DataGridColumn class first):
import mx.controls.gridclasses.DataGridColumn;

var my_dg:mx.controls.DataGrid;
my_dg.setSize(320, 240);

// Add columns to grid.
my_dg.addColumn("Red");

// Add another column to grid.
my_dg.addColumn(new DataGridColumn("Green"));

// Add a third column to grid.
var blue_dgc:DataGridColumn = new DataGridColumn("Blue");
blue_dgc.width = 140;
blue_dgc.headerText = "Blue Column:";
my_dg.addColumn(blue_dgc);

DataGrid.addColumnAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.addColumnAt(index, name)

myDataGrid.addColumnAt(index, dataGridColumn)

Parameters

index The index position at which the DataGridColumn object is added. The first
position is 0.

name A string that indicates the name of the DataGridColumn object.

dataGridColumn An instance of the DataGridColumn class.

Returns

A reference to the DataGridColumn object that was added, or returns the string that indicates
the name of the new column.
DataGrid.addColumnAt() 269

Description

Method; adds a new column at the specified position. Columns are shifted to the right and
their indexes are incremented. For more information, see “DataGridColumn class (Flash
Professional only)” on page 300.

Example

This example shows two ways to use addColumnAt() and sets the column widths. With a
DataGrid instance named my_dg on the Stage, paste the following code in the first frame of
the main timeline (notice that it imports the DataGridColumn class first):
import mx.controls.gridclasses.DataGridColumn;

var my_dg:mx.controls.DataGrid;
my_dg.setSize(320, 240);

// Add columns to grid.
my_dg.addColumnAt(0, "Orange");
var orange_dgc:DataGridColumn = my_dg.getColumnAt(0);
orange_dgc.width = 125;

var blue_dgc:DataGridColumn = new DataGridColumn("Blue");
blue_dgc.width = 75;
my_dg.addColumnAt(1, blue_dgc);

DataGrid.addItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.addItem(item)

Parameters

item An instance of an object to be added to the grid.

Returns

A reference to the instance that was added.
270 DataGrid component (Flash Professional only)

Description

Method; adds an item to the end of the grid (after the last item index).

Example

This example creates one column with the heading “name” and then inserts the item_obj
value for “name”. Notice that the “age” value is ignored, because only the name column has
been defined. If you don’t specify a column (remove the addColumn line), DataGrid
automatically creates the appropriate columns. With a DataGrid instance named my_dg on
the Stage, paste the following code in the first frame of the main timeline:
// Add columns to grid and add data.
my_dg.addColumn("name");

var item_obj:Object = {name:"Jim", age:30};
my_dg.addItem(item_obj);

DataGrid.addItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.addItemAt(index, item)

Parameters

index The index position (among the child nodes) at which the node should be added. The
first position is 0.

item A string that displays the node.

Returns

A reference to the object instance that was added.

Description

Method; adds an item to the grid at the position specified.

N
O

T
E

This differs from the List.addItem() method in that an object is passed rather than a
string.
DataGrid.addItemAt() 271

Example

This example creates one column with the heading “name”, populates the column from an
array, and then adds the name “Chase” in the first row. Notice that the “age” value is ignored,
because only the name column has been defined. If you don’t specify a column (remove the
addColumn line), DataGrid automatically creates the appropriate columns. With a DataGrid
instance named my_dg on the Stage, paste the following code in the first frame of the main
timeline:
var my_dg:mx.controls.DataGrid;

// Add columns to grid and add data.
my_dg.addColumn("name");

var myDP_array:Array = new Array({name:"John", age:33}, {name:"Jose",
age:41});

my_dg.dataProvider = myDP_array;

var item_obj:Object = {name:"Chase", age:30};
my_dg.addItemAt(0, item_obj);

DataGrid.cellEdit
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.cellEdit = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("cellEdit", listenerObject)

Description

Event; broadcast to all registered listeners when cell value changes.

Version 2 Macromedia Component Architecture components use a dispatcher/listener event
model. The DataGrid component dispatches a cellEdit event when the value of a cell has
changed, and the event is handled by a function (also called a handler) that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.
272 DataGrid component (Flash Professional only)

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.cellEdit event’s
event object has four additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

oldValue The previous value of the cell.

type The string "cellEdit".

For more information, see “EventDispatcher class” on page 499.

Example

In the following example, a handler called myDataGridListener is defined and passed to
myDataGrid.addEventListener() as the second parameter. The event object is captured by
the cellEdit handler in the eventObject parameter. When the cellEdit event is broadcast
(after you alter a “score” value and press Enter), a trace statement is sent to the Output panel.
With a DataGrid instance named my_dg on the Stage, paste the following code in the first
frame of the main timeline:
my_dg.setSize(320, 240);
my_dg.editable = true;

// Add columns and make the first one not editable.
my_dg.addColumn("name");
my_dg.getColumnAt(0).editable = false;
my_dg.addColumn("score");

var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});

// Set data source of DataGrid.
my_dg.dataProvider = myDP_array;

// Create listener object.
var myListener_obj:Object = new Object();
myListener_obj.cellEdit = function(evt_obj:Object) {
 // Retrieve location of cell that was changed.
 var cell_obj:Object = "("+evt_obj.columnIndex+", "+evt_obj.itemIndex+")";
 // Retrieve cell value that was changed.
 var value_obj:Object = evt_obj.target.selectedItem.score;
 trace("The value of the cell at "+cell_obj+" has changed to "+value_obj);
};

// Add listener object.
my_dg.addEventListener("cellEdit", myListener_obj);
DataGrid.cellEdit 273

DataGrid.cellFocusIn
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.cellFocusIn = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("cellFocusIn", listenerObject)

Description

Event; broadcast to all registered listeners when a particular cell receives focus. This event is
broadcast after any previously edited cell’s editCell and cellFocusOut events are broadcast.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a cellFocusIn event, the event is handled by a function (also called a handler) that
is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.cellFocusIn event’s
event object has three additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

type The string "cellFocusIn".

For more information, see “EventDispatcher class” on page 499.
274 DataGrid component (Flash Professional only)

Example

In the following example, a handler called dgListener is defined and passed to
my_dg.addEventListener() as the second parameter. When the cellFocusIn event is
broadcast, a trace statement is sent to the Output panel. With a DataGrid instance named
my_dg on the Stage, paste the following code in the first frame of the main timeline:
// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});

my_dg.dataProvider = myDP_array;

// Make DataGrid editable.
my_dg.editable = true;

// Create listener object.
var dgListener:Object = new Object();
dgListener.cellFocusIn = function(evt_obj:Object) {
 var cell_str:String = "(" + evt_obj.columnIndex + ", " +

evt_obj.itemIndex + ")";
 trace("The cell at " + cell_str + " has gained focus");
};

// Add listener.
my_dg.addEventListener("cellFocusIn", dgListener);

DataGrid.cellFocusOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

N
O

T
E

The grid must be editable for this code to work, and the event is broadcast only for
editable cells. So if you have two columns and only one of them is editable (for example,
"score"), then clicking in a row in the "name" column would not trigger this event.
DataGrid.cellFocusOut 275

Usage
listenerObject = new Object();
listenerObject.cellFocusOut = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("cellFocusOut", listenerObject)

Description

Event; broadcast to all registered listeners whenever a user moves off a cell that has focus. You
can use the event object properties to isolate the cell that was left. This event is broadcast after
the cellEdit event and before any subsequent cellFocusIn events are broadcast by the
next cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a cellFocusOut event, the event is handled by a function (also called a handler)
that is attached to a listener object that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.cellFocusOut
event’s event object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position
is 0.

itemIndex A number that indicates the index of the target row. The first position is 0.

type The string "cellFocusOut".

For more information, see “EventDispatcher class” on page 499.

Example

In the following example, a handler called dgListener is defined and passed to
my_dg.addEventListener() as the second parameter. When the cellFocusOut event is
broadcast, a trace statement is sent to the Output panel. With a DataGrid instance named
my_dg on the Stage, paste the following code in the first frame of the main timeline:
// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});

my_dg.dataProvider = myDP_array;

// Make DataGrid editable.
my_dg.editable = true;
276 DataGrid component (Flash Professional only)

// Create listener object.
var dgListener:Object = new Object();
dgListener.cellFocusOut = function(evt_obj:Object) {
 var cell_str:String = "(" + evt_obj.columnIndex + ", " +

evt_obj.itemIndex + ")";
 trace("The cell at " + cell_str + " has lost focus");
};

// Add listener.
my_dg.addEventListener("cellFocusOut", dgListener);

DataGrid.cellPress
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.cellPress = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("cellPress", listenerObject)

Description

Event; broadcast to all registered listeners when a user presses the mouse button on a cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
broadcasts a cellPress event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

N
O

T
E

The grid must be editable for this code to work, and the event is broadcast only for
editable cells. If you have two columns and only one of them is editable (for example,
"score"), clicking out of a row in the "name" column does not trigger this event.
DataGrid.cellPress 277

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.cellPress event’s
event object has three additional properties:

columnIndex A number that indicates the index of the column that was pressed. The first
position is 0.

itemIndex A number that indicates the index of the row that was pressed. The first
position is 0.

type The string "cellPress".

For more information, see “EventDispatcher class” on page 499.

Example

In the following example, a handler called dgListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellPress handler in the evt_obj parameter. When the cellPress event is broadcast, a
trace statement is sent to the Output panel. With a DataGrid instance named my_dg on the
Stage, paste the following code in the first frame of the main timeline:
// Set up sample data.
my_dg.dataProvider = [{name:"Clark", score:3135}, {name:"Bruce",

score:403}, {name:"Peter", score:25}];

// Create listener object.
var dgListener:Object = new Object();
dgListener.cellPress = function(evt_obj:Object) {
 var cell_str:String = "("+evt_obj.columnIndex+", "+evt_obj.itemIndex+")";
 trace("The cell at "+cell_str+" has been clicked");
};

// Add listener.
my_dg.addEventListener("cellPress", dgListener);

DataGrid.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
278 DataGrid component (Flash Professional only)

Usage
listenerObject = new Object();
listenerObject.change = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when an item has been selected.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a change event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.change event’s event
object has one additional property, type, whose value is "change". For more information, see
“EventDispatcher class” on page 499.

Example

In the following example, a handler called dgListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
change handler in the evt_obj parameter. When the change event is broadcast, a trace
statement is sent to the Output panel. With a DataGrid instance named my_dg on the Stage,
paste the following code in the first frame of the main timeline:
// Set up sample data.
my_dg.dataProvider = [{name:"Clark", score:3135}, {name:"Bruce",

score:403}, {name:"Peter", score:25}];

// Create listener object.
var dgListener:Object = new Object();
dgListener.change = function(evt_obj:Object) {
 trace("The selection has changed to " + evt_obj.target.selectedIndex);
};

// Add listener.
my_dg.addEventListener("change", dgListener);
DataGrid.change 279

DataGrid.columnCount
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.columnCount

Description

Property (read-only); the number of columns displayed.

Example

The following example displays the total number of columns in the Output panel. With a
DataGrid instance named my_dg on the Stage, paste the following code in the first frame of
the main timeline:
// Add columns to grid and add data.
my_dg.addColumn("a");
my_dg.addColumn("b");

my_dg.addItem({a:"one", b:"two"});

// Get number of columns in grid.
var colCount_num:Number = my_dg.columnCount;
trace("Number of columns: "+colCount_num);

DataGrid.columnNames
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.columnNames

Description

Property; an array of field names within each item that are displayed as columns.
280 DataGrid component (Flash Professional only)

Example

The following example displays the column name in the Output panel when the title is
clicked. With a DataGrid instance named my_dg on the Stage, paste the following code in the
first frame of the main timeline:
my_dg.setSize(200, 100);
my_dg.columnNames = ["Name", "Description", "Price"];

var dgListener:Object = new Object();
dgListener.headerRelease = function (evt_obj:Object) {
 trace("You clicked on the \"" + my_dg.columnNames[evt_obj.columnIndex] +

"\" column.");
}
my_dg.addEventListener("headerRelease", dgListener);

DataGrid.columnStretch
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.columnStretch = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("columnStretch", listenerObject)

Description

Event; broadcast to all registered listeners when a user resizes a column horizontally.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a columnStretch event, the event is handled by a function (also called a handler)
that is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.
DataGrid.columnStretch 281

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.columnStretch
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column. The first position
is 0.

type The string "columnStretch".

For more information, see “EventDispatcher class” on page 499.

Example

The following example displays the column index number in the Output panel when the title
is resized. With a DataGrid instance named my_dg on the Stage, paste the following code in
the first frame of the main timeline:
my_dg.setSize(240, 100);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({id:0, name:"Clark", score:3135});
myDP_array.push({id:1, name:"Bruce", score:403});
myDP_array.push({id:2, name:"Peter", score:25});

my_dg.dataProvider = myDP_array;

// Create listener object.
var dgListener:Object = new Object();
dgListener.columnStretch = function(evt_obj:Object) {
 trace("column " + evt_obj.columnIndex + " was resized");
};

// Add listener.
my_dg.addEventListener("columnStretch", dgListener);

DataGrid.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.dataProvider
282 DataGrid component (Flash Professional only)

Description

Property; the data model for items viewed in a DataGrid component.

The data grid adds methods to the prototype of the Array class so that each Array object
conforms to the DataProvider API (see DataProvider.as in the Classes/mx/controls/listclasses
folder). Any array that is in the same frame or screen as a data grid automatically has all the
methods (addItem(), getItemAt(), and so on) needed for it to be the data model of a data
grid, and can be used to broadcast data model changes to multiple components.

In a DataGrid component, you specify fields for display in the DataGrid.columnNames
property. If you don’t define the column set (by setting the DataGrid.columnNames property
or by calling DataGrid.addColumn()) for the data grid before the DataGrid.dataProvider
property has been set, the data grid generates columns for each field in the data provider’s first
item, once that item arrives.

Any object that implements the DataProvider API can be used as a data provider for a data
grid (including Flash Remoting recordsets, data sets, and arrays). For example, see
“DataSet.dataProvider” on page 353.

Use a grid’s data provider to communicate with the data in the grid because the data provider
remains consistent, regardless of scroll position.

Example

The following example creates an array to be used as a data provider and assigns it directly to
the dataProvider property:
my_dg.dataProvider = [{name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"cheap"}];

The following example creates a new Array object that is decorated with the DataProvider
API. It uses a for loop to add 20 items to the grid:
var myDP:Array = new Array();
for (var i=0; i<20; i++)
 myDP.addItem({id:i, name:"Dave", price:"Priceless"});
my_dg.dataProvider = myDP

DataGrid.editable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
DataGrid.editable 283

Usage
myDataGrid.editable

Description

Property; determines whether the data grid can be edited by a user (true) or not (false).
This property must be true in order for individual columns to be editable and for any cell to
receive focus. The default value is false.

If you want individual columns to be uneditable, use the DataGridColumn.editable
property.

Example

The following example allows users to edit all the columns of the grid except the first column.
With a DataGrid instance named my_dg on the Stage, paste the following code in the first
frame of the main timeline:
my_dg.setSize(140, 100);

// Add columns to grid and add data.
my_dg.addColumn("a");
my_dg.addColumn("b");
my_dg.addItem({a:"one", b:1});
my_dg.addItem({a:"two", b:2});

// Make DataGrid editable.
my_dg.editable = true;
// Make the first column read-only.
my_dg.getColumnAt(0).editable = false;

See also

DataGridColumn.editable

C
A

U
T

IO
N

The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component
to the DataSet component and bind the DataSet component to the
WebServiceConnector component or XMLConnector component if you want the grid to
be editable or sortable. For more information, see Chapter 16, “Data Integration (Flash
Professional Only),” in Using Flash.
284 DataGrid component (Flash Professional only)

DataGrid.editField()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.editField(index, colName, data)

Parameters

index The index of the target cell. This number is zero-based.

colName A string indicating the name of the column (field) that contains the target cell.

data The value to be stored in the target cell. This parameter can be of any data type.

Returns

The data that was in the cell.

Description

Method; replaces the cell data at the specified location and refreshes the data grid with the
new value. Any cell present for that value has its setValue() method triggered.

Example

The following example places a value in the grid in the first row of the first column (index
value 0) when the button is clicked. With a DataGrid instance named my_dg nd a Button
instance named my_btn on the Stage, paste the following code in the first frame of the main
timeline:
my_dg.setSize(140, 100);

// Set up sample data.
my_dg.dataProvider = [{name:"Clark", score:3135}, {name:"Bruce",

score:403}, {name:"Peter", score:25}];

// Create listener object.
var btnListener:Object = new Object();
btnListener.click = function() {
 //Replace first field with new values.
 my_dg.editField(0, "name", "Arthur");
};

// Add button listener.
my_btn.addEventListener("click", btnListener);
DataGrid.editField() 285

DataGrid.focusedCell
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.focusedCell

Description

Property; in editable mode only, an object instance that defines the cell that has focus. The
object must have the fields columnIndex and itemIndex, which are both integers that
indicate the index of the column and item of the cell. The origin is (0,0). The default value is
undefined.

Example

The following example sets the focused cell to the second column, eleventh row (numbered
“10” because the first row is “0”). Because you can’t access the cells until the DataGrid has
finished drawing, use UIObject.doLater() to delay using the focusedCell property:
// Create a data provider with three columns and 50 rows.
var myDP:Array = new Array();
for (var i=0; i<50; i++)
 myDP.addItem({id:i, name:"Dave", price:"Priceless"});

// Assign the data provider to the DataGrid instance and set it to be
editable.

my_dg.dataProvider = myDP;
my_dg.editable = true;

// Use UIObject.doLater() in the current timeline to call the function after
the data grid has set all of its properties.

my_dg.doLater(this, "select");

function select() {
 my_dg.focusedCell = {columnIndex:1, itemIndex:10};
}

286 DataGrid component (Flash Professional only)

DataGrid.getColumnAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index)

Parameters

index The index of the DataGridColumn object to be returned. This number is zero-based.

Returns

A DataGridColumn object.

Description

Method; gets a reference to the DataGridColumn object at the specified index.

Example

The following example gets the DataGridColumn object at index 0 and changes the text.
With a DataGrid instance named my_dg and a Button instance named my_btn on the Stage,
paste the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);

// Set up sample data.
my_dg.dataProvider = [{name:"Clark", score:3135}, {name:"Bruce",

score:403}, {name:"Peter", score:25}];

// Create listener object.
var btnListener:Object = new Object();
btnListener.click = function() {

// Get column at location 0.
var a_dgc = my_dg.getColumnAt(0);
// Change header text.
a_dgc.headerText = "c";

};

// Add button listener.
my_btn.addEventListener("click", btnListener);
DataGrid.getColumnAt() 287

DataGrid.getColumnIndex()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnIndex(columnName)

Parameters

columnName A string that is the name of a column.

Returns

A number that specifies the index of the column.

Description

Method; returns the index of the column specified by the columnName parameter.

Example

The following example displays the index number of the “score” column. With a DataGrid
instance named my_dg on the Stage, paste the following code in the first frame of the main
timeline:
my_dg.setSize(150, 100);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});

my_dg.dataProvider = myDP_array;

var column_num:Number = my_dg.getColumnIndex("score");
trace("Column that has name of 'score': " + column_num);
288 DataGrid component (Flash Professional only)

DataGrid.headerHeight
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.headerHeight

Description

Property; the height of the header bar of the data grid, in pixels. The default value is 20.

Example

The following example sets the height of the header bar to 40. With a DataGrid instance
named my_dg on the Stage, paste the following code in the first frame of the main timeline:
// Set grid attributes.
my_dg.setSize(240, 100);
my_dg.spaceColumnsEqually();

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

my_dg.headerHeight = 40;

DataGrid.headerRelease
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
DataGrid.headerRelease 289

Usage
listenerObject = new Object();
listenerObject.headerRelease = function(eventObject){

// Insert your code here.
}
myDataGridInstance.addEventListener("headerRelease", listenerObject)

Description

Event; broadcast to all registered listeners when a column header has been released. You can
use this event with the DataGridColumn.sortOnHeaderRelease property to prevent
automatic sorting and to let you sort as you like.

Version 2 components use a dispatcher/listener event model. When the DataGrid component
dispatches a headerRelease event, the event is handled by a function (also called a handler)
that is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The DataGrid.headerRelease
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column.

type The string "headerRelease".

For more information, see “EventDispatcher class” on page 499.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
headerRelease handler in the eventObject parameter. When the headerRelease event is
broadcast, a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.headerRelease = function(event) {
 trace("column " + event.columnIndex + " header was pressed");
};
grid.addEventListener("headerRelease", myListener);
290 DataGrid component (Flash Professional only)

In the following example, you change the sort direction using a column. With a DataGrid
instance named my_dg on the Stage, paste the following code in the first frame of the
main timeline:
var my_dg:mx.controls.DataGrid;
my_dg.setSize(150, 100);
my_dg.spaceColumnsEqually();
var myListener:Object = new Object();
myListener.headerRelease = function(evt:Object) {

trace("column "+evt.columnIndex+" header was pressed");
trace("\t current sort order is: "+evt.target.sortDirection);
trace("");

};
my_dg.addEventListener("headerRelease", myListener);

my_dg.addColumn("a");
my_dg.addColumn("b");
my_dg.addItem({a:'one', b:1});
my_dg.addItem({a:'two', b:2});

By accessing the sortDirection property, you can tell whether the sort order is ascending or
descending. The sortDirection property is a string, so it traces as either ASC or DESC.

DataGrid.hScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.hScrollPolicy

Description

Property; specifies whether the data grid has a horizontal scroll bar. This property can have the
value "on", "off", or "auto". The default value is "off".

If hScrollPolicy is set to "off", columns scale proportionally to accommodate the
finite width.

N
O

T
E

This differs from the List component, which cannot have hScrollPolicy set to "auto".
DataGrid.hScrollPolicy 291

Example

The following example sets horizontal scroll policy to automatic, which means that the
horizontal scroll bar appears if it’s necessary to display all the content:
my_dg.setSize(150, 100);

// Add columns to grid and add data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});

my_dg.dataProvider = myDP_array;

my_dg.hScrollPolicy = "on";

DataGrid.removeAllColumns()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.removeAllColumns()

Parameters

None.

Returns

Nothing.

Description

Method; removes all DataGridColumn objects from the data grid. Calling this method has no
effect on the data provider.

Call this method if you are setting a new data provider that has different fields from the
previous data provider, and you want to clear the fields that are displayed.
292 DataGrid component (Flash Professional only)

Example

The following example removes all DataGridColumn objects from the DataGrid when the
button is clicked. With a DataGrid instance named my_dg and a Button instance named
clear_button on the Stage, paste the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);
my_dg.move(10, 40);

this.createClassObject(mx.controls.Button, "clear_button", 20,
{label:"Clear"});

clear_button.move(10, 10);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

var buttonListener:Object = new Object();
buttonListener.click = function (evt_obj:Object) {
 my_dg.removeAllColumns();
}
clear_button.addEventListener("click", buttonListener);

DataGrid.removeColumnAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.removeColumnAt(index)

Parameters

index The index of the column to remove.

Returns

A reference to the DataGridColumn object that was removed.

Description

Method; removes the DataGridColumn object at the specified index.
DataGrid.removeColumnAt() 293

Example

The following example removes the first DataGridColumn object when the button is clicked.
With a DataGrid instance named my_dg and a Button instance named name_button on the
Stage, paste the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);
my_dg.move(10, 40);

name_button.setSize(140, name_button.height);
name_button.move(10, 10);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

// Create listener object.
var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 my_dg.removeColumnAt(my_dg.getColumnIndex("name"));
 evt_obj.target.enabled = false;
};
// Add button listener.
name_button.addEventListener("click", buttonListener);

DataGrid.replaceItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.replaceItemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object that is the item value to use as a replacement.

Returns

The previous value.
294 DataGrid component (Flash Professional only)

Description

Method; replaces the item at a specified index and refreshes the display of the grid.

Example

The following example replaces the item at row index 2 with new entries. With a DataGrid
instance named my_dg and a Button instance named replace_button on the Stage, paste
the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);
my_dg.move(10, 40);

replace_button.move(10, 10);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

// Create listener object.
var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 //Replace previous value
 var prevValue_obj:Object = my_dg.replaceItemAt(2, {name:"Frank",

score:949});
 my_dg.selectedIndex = 2;
};
// Add button listener.
replace_button.addEventListener("click", buttonListener);

DataGrid.resizableColumns
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.resizableColumns
DataGrid.resizableColumns 295

Description

Property; a Boolean value that determines whether the columns of the grid can be stretched
by the user (true) or not (false). This property must be true for individual columns to be
resizable by the user. The default value is true.

Example

The following example prevents users from resizing columns. With a DataGrid instance
named my_dg on the Stage, paste the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

// Don't allow columns to be resizable.
my_dg.resizableColumns = false;

DataGrid.selectable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.selectable

Description

Property; a Boolean value that determines whether a user can select the data grid (true) or
not (false). The default value is true. If false, an item in the grid does not remain selected
when the user clicks the item and moves the pointer.
296 DataGrid component (Flash Professional only)

Example

The following example prevents the grid from being selected. With a DataGrid instance
named my_dg on the Stage, paste the following code in the first frame of the main timeline:
my_dg.setSize(140, 100);

// Set up sample data.
var myDP_array:Array = new Array();
myDP_array.push({name:"Clark", score:3135});
myDP_array.push({name:"Bruce", score:403});
myDP_array.push({name:"Peter", score:25});
my_dg.dataProvider = myDP_array;

my_dg.selectable = false;

DataGrid.showHeaders
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.showHeaders

Description

Property; a Boolean value that indicates whether the data grid displays the column headers
(true) or not (false). Column headers are shaded to differentiate them from the other rows
in a grid. Users can click column headers to sort the contents of the column if
DataGrid.sortableColumns is set to true. The default value of showHeaders is true.

Example

The following example hides the column headers:
my_dg.setSize(140, 100);

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don't show headers.
my_dg.showHeaders = false;
DataGrid.showHeaders 297

See also

DataGrid.sortableColumns

DataGrid.sortableColumns
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.sortableColumns

Description

Property; a Boolean value that determines whether the columns of the data grid can be sorted
(true) or not (false) when a user clicks the column headers. This property must be true for
individual columns to be sortable, and for the headerRelease event to be broadcast. The
default value is true.

Example

The following example turns off sorting:
my_dg.setSize(140, 100);

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don't allow columns to be sorted.
my_dg.sortableColumns = false;

See also

DataGrid.headerRelease

C
A

U
T

IO
N

The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component
to the DataSet component and bind the DataSet component to the
WebServiceConnector component or XMLConnector component if you want the grid to
be editable or sortable. For more information, see Chapter 16, “Data Integration (Flash
Professional Only),” in Using Flash.
298 DataGrid component (Flash Professional only)

DataGrid.spaceColumnsEqually()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.spaceColumnsEqually()

Parameters

None.

Returns

Nothing.

Description

Method; respaces the columns equally.

Example

The following example respaces the columns of my_dg when the button is clicked. With a
DataGrid instance named my_dg and a Button instance named resize_button on the
Stage, paste the following code in the first frame of the main timeline:
my_dg.move(10, 40);
my_dg.setSize(200, 100);

resize_button.move(10, 10);
resize_button.setSize(200, resize_button.height);

my_dg.addColumn("guitar");
my_dg.addColumn("name");

// Set up sample data.
my_dg.addItem({guitar:"Flying V", name:"maggot"});
my_dg.addItem({guitar:"SG", name:"dreschie"});
my_dg.addItem({guitar:"jagstang", name:"vitapup"});

// Create listener object.
var buttonListener:Object = new Object();
buttonListener.click = function() {
 my_dg.spaceColumnsEqually();
};
// Add button listener.
resize_button.addEventListener("click", buttonListener);
DataGrid.spaceColumnsEqually() 299

DataGridColumn class (Flash
Professional only)
ActionScript Class Name mx.controls.gridclasses.DataGridColumn

You can create and configure DataGridColumn objects to use as columns of a data grid. Many
of the methods of the DataGrid class are dedicated to managing DataGridColumn objects.
DataGridColumn objects are stored in an zero-based array in the data grid; 0 is the leftmost
column. After columns have been added or created, you can access them by calling
DataGrid.getColumnAt(index).

There are three ways to add or create columns in a grid. If you want to configure your
columns, it is best to use either the second or third way before you add data to a data grid so
you don’t have to create columns twice.

■ Add a data provider or an item with multiple fields to a grid that has no configured
DataGridColumn objects. This approach automatically generates columns for every field
in the reverse order of the for..in loop. For example, for a DataGrid instance named
my_dg:
my_dg.dataProvider = [{guitar:"Flying V", name:"maggot"}, {guitar:"SG",

name:"dreschie"}, {guitar:"jagstang", name:"vitapup"}];
■ Use DataGrid.columnNames to create the field names of the desired item fields and

generate DataGridColumn objects, in order, for each field listed. This approach lets you
select and order columns quickly with a minimal amount of configuration. This approach
removes any previous column information. For example, for a DataGrid instance named
my_dg:
my_dg.columnNames = ["guitar","name"];

■ Prebuild the DataGridColumn objects and add them to the data grid by using
DataGrid.addColumn(). This approach is useful, and the most flexible, because it lets
you add columns with proper sizing and formatting before the columns ever reach the grid
(which reduces processor demand). For more information, see “Constructor for the
DataGridColumn class” on page 302. For example, for a DataGrid instance named
my_dg:
// Create column object.
var location_dgc:DataGridColumn = new DataGridColumn("Location");
location_dgc.width = 100;
// Add column to DataGrid.
my_dg.addColumn(location_dgc);
300 DataGrid component (Flash Professional only)

Property summary for the DataGridColumn class
The following table lists the properties of the DataGridColumn class.

Property Description

DataGridColumn.cellRenderer The linkage identifier of a symbol to be used to display
the cells in this column.

DataGridColumn.columnName Read-only; the name of the field associated with
the column.

DataGridColumn.editable A Boolean value that indicates whether a column is
editable (true) or not (false).

DataGridColumn.headerRenderer The name of a class to be used to display the header of
this column.

DataGridColumn.headerText The text for the header of this column.

DataGridColumn.labelFunction A function that determines which field of an item to
display.

DataGridColumn.resizable A Boolean value that indicates whether a column is
resizable (true) or not (false).

DataGridColumn.sortable A Boolean value that indicates whether a column is
sortable (true) or not (false).

DataGridColumn.sortOnHeaderRelease A Boolean value that indicates whether a column is
sorted (true) or not (false) when a user clicks a
column header.

DataGridColumn.width The width of a column, in pixels.
DataGridColumn class (Flash Professional only) 301

Constructor for the DataGridColumn
class
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
new DataGridColumn(name)

Parameters

name A string that indicates the name of the DataGridColumn object. This parameter is the
field of each item to display.

Returns

Nothing.

Description

Constructor; creates a DataGridColumn object. Use this constructor to create columns to add
to a DataGrid component. After you create the DataGridColumn objects, you can add them
to a data grid by calling DataGrid.addColumn().

 Example

The following example creates a DataGridColumn object called Location:
import mx.controls.gridclasses.DataGridColumn;
var column = new DataGridColumn("Location");
302 DataGrid component (Flash Professional only)

DataGridColumn.cellRenderer
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).cellRenderer

Description

Property; a linkage identifier for a symbol to be used to display cells in this column. Any class
used for this property must implement the CellRenderer API (see “CellRenderer API”
on page 109.) The default value is undefined.

Example

The following example uses a linkage identifier to set a new cell renderer:
myGrid.getColumnAt(3).cellRenderer = "MyCellRenderer";

DataGridColumn.columnName
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).columnName

Description

Property (read-only); the name of the field associated with this column. The default value is
the name called in the DataGridColumn constructor.
DataGridColumn.columnName 303

Example

The following example displays the name of the column as index position 1:
import mx.controls.gridclasses.DataGridColumn;
// Set grid attributes.
my_dg.setSize(150, 100);

// Add columns to grid.
var name_dgc:DataGridColumn = my_dg.addColumn(new DataGridColumn("name"));
name_dgc.headerText = "Name:";
var score_dgc:DataGridColumn = my_dg.addColumn(new

DataGridColumn("score"));
score_dgc.headerText = "Score:";

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Get column name.
var name_str:String = my_dg.getColumnAt(1).columnName;
trace(name_str);

See also

Constructor for the DataGridColumn class

DataGridColumn.editable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).editable
304 DataGrid component (Flash Professional only)

Description

Property; determines whether the column can be edited by a user (true) or not (false). The
DataGrid.editable property must be true in order for individual columns to be editable,
even when DataGridColumn.editable is set to true. The default value is true.

Example

The following example prevents items in the first column in a grid from being edited:
// Set grid attributes.
my_dg.setSize(150, 100);
my_dg.editable = true;

// Add columns to grid.
my_dg.addColumn("name");
my_dg.addColumn("score");

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don't allow first column to be editable.
my_dg.getColumnAt(0).editable = false;

See also

DataGrid.editable
C

A
U

T
IO

N

The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component
to the DataSet component and bind the DataSet component to the
WebServiceConnector component or XMLConnector component if you want the grid to
be editable or sortable. For more information, see Chapter 16, “Data Integration (Flash
Professional Only),” in Using Flash.
DataGridColumn.editable 305

DataGridColumn.headerRenderer
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).headerRenderer

Description

Property; a string that indicates a class name to be used to display the header of this column.
Any class used for this property must implement the CellRenderer API (see “CellRenderer
API” on page 109). The default value is undefined.

Example

The following example uses a linkage identifier to set a new header renderer:
myGrid.getColumnAt(3).headerRenderer = "MyHeaderRenderer";

DataGridColumn.headerText
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).headerText

Description

Property; the text in the column header. The default value is the column name.

This property allows you to display something other than the field name as the header.
306 DataGrid component (Flash Professional only)

Example

The following example sets the column header text to “Price (USD)”:
import mx.controls.gridclasses.DataGridColumn;

var my_dg:mx.controls.DataGrid;

var price_dgc:DataGridColumn = new DataGridColumn("price");
price_dgc.headerText = "Price (USD)";
price_dgc.width = 80;
my_dg.addColumn(price_dgc);

my_dg.addItem({price:"$14.99"});

DataGridColumn.labelFunction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).labelFunction

Description

Property; specifies a function to determine which field (or field combination) of each item to
display. This function receives one parameter, item, which is the item being rendered, and
must return a string representing the text to display. This property can be used to create
virtual columns that have no equivalent field in the item.

N
O

T
E

The specified function operates in a nondefined scope.
DataGridColumn.labelFunction 307

Example

The following example calculates a value for the “Subtotal” column:
import mx.controls.gridclasses.DataGridColumn;

var my_dg:mx.controls.DataGrid;
my_dg.setSize(300, 200);

// Set up columns.
var guitar_dgc:DataGridColumn = new DataGridColumn("guitar");
var value_dgc:DataGridColumn = new DataGridColumn("value");
var tax_dgc:DataGridColumn = new DataGridColumn("tax");
var st_dgc:DataGridColumn = new DataGridColumn("Subtotal");
//Define labelFunction for Subtotal column.
st_dgc.labelFunction = function(item:Object):String {
 if ((item.value != undefined) && (item.tax != undefined)) {
 return "$"+(item.value+item.tax);
 }
};

// Add columns to grid.
my_dg.addColumn(guitar_dgc);
my_dg.addColumn(value_dgc);
my_dg.addColumn(tax_dgc);
my_dg.addColumn(st_dgc);

// Set data model.
my_dg.addItem({guitar:"Flying V", value:10, tax:1});
my_dg.addItem({guitar:"SG", value:20, tax:2});
my_dg.addItem({guitar:"jagstang", value:30, tax:3});

DataGridColumn.resizable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).resizable

Description

Property; a Boolean value that indicates whether a column can be resized by a user (true) or
not (false). The DataGrid.resizableColumns property must be set to true for this
property to take effect. The default value is true.
308 DataGrid component (Flash Professional only)

Example

The following example prevents the column at index 0 from being resized:
// Set grid attributes.
my_dg.setSize(150, 100);
my_dg.addColumn("name");
my_dg.addColumn("score");

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don't allow resize of the first column
my_dg.getColumnAt(0).resizable = false;

DataGridColumn.sortable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortable

Description

Property; a Boolean value that indicates whether a column can be sorted by a user (true) or
not (false). The DataGrid.sortableColumns property must be set to true for this
property to take effect. The default value is true.

C
A

U
T

IO
N

The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component
to the DataSet component and bind the DataSet component to the
WebServiceConnector component or XMLConnector component if you want the grid to
be editable or sortable. For more information, see Chapter 16, “Data Integration (Flash
Professional Only),” in Using Flash.
DataGridColumn.sortable 309

Example

The following example prevents the column at index 1 from being sorted:
// Set grid attributes.
my_dg.setSize(150, 100);

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don't allow sort of the second column.
my_dg.getColumnAt(1).sortable = false;

DataGridColumn.sortOnHeaderRelease
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).sortOnHeaderRelease

Description

Property; a Boolean value that indicates whether the column is sorted automatically (true) or
not (false) when a user clicks a header. This property can be set to true only if
DataGridColumn.sortable is set to true. If DataGridColumn.sortOnHeaderRelease is set
to false, you can catch the headerRelease event and perform your own sort.

The default value is true.
C

A
U

T
IO

N

The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component
to the DataSet component and bind the DataSet component to the
WebServiceConnector component or XMLConnector component if you want the grid to
be editable or sortable. For more information, see Chapter 16, “Data Integration (Flash
Professional Only),” in Using Flash.
310 DataGrid component (Flash Professional only)

Example

The following example disables sorting of the second column:
// Set grid attributes.
my_dg.setSize(150, 100);

// Set up sample data.
my_dg.addItem({name:"Clark", score:3135});
my_dg.addItem({name:"Bruce", score:403});
my_dg.addItem({name:"Peter", score:25});

// Don’t allow sort of the second column by clicking the header.
my_dg.getColumnAt(1).sortOnHeaderRelease = false;

DataGridColumn.width
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).width

Description

Property; a number that indicates the width of the column, in pixels. The default value is 50.

Example

The following example makes the width of the first column 50 pixels:
// Create new DataProvider component.
var myDP_array:Array = new Array({name:"Chris", price:"Priceless"},

{name:"Nigel", price:"Cheap"});
//Assign DataProvider to DataGrid.
my_dg.dataProvider = myDP_array;

// Alter DataGrid dimensions.
my_dg.setSize(140, 100);
my_dg.rowHeight = 30;
my_dg.getColumnAt(0).width = 50;
DataGridColumn.width 311

312 DataGrid component (Flash Professional only)

11

CHAPTER 11

DataHolder component
(Flash Professional only)
The DataHolder component is a repository for data and a means of generating events when
that data has changed. Its main purpose is to hold data and act as a connector between other
components that use data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties by using the Schema tab in the Component inspector. For more information
on using the Schema tab, see “Working with schemas in the Schema tab (Flash Professional
only)” in Using Flash.

You can assign any type of data to a DataHolder property, either by creating a binding
between the data and another property, or by using your own ActionScript code. Whenever
the value of that data changes, the DataHolder component emits an event whose name is the
same as the property, and any bindings associated with that property are executed.

In most cases, you do not use this component to build an application. It is needed only when
you cannot bind external data directly to another component and you do not want to use a
DataSet component. The DataHolder component is useful when you can’t directly bind
components (such as connectors, user interface components, or DataSet components)
together. Below are some scenarios in which you might use a DataHolder component:

■ If a data value is generated by ActionScript, you might want to bind it to some other
components. In this case, you could have a DataHolder component that contains
properties that are bound as desired. Whenever new values are assigned to those properties
(by means of ActionScript, for example) those values are distributed to the data-bound
object.
313

■ You might have a data value that results from a complex indexed data binding, as shown in
the following diagram.

In this case it is convenient to bind the data value to a DataHolder component (called
DataModel in this illustration) and then use that for bindings to the user interface.

Creating an application with the
DataHolder component
(Flash Professional only)
In this example, you add an array property to a DataHolder component’s schema (an array)
whose value is determined by ActionScript code that you write. You then bind that array
property to the dataProvider property of a DataGrid component by using the Bindings tab
in the Component inspector.

To use the DataHolder component in a simple application:

1. In Flash, create a new file.

2. Open the Components panel, drag a DataHolder component to the Stage, and name it
dataHolder.

N
O

T
E

The DataHolder component is not meant to implement the same control over your
data as the DataSet component. It does not manage or track data, nor does it have
the ability to update data. It is a repository for holding data and generating events
when that data has changed.

Web Service Method
getMovies

DataModel
myDataModel

UI ListBox
movieList

Results

data.movieTitle

data.movieRating

data.movieTimes

UI TextField
title

UI TextField
rating

UI ListBox
times

Results[movieList.selectedIndex]
314 DataHolder component (Flash Professional only)

3. Drag a DataGrid component to the Stage and name it namesGrid.

4. Select the DataHolder component and open the Component inspector.

5. Click the Schema tab in the Component inspector.

6. Click the Add Component Property (+) button located in the top pane of the Schema tab.

7. In the bottom pane of the Schema tab, type namesArray in the Field Name field, and select
Array from the Data Type pop-up menu.

8. Click the Bindings tab in the Component inspector, and add a binding between the
namesArray property of the DataHolder component and the dataProvider property of
the DataGrid component.

For more information on creating bindings with the Bindings tab, see “Working with
bindings in the Bindings tab (Flash Professional only)” in Using Flash.

9. In the Timeline, select the first frame on Layer 1 and open the Actions panel.

10. Enter the following code in the Actions panel:
dataHolder.namesArray = [{name:"Tim"},{name:"Paul"},{name:"Jason"}];

This code populates the namesArray array with several objects. When this variable
assignment executes, the binding that you established previously between the DataHolder
component and the DataGrid component executes.

11. Test the file by selecting Control > Test Movie.

DataHolder class
Inheritance MovieClip > DataHolder

ActionScript class name mx.data.components.DataHolder

The DataHolder component is a repository for data and a means of generating events when
that data has changed. Its main purpose is to hold data and act as a connector between other
components that use data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties by using the Schema tab in the Component inspector.

Property summary for the DataHolder class
The following table lists the properties of the DataHolder class.

Property Description

DataHolder.data Default bindable property for the DataHolder component.
DataHolder class 315

DataHolder.data
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dataHolder.data

Description

Property; the default item in a DataHolder object’s schema. This property is not a
“permanent” member of the DataHolder component. Rather, it is the default bindable
property for each instance of the component. You can add your own bindable properties, or
delete the default data property, by using the Schema tab in the Component inspector.

For more information on using the Schema tab, see “Working with schemas in the Schema
tab (Flash Professional only)” in Using Flash.

Example

For a step-by-step example of using this component, see “Creating an application with the
DataHolder component (Flash Professional only)” on page 314.

The following code shows a simple example of how to populate the DataHolder component
with data that is a variable. To test the application, you enter a value into the text input field
and click the addDate_btn instance, which adds the value to the DataHolder component.
Click the dumpDataHolder_btn instance to trace the contents of the DataHolder component.
// Drag two Button components onto the Stage (addDate_btn and

dumpDataHolder_btn), a TextInput (myDate_txt) and a DataHolder
(myDataHolder). Add the following ActionScript to Frame 1:

var dhListener:Object = new Object();
dhListener.click = function() {

trace("dumping DataHolder");
trace(" " + myDataHolder.myDate);
trace("");

};
var dateListener:Object = new Object();
dateListener.click = function() {

myDataHolder.myDate = myDate_txt.text;
trace("added value");

};
this.dumpDataHolder_btn.addEventListener("click", dhListener);
this.addDate_btn.addEventListener("click", dateListener);
316 DataHolder component (Flash Professional only)

12

CHAPTER 12

DataProvider API
The DataProvider API is a set of methods and properties that a data source needs so that a list-
based class can communicate with it. Arrays, recordsets, and data sets implement this API.
You can create a DataProvider-compliant class by implementing all the methods and
properties described in this section. A list-based component could then use that class as a
data provider.

DataProvider class
ActionScript Class Name mx.controls.listclasses.DataProvider

The methods of the DataProvider class let you query and modify the data in any component
that displays data (also called a view). The DataProvider API also broadcasts change events
when the data changes. Multiple views can use the same data provider and receive the change
events.

A data provider is a linear collection (like an array) of items. Each item is an object composed
of many fields of data. You can access these items by index (as you can with an array), using
DataProvider.getItemAt().

Data providers are most commonly used with arrays. Data-aware components apply all the
methods of the DataProvider API to Array.prototype when an Array object is in the same
frame or screen as a data-aware component. This lets you use any existing array as the data for
views that have a dataProvider property.

Because of the DataProvider API, the version 2 Macromedia Component Architecture
components that provide views for data (DataGrid, List, Tree, and so on) can also display
Flash Remoting RecordSet objects and data from the DataSet component. The DataProvider
API is the language with which data-aware components communicate with their data
providers.

In the Macromedia Flash documentation, “DataProvider” is the name of the class,
dataProvider is a property of each component that acts as a view for data, and “data
provider” is the generic term for a data source.
317

Method summary for the DataProvider API
The following table lists the methods of the DataProvider API.

Property summary for the DataProvider API
The following table lists the properties of the DataProvider API.

Event summary for the DataProvider API
The following table lists the events of the DataProvider API.

Method Description

DataProvider.addItem() Adds an item at the end of the data provider.

DataProvider.addItemAt() Adds an item to the data provider at the specified position.

DataProvider.editField() Changes one field of the data provider.

DataProvider.getEditingData() Gets the data for editing from a data provider.

DataProvider.getItemAt() Gets a reference to the item at a specified position.

DataProvider.getItemID() Returns the unique ID of the item.

DataProvider.removeAll() Removes all items from a data provider.

DataProvider.removeItemAt() Removes an item from a data provider at a specified
position.

DataProvider.replaceItemAt() Replaces the item at a specified position with another item.

DataProvider.sortItems() Sorts the items in the data provider according to a compare
function or sort options.

DataProvider.sortItemsBy() Sorts the items in the data provider alphabetically or
numerically, in the specified order, using the specified field
name.

Property Description

DataProvider.length The number of items in a data provider.

Event Description

DataProvider.modelChanged Broadcast when the data provider is changed.
318 DataProvider API

DataProvider.addItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.addItem(item)

Parameters

item An object that contains data. This constitutes an item in a data provider.

Returns

Nothing.

Description

Method; adds a new item at the end of the data provider. This method triggers the
modelChanged event with the event name addItems.

Example

The following example adds an item to the end of the data provider myDP:
myDP.addItem({label : "this is an Item"});

DataProvider.addItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.addItemAt(index, item)

Parameters

index A number greater than or equal to 0. This number indicates the position at which to
insert the item; it is the index of the new item.

item An object containing the data for the item.
DataProvider.addItemAt() 319

Returns

Nothing.

Description

Method; adds a new item to the data provider at the specified index. Indices greater than the
data provider’s length are ignored.

This method triggers the modelChanged event with the event name addItems.

Example

The following example adds an item to the data provider myDP at the fourth position:
myDP.addItemAt(3, {label : "this is the fourth Item"});

DataProvider.editField()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.editField(index, fieldName, newData)

Parameters

index A number greater than or equal to 0; the index of the item.

fieldName A string indicating the name of the field to modify in the item.

newData The new data to put in the data provider.

Returns

Nothing.

Description

Method; changes one field of the data provider.

This method triggers the modelChanged event with the event name updateField.

Example

The following code modifies the label field of the third item:
myDP.editField(2, "label", "mynewData");
320 DataProvider API

DataProvider.getEditingData()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.getEditingData(index, fieldName)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. This
number is the index of the item to retrieve.

fieldName A string indicating the name of the field being edited.

Returns

The editable formatted data to be used.

Description

Method; retrieves data for editing from a data provider. This lets the data model provide
different formats of data for editing and displaying.

Example

The following code gets an editable string for the price field:
trace(myDP.getEditingData(4, "price");

DataProvider.getItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.getItemAt(index)
DataProvider.getItemAt() 321

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. This
number is the index of the item to retrieve.

Returns

A reference to the retrieved item; undefined if the index is out of range.

Description

Method; retrieves a reference to the item at a specified position.

Example

The following code displays the label of the fifth item:
trace(myDP.getItemAt(4).label);

DataProvider.getItemID()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.getItemID(index)

Parameters

index A number greater than or equal to 0.

Returns

A number that is the unique ID of the item.

Description

Method; returns a unique ID for the item. This method is primarily used to track selection.
The ID is used in data-aware components to keep lists of what items are selected.

Example

This example gets the ID of the fourth item:
var ID = myDP.getItemID(3);
322 DataProvider API

DataProvider.length
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.length

Description

Property (read-only); the number of items in the data provider.

Example

This example sends the number of items in the myArray data provider to the Output panel:
trace(myArray.length);

DataProvider.modelChanged
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){

// Insert your code here.
}
myMenu.addEventListener("modelChanged", listenerObject)

Description

Event; broadcast to all of its view listeners whenever the data provider is modified. You
typically add a listener to a model by assigning its dataProvider property.

Version 2 components use a dispatcher/listener event model. When a data provider changes in
some way, it broadcasts a modelChanged event, and data-aware components catch it to update
their displays to reflect the changes in data.
DataProvider.modelChanged 323

The Menu.modelChanged event’s event object has five additional properties:

■ eventName The eventName property is used to subcategorize modelChanged events.
Data-aware components use this information to avoid completely refreshing the
component instance (view) that is using the data provider. The eventName property
supports the following values:
■ updateAll The entire view needs refreshing, excluding scroll position.
■ addItems A series of items has been added.
■ removeItems A series of items has been deleted.
■ updateItems A series of items needs refreshing.
■ sort The data has been sorted.
■ updateField A field in an item must be changed and needs refreshing.
■ updateColumn An entire field’s definition in the data provider needs refreshing.
■ filterModel The model has been filtered, and the view needs refreshing (reset the

scroll position).
■ schemaLoaded The field’s definition of the data provider has been declared.

■ firstItem The index of the first affected item.
■ lastItem The index of the last affected item. The value equals firstItem if only one

item is affected.
■ removedIDs An array of the item identifiers that were removed.
■ fieldName A string indicating the name of the field that is affected.

For more information, see “EventDispatcher class” on page 499.

Example

In the following example, a handler called listener is defined and passed to
addEventListener() as the second parameter. The event object is captured by the
modelChanged handler in the evt parameter. When the modelChanged event is broadcast, a
trace statement is sent to the Output panel.
listener = new Object();
listener.modelChanged = function(evt){
 trace(evt.eventName);
}
myList.addEventListener("modelChanged", listener);
324 DataProvider API

DataProvider.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the data provider. This method triggers the modelChanged
event with the event name removeItems.

Example

This example removes all the items in the data provider:
myDP.removeAll();

DataProvider.removeItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.removeItemAt(index)

Parameters

index A number greater than or equal to 0. This number is the index of the item to remove.
DataProvider.removeItemAt() 325

Returns

Nothing.

Description

Method; removes the item at the specified index. The indices after the removed index collapse
by one.

This method triggers the modelChanged event with the event name removeItems.

Example

This example removes the item at the fourth position:
myDP.removeItemAt(3);

DataProvider.replaceItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myDP.replaceItemAt(index, item)

Parameters

index A number greater than or equal to 0. This number is the index of the item to change.

item An object that is the new item.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index. This method triggers the
modelChanged event with the event name updateItems.

Example

This example replaces the item at index 3 with the item labeled “new label”:
myDP.replaceItemAt(3, {label : "new label"});
326 DataProvider API

DataProvider.sortItems()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myDP.sortItems([compareFunc], [optionsFlag])

Parameters

compareFunc A reference to a function that compares two items to determine their sort
order. For more information, see sort (Array.sort method) in ActionScript 2.0 Language
Reference.This parameter is optional.

optionsFlag Lets you perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

■ Array.DESCENDING, which sorts highest to lowest.
■ Array.CASEINSENSITIVE, which sorts case-insensitively.
■ Array.NUMERIC, which sorts numerically if the two elements being compared are

numbers. If they aren’t numbers, use a string comparison (which can be case-insensitive if
that flag is specified).

■ Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two
objects in the array are identical or have identical sort fields.

■ Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines
options 3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.
DataProvider.sortItems() 327

Description

Method; sorts the items in the data provider according to the specified compare function or
according to one or more specified sort options.

This method triggers the modelChanged event with the event name sort.

Example

This example sorts according to uppercase labels. The items a and b are passed to the function
and contain label and data fields:
myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

DataProvider.sortItemsBy()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myDP.sortItemsBy(fieldName, optionsFlag)

myDP.sortItemsBy(fieldName, order)

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is
usually "label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or
descending order ("DESC").

optionsFlag Lets you perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

■ Array.DESCENDING—sorts highest to lowest.
■ Array.CASEINSENSITIVE—sorts case-insensitively.
■ Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If

they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).
328 DataProvider API

■ Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields,
this method returns an error code (0) instead of a sorted array.

■ Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort.
For example, the following array would return the second line of code and the array would
remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines
options 3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the data provider in the specified order, using the specified field
name. If the fieldName items are a combination of text strings and integers, the integer items
are listed first. The fieldName parameter is usually "label" or "data", but advanced
programmers may specify any primitive value.

This method triggers the modelChanged event with the event name sort.

This is the fastest way to sort data in a component. It also maintains the component’s
selection state. The sortItemsBy() method is fast because it doesn’t run any ActionScript
while sorting. The sortItems() method needs to run an ActionScript compare function, and
is therefore slower.

Example

The following code sorts the items in a list in ascending order using the labels of the list items:
myDP.sortItemsBy("label", "ASC");
DataProvider.sortItemsBy() 329

330 DataProvider API

13

CHAPTER 13
CHAPTER 13

DataSet component (Flash
Professional only)
The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetIterator, a set of methods for
traversing and manipulating a data collection, and DeltaPacket, a set of interfaces and classes
for working with updates to a data collection. In most cases, you don’t use these classes and
interfaces directly; you use them indirectly through methods provided by the DataSet class.

The items managed by the DataSet component are also called transfer objects. A transfer object
exposes business data that resides on the server with public attributes or accessor methods for
reading and writing data. The DataSet component allows developers to work with
sophisticated client-side objects that mirror their server-side counterparts or, in its simplest
form, a collection of anonymous objects with public attributes that represent the fields in a
record of data. For details on transfer objects, see Core J2EE Patterns Transfer Object at http:/
/java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html.

Using the DataSet component
You typically use the DataSet component in combination with other components to
manipulate and update a data source: a connector component for connecting to an external
data source, user interface components for displaying data from the data source, and a resolver
component for translating updates made to the data set into the appropriate format for
sending to the external data source. You can then use data binding to bind properties of these
different components together.

N
O

T
E

The DataSet component requires Flash Player 7 or later.
331

http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

The DataSet component uses functionality in the data binding classes. If you intend to work
with the DataSet component in ActionScript only, without using the Binding and Schema
tabs in the Component inspector to set properties, you’ll need to import the data binding
classes into your FLA file and set required properties in your code. See “Making data binding
classes available at runtime (Flash Professional only)” on page 207.

For general information on how to manage data in Flash using the DataSet component, see
“Data management (Flash Professional only)” in Using Flash.

DataSet parameters
You can set the following parameters for the DataSet component:

itemClassName is a string indicating the name of the transfer object class that is instantiated
each time a new item is created in the DataSet component.

The DataSet component uses transfer objects to represent the data that you retrieve from an
external data source. If you leave this parameter blank, the data set creates an anonymous
transfer object for you. If you give this parameter a value, the data set instantiates your transfer
object whenever new data is added.

logChanges is a Boolean value that defaults to true. If this parameter is set to true, the
data set logs all changes made to its data and any method calls made on the associated
transfer objects.

readOnly is a Boolean value that defaults to false. If this parameter is set to true, the data
set cannot be modified.

You can write ActionScript code to use the properties, methods, and events of the DataSet
component to control these and additional options. For more information, see “DataSet class
(Flash Professional only)” on page 335.

N
O

T
E

You must make a fully qualified reference to this class somewhere in your code to make
sure that it gets compiled into your application (such as
private var myItem:my.package.myItem;).
332 Components Dictionary

Common workflow for the DataSet component
The typical workflow for the DataSet component is as follows.

To use a DataSet component:

1. Add an instance of the DataSet component to your application and give it an
instance name.

2. Select the Schema tab for the DataSet component and create component properties to
represent the persistent fields of the data set.

3. Load the DataSet component with data from an external data source. (For more
information, see “About loading data into the DataSet component” in Using Flash.)

4. Use the Bindings tab of the Component inspector to bind the data set fields to user
interface components in your application.

The UI controls are notified as records (transfer objects) are selected or modified within
the DataSet component, and updated accordingly. In addition, the DataSet component is
notified of changes made from within a UI control; those changes are tracked by the data
set and can be extracted by means of a delta packet.

5. Call the methods of the DataSet component in your application to manage your data.

Creating an application with the DataSet component
Typically, you use the DataSet component with other user interface components, and often
with a connector component such as XMLConnector or WebServiceConnector. The items in
the data set are populated by means of the connector component or raw ActionScript data,
and then bound to user interface controls (such as List or DataGrid components).

The DataSet component uses functionality in the data binding classes. If you intend to work
with the DataSet component in ActionScript only, without using the Binding and Schema
tabs in the Component inspector to set properties, you’ll need to import the data binding
classes into your FLA file and set required properties in your code. See “Making data binding
classes available at runtime (Flash Professional only)” on page 207.

N
O

T
E

In addition to these steps, you can bind the DataSet component to a connector and a
resolver component to provide a complete solution for accessing, managing, and
updating data from an external data source.
Using the DataSet component 333

To create an application using the DataSet component:

1. In Flash Professional 8, select File > New. In the Type column, select Flash Document and
click OK.

2. Open the Components panel if it’s not already open.

3. Drag a DataSet component from the Components panel to the Stage. In the Property
inspector, give it the instance name user_ds.

4. Drag a DataGrid component to the Stage and give it the instance name user_dg.

5. Resize the DataGrid component to be approximately 300 pixels wide and 100 pixels tall.

6. Drag a Button component to the Stage and give it the instance name next_button.

7. In the Timeline, select the first frame on Layer 1 and open the Actions panel.

8. Add the following code to the Actions panel:
var recData_array:Array = [{id:0, firstName:"Mick", lastName:"Jones"},
 {id:1, firstName:"Joe", lastName:"Strummer"},
 {id:2, firstName:"Paul", lastName:"Simonon"}];
user_ds.items = recData_array;

This populates the DataSet object’s items property with an array of objects, each of which
has three properties: id, firstName, and lastName.

9. Add the three properties and their required data types to the DataSet schema:

a. Select the DataSet component on the Stage, open the Component inspector, and click
the Schema tab.

b. Click Add Component Property, and add three new properties, with field names id,
firstName, and lastName, and data types Number, String, and String, respectively.

Or, if you prefer to add the properties and their required data types in code, you can add
the following line of code to the Actions panel instead of following steps a and b above:
// Add required schema types.
var i:mx.data.types.Str;
var j:mx.data.types.Num;

10. To bind the contents of the DataSet component to the contents of the DataGrid
component, open the Component inspector and click the Bindings tab.

11. Select the DataGrid component (user_dg) on the Stage, and click the Add Binding (+)
button in the Component inspector.

12. In the Add Binding dialog box, select “dataProvider : Array” and click OK.

13. Double-click the Bound To field in the Component inspector.

14. In the Bound To dialog box that appears, select “DataSet <user_ds>” from the Component
Path column and then select “dataProvider : Array” from the Schema Location column.
334 Components Dictionary

15. To bind the selected index of the DataSet component to the selected index of the DataGrid
component, select the DataGrid component on the Stage and click the Add Binding (+)
button again in the Component inspector.

16. In the dialog box that appears, select “selectedIndex : Number”. Click OK.

17. Double-click the Bound To field in the Component inspector to open the Bound To
dialog box.

18. In the Component Path field, select “DataSet <user_ds>” from the Component Path
column and then select “selectedIndex : Number” from the Schema Location column.

19. Enter the following code in the Actions panel:
next_button.addEventListener("click", nextBtnClick);
function nextBtnClick(evt_obj:Object):Void {

user_ds.next();
}

This code uses the DataSet.next() method to navigate to the next item in the DataSet
object’s collection of items. Since you had previously bound the selectedIndex property
of the DataGrid object to the same property of the DataSet object, changing the current
item in the DataSet object changes the current (selected) item in the DataGrid object
as well.

20.Save the file, and select Control > Test Movie to test the SWF file.

The DataGrid object is populated with the specified items. Notice how clicking the
button changes the selected item in the DataGrid object.

DataSet class (Flash Professional only)
Inheritance MovieClip > DataSet

ActionScript Class Name mx.data.components.DataSet

The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetIterator, a set of methods for
traversing and manipulating a data collection, and DeltaPacket, a set of interfaces and classes
for working with updates to a data collection. In most cases, you don’t use these classes and
interfaces directly; you use them indirectly through methods provided by the DataSet class.
DataSet class (Flash Professional only) 335

Method summary for the DataSet class
The following table lists the methods of the DataSet class.

Method Description

DataSet.addItem() Adds the specified item to the collection.

DataSet.addItemAt() Adds an item to the data set at the specified position.

DataSet.addSort() Creates a new sorted view of the items in the collection.

DataSet.applyUpdates() Signals that the deltaPacket property has a value that you can
access using data binding or ActionScript.

DataSet.changesPending() Indicates whether the collection has changes pending that
have not yet been sent in a delta packet.

DataSet.clear() Clears all items from the current view of the collection.

DataSet.createItem() Returns a newly initialized collection item.

DataSet.disableEvents() Stops sending DataSet events to listeners.

DataSet.enableEvents() Resumes sending DataSet events to listeners.

DataSet.find() Locates an item in the current view of the collection.

DataSet.findFirst() Locates the first occurrence of an item in the current view of
the collection.

DataSet.findLast() Locates the last occurrence of an item in the current view of
the collection.

DataSet.first() Moves to the first item in the current view of the collection.

DataSet.getItemId() Returns the unique ID for the specified item.

DataSet.getIterator() Returns a clone of the current iterator.

DataSet.getLength() Returns the number of items in the data set.

DataSet.hasNext() Indicates whether the current iterator is at the end of its view
of the collection.

DataSet.hasPrevious() Indicates whether the current iterator is at the beginning of its
view of the collection.

DataSet.hasSort() Indicates whether the specified sort exists.

DataSet.isEmpty() Indicates whether the collection contains any items.

DataSet.last() Moves to the last item in the current view of the collection.

DataSet.loadFromSharedObj() Loads all of the relevant data needed to restore the DataSet
collection from a shared object.

DataSet.locateById() Moves the current iterator to the item with the specified ID.
336 Components Dictionary

Property summary for the DataSet class
The following table lists the properties of the DataSet class.

DataSet.next() Moves to the next item in the current view of the collection.

DataSet.previous() Moves to the previous item in the current view of
the collection.

DataSet.removeAll() Removes all the items from the collection.

DataSet.removeItem() Removes the specified item from the collection.

DataSet.removeItemAt() Removes a data set item at a specified position.

DataSet.removeRange() Removes the current iterator’s range settings.

DataSet.removeSort() Removes the specified sort from the DataSet object.

DataSet.saveToSharedObj() Saves the data in the DataSet object to a shared object.

DataSet.setIterator() Sets the current iterator for the DataSet object.

DataSet.setRange() Sets the current iterator’s range settings.

DataSet.skip() Moves forward or backward by a specified number of items in
the current view of the collection.

DataSet.useSort() Makes the specified sort the active one.

Property Description

DataSet.currentItem Returns the current item in the collection.

DataSet.dataProvider Returns the data provider.

DataSet.deltaPacket Returns changes made to the collection, or assigns changes
to be made to the collection.

DataSet.filtered Indicates whether items are filtered.

DataSet.filterFunc User-defined function for filtering items in the collection.

DataSet.items Items in the collection.

DataSet.itemClassName Name of the object to create when assigning items.

DataSet.length Specifies the number of items in the current view of
the collection.

DataSet.logChanges Indicates whether changes made to the collection, or its items,
are recorded.

DataSet.properties Contains the properties (fields) for any transfer object in
this collection.

Method Description
DataSet class (Flash Professional only) 337

Event summary for the DataSet class
The following table lists the events of the DataSet class.

DataSet.addItem
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.addItem = function (eventObj:Object) {

DataSet.readOnly Indicates whether the collection can be modified.

DataSet.schema Specifies the collection’s schema in XML format.

DataSet.selectedIndex Contains the current item’s index in the collection.

Event Description

DataSet.addItem Broadcast before an item is added to the collection.

DataSet.afterLoaded Broadcast after the items property is assigned.

DataSet.calcFields Broadcast when calculated fields should be updated.

DataSet.deltaPacketChanged Broadcast when the DataSet object’s delta packet has been
changed and is ready to be used.

DataSet.iteratorScrolled Broadcast when the iterator’s position is changed.

DataSet.modelChanged Broadcast when items in the collection have been modified in
some way.

DataSet.newItem Broadcast when a new transfer object is constructed by the
DataSet object, but before it is added to the collection.

DataSet.removeItem Broadcast before an item is removed.

DataSet.resolveDelta Broadcast when a delta packet is assigned to the DataSet
object that contains messages.

Property Description
338 Components Dictionary

// ...
};
dataSetInstance.addEventListener("addItem", listenerObject);

Usage 2:
on (addItem) {

// ...
}

Description

Event; generated just before a new record (transfer object) is inserted into this collection.

If you set the result property of the event object to false, the add operation is canceled; if
you set it to true, the add operation is allowed.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "addItem".

item A reference to the item in the collection to be added.

result A Boolean value that specifies whether the specified item should be added. By
default, this value is true.

Example

The following addItem event handler cancels the addition of the new item if a user-defined
function named userHasAdminPrivs() returns false; otherwise, the item addition
is allowed.
function userHasAdminPrivs():Boolean {

return false; // Change this to true to allow inserts.
}

my_ds.addEventListener("addItem", addItemListener);
my_ds.addItem({name:"Bobo", occupation:"clown"});

function addItemListener(evt_obj:Object):Void {
if (userHasAdminPrivs()) {

// Allow the item addition.
evt_obj.result = true;
trace("Item added");

} else {
// Don't allow item addition; user doesn't have admin privileges.
evt_obj.result = false;
trace("Error, insufficient permissions");

}
}

DataSet.addItem 339

See also

DataSet.removeItem

DataSet.addItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.addItem([obj])

Parameters

obj An object to add to this collection. This parameter is optional.

Returns

A Boolean value: true if the item was added to the collection, false if it was not.

Description

Method; adds the specified record (transfer object) to the collection for management. The
newly added item becomes the current item of the data set. If no obj parameter is specified, a
new object is created automatically by means of DataSet.createItem().

The location of the new item in the collection depends on whether a sort has been specified
for the current iterator. If no sort is in use, the item is added to the end of the collection. If a
sort is in use, the item is added to the collection according to its position in the current sort.

For more information on initialization and construction of the transfer object, see
DataSet.createItem().

Example

The following example uses DataSet.addItem() to create a new item and add it to the
data set:
my_ds.addEventListener("addItem", addItemListener);
my_ds.addItem({name:"Bobo", occupation:"clown"});

function addItemListener(evt_obj:Object):Void {
trace("adding item");

}

340 Components Dictionary

The following example demonstrates how you can accept or reject an item’s insertion into the
DataSet by setting the result to true or false within the handler for the addItem event.
Drag a DataSet component to the Stage, and assign it an instance name of my_ds. Drag a
DataGrid component to the Stage, and give it an instance name of my_dg. Drag a CheckBox
component to the Stage, and give it an instance name of my_ch. Drag a Button component to
the Stage, and give it an instance name of submit_button. Add two properties, name and
occupation, to the DataSet component by using the Schema tab of the Component
inspector. Create a binding between the my_ds.dataProvider property and the
my_dg.dataProvider property by using the Bindings panel of the Component inspector.
Add the following ActionScript to Frame 1 of the main timeline:
my_ds.addEventListener("addItem", addItemListener);
submit_button.addEventListener("click", submitListener);
function userHasAdminPrivs():Boolean {

return my_ch.selected;
}
function addItemListener(evt_obj:Object):Void {

if (userHasAdminPrivs()) {
// Allow the item addition.
evt_obj.result = true;
trace("Item added");

} else {
// Don't allow the item addition; user doesn't have admin privileges.
evt_obj.result = false;
trace("Error, insufficient permissions");

}
}
function submitListener(evt_obj:Object):Void {

my_ds.addItem({name:"bobo", occupation:"clown"});
}

See also

DataSet.createItem()
DataSet.addItem() 341

DataSet.addItemAt()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.addItemAt(index, item)

Parameters

index A number greater than or equal to 0. This number indicates the position at which to
insert the item; it is the index of the new item.

item An object containing the data for the item.

Returns

A Boolean value indicating whether the item was added: true indicates that the item was
added, and false indicates that the item already exists in the data set.

Description

Method; adds a new item to the data set at the specified index. Indices greater than the data
provider’s length are ignored.

This method triggers the modelChanged event with the event type addItem.

Example

The following example uses the addItemAt() method to add an item to the DataSet at the
first position:
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});
my_ds.addItemAt(0, {name:"Bobo", years:1});
342 Components Dictionary

DataSet.addSort()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.addSort(name, fieldList, sortOptions)

Parameters

name A string that specifies the name of the sort.

fieldList An array of strings that specify the field names to sort on.

sortOptions One or more of the following integer (constant) values, which indicate what
options are used for this sort. Separate multiple values using the bitwise OR operator (|).
Specify one or more of the following values:

■ DataSetIterator.Ascending Sorts items in ascending order. This is the default sort
option, if none is specified.

■ DataSetIterator.Descending Sorts items in descending order based on item
properties specified.

■ DataSetIterator.Unique Prevents the sort if any fields have like values.
■ DataSetIterator.CaseInsensitive Ignores case when comparing two strings during

the sort operation. By default, sorts are case-sensitive when the property being sorted on is
a string.

A DataSetError exception is thrown when DataSetIterator.Unique is specified as a sort
option and the data being sorted is not unique, when the specified sort name has already been
added, or when a property specified in the fieldList array does not exist in this data set.

Returns

Nothing.

Description

Method; creates a new ascending or descending sort for the current iterator based on the
properties specified by the fieldList parameter. Flash automatically assigns the new sort to
the current iterator after it is created, and then stores it in the sorting collection for later
retrieval.
DataSet.addSort() 343

Example

The following code creates a new sort named "nameSort" that performs a descending, case-
insensitive sort on the DataSet object’s "name" field.
import mx.data.components.datasetclasses.DataSetIterator;

my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"michael", years:2});
my_ds.addItem({name:"Frank", years:2});

my_ds.addSort("nameSort", ["name"], DataSetIterator.Descending |
DataSetIterator.Unique | DataSetIterator.CaseInsensitive);

In the following example, you can dynamically add data to a DataSet component by entering
first and last names into TextInput component instances on the Stage and clicking the Submit
button. After you add items to the DataSet component, you can clear the data set by clicking
the Clear button on the Stage. Drag a DataGrid component to the Stage, and give it an
instance name of my_dg. Drag two Button components to the Stage, and give them instance
names of submit_button and clear_button. Drag a DataSet component to the Stage, and
give it an instance name of my_ds. Drag two TextInput components to the Stage, and give
them instance names of firstName_ti and lastName_ti. Drag an Alert component into the
current document’s library. Add two component properties, firstName and lastName, to the
DataSet component’s schema by using the Schema tab of the Component inspector. Next,
add a data binding from the dataProvider property of the DataSet component to the
dataProvider property of the DataGrid component by using the Binding tab in
the Component inspector. Finally, paste the following code in the first frame of the
main timeline:
import mx.controls.Alert;

my_ds.addSort("lastFirst", ["lastName", "firstName"]);

my_dg.enabled = false;
clear_button.enabled = false;
submit_button.label = "Submit";
clear_button.label = "Clear";

my_ds.addEventListener("addItem", addItemListener);
my_ds.addEventListener("modelChanged", modelChangedListener);
submit_button.addEventListener("click", submitListener);
clear_button.addEventListener("click", clearListener);
344 Components Dictionary

function modelChangedListener(evt_obj:Object):Void {
my_dg.enabled = (evt_obj.target.length > 0);
clear_button.enabled = my_dg.enabled;

}
function submitListener(evt_obj:Object):Void {

my_ds.addItem({firstName:firstName_ti.text, lastName:lastName_ti.text});
}
function addItemListener(evt_obj:Object):Void {

if ((evt_obj.item.firstName.length == 0) || (evt_obj.item.lastName.length
== 0)) {

Alert.show("Error, first name or last name cannot be blank.", "Error",
Alert.OK, _level0);

evt_obj.result = false;
} else {

firstName_ti.text = "";
lastName_ti.text = "";

}
}
function clearListener(evt_obj:Object):Void {

Alert.show("Are you sure you want to clear the data?", "Warning",
Alert.OK | Alert.CANCEL, _level0, clearConfirmListener);

}
function clearConfirmListener(evt_obj:Object):Void {

switch (evt_obj.detail) {
case Alert.OK:

my_ds.clear();
break;

case Alert.CANCEL:
break;

}
}

Select Control > Test Movie to test the document in the authoring environment. Enter some
text into both of the TextInput instances and then click the Submit button. A a new item
should be added to the DataGrid instance. Clicking the Clear button should display an Alert
component instance with a confirmation message asking if you want to clear the contents of
the DataGrid. Clicking OK clears the dataProvider property of the DataSet component
(and then the dataProvider property of the DataGrid component, because of the binding).
Clicking Cancel dismisses the Alert component instance.

See also

DataSet.removeSort()
DataSet.addSort() 345

DataSet.afterLoaded
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.afterLoaded = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("afterLoaded", listenerObject);

Usage 2:
on (afterLoaded) {

// ...
}

Description

Event; broadcast immediately after the DataSet.items property has been assigned.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "afterLoaded".

Example

In the following example, a form named contactForm (not shown) is made visible once the
items in the data set contact_ds have been assigned.
contact_ds.addEventListener("afterLoaded", loadListener);
var loadListener:Object = new Object();
loadListener.afterLoaded = function (evt_obj:Object) {

if (evt_obj.target == "contact_ds") {
contactForm.visible = true;

}
};
346 Components Dictionary

The following example uses the afterLoaded event of the DataSet component to populate
the dataProvider property for a List component on the Stage. Drag a List component and a
DataSet component to the Stage, and give them instance names of my_list and my_ds,
respectively. Add the following ActionScript code to Frame 1 of the main timeline:
my_list.labelField = "name";

var itemsListener:Object = new Object();
itemsListener.afterLoaded = function (evt_obj:Object):Void {

trace("After loaded");
my_list.dataProvider = evt_obj.target.items;

}
my_ds.addEventListener("afterLoaded", itemsListener);

var item_array:Array = [{name:"Douglas"}, {name:"Vinnie"},
{name:"Katherine"}, {name:"David"}];

my_ds.items = item_array;

DataSet.applyUpdates()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.applyUpdates()

Returns

Nothing.

Description

Method; signals that the DataSet.deltaPacket property has a value that you can access
using data binding or directly by ActionScript. Before this method is called, the
DataSet.deltaPacket property is null. This method has no effect if events have been
disabled by means of the DataSet.disableEvents() method.

Calling this method also creates a transaction ID for the current DataSet.deltaPacket
property and emits a deltaPacketChanged event. For more information, see
DataSet.deltaPacket.
DataSet.applyUpdates() 347

Example

The following code calls the applyUpdates() method on the my_ds DataSet.
my_ds.applyUpdates();

The following example adds four items to the my_ds DataSet instance on the Stage and
displays each item in the top-level of the deltaPacket property:
my_ds.addItem({name:"Thomas", age:35, gender:"M"});
my_ds.addItem({name:"Orville", age:33, gender:"M"});
my_ds.addItem({name:"Jonathan", age:48, gender:"M"});
my_ds.addItem({name:"Carol", age:31, gender:"F"});

my_ds.applyUpdates();
var i:String;
for (i in my_ds.deltaPacket) {

trace(i + ":\t" + my_ds.deltaPacket[i]);
}

See also

DataSet.deltaPacket

DataSet.calcFields
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.calcFields = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("calcFields", listenerObject);

Usage 2:
on (calcFields) {

// ...
}

348 Components Dictionary

Description

Event; generated when values of calculated fields for the current item in the collection need to
be determined. A calculated field is one whose Kind property is set to Calculated on the
Schema tab of the Component inspector. The calcFields event listener that you create
should perform the required calculation and set the value for the calculated field.

This event is also called when the value of a noncalculated field (that is, a field with its Kind
property set to Data on the Schema tab) is updated.

For more information on the Kind property, see “Schema kinds” in Using Flash.

DataSet.changesPending()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.changesPending()

Returns

A Boolean value.

Description

Method; returns true if the collection, or any item in the collection, has changes pending that
have not yet been sent in a delta packet; otherwise, returns false.

C
A

U
T

IO
N

Do not change the values of any of noncalculated fields in this event, because this results
in an “infinite loop.” Set only the values of calculated fields within the calcFields event.
DataSet.changesPending() 349

Example

The following code enables a Save Changes button (not shown) if the DataSet collection, or
any items with that collection, have had modifications made to them that haven’t been
committed to a delta packet.
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

my_ds.addEventListener("modelChanged", modelChangedListener);
function modelChangedListener(evt_obj:Object):Void {

if (evt_obj.target.changesPending()) {
trace("changes pending");
submitChanges_button.enabled = true;

}
}
submitChanges_button.enabled = false;
my_ds.addItem({name:"Hal", years:4});

DataSet.clear()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.clear()

Returns

Nothing.

Description

Method; removes the items in the current view of the collection. Which items are considered
“viewable” depends on any current filter and range settings on the current iterator. Therefore,
calling this method might not clear all of the items in the collection. To clear all of the items
in the collection regardless of the current iterator’s view, use DataSet.removeAll().

If DataSet.logChanges is set to true when you invoke this method, “remove” entries are
added to DataSet.deltaPacket for all items in the collection.
350 Components Dictionary

Example

The following example removes all items from the current view of the DataSet collection.
Because the logChanges property is set to true, the removal of those items is logged.
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

my_ds.addSort("nameSort", ["name"]);
my_ds.filtered = true;
my_ds.filterFunc = function(item:Object):Boolean {

return (item.years >= 3);
};
my_ds.logChanges = true;
my_ds.clear(); // Remove filtered items from dataset.
my_ds.removeSort("nameSort");

See also

DataSet.deltaPacket, DataSet.logChanges

DataSet.createItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.createItem([itemData])

Parameters

itemData Data associated with the item. This parameter is optional.

Returns

The newly constructed item.
DataSet.createItem() 351

Description

Method; creates an item that isn’t associated with the collection. You can specify the class of
object created by using the DataSet.itemClassName property. If no
DataSet.itemClassName value is specified and the itemData parameter is omitted, an
anonymous object is constructed. This anonymous object’s properties are set to the default
values based on the schema currently specified by DataSet.schema.

When this method is invoked, any listeners for the DataSet.newItem event are notified and
are able to manipulate the item before it is returned by this method. The optional item data is
used to initialize the class specified with the DataSet.itemClassName property or is used as
the item if DataSet.itemClassName is blank.

A DataSetError exception is thrown when the class specified with the
DataSet.itemClassName property cannot be loaded.

Example
my_ds.addEventListener("newItem", newItemListener);
function newItemListener(evt_obj:Object):Void {

trace("new item was added: {name:'" + evt_obj.item.name + "', years:" +
evt_obj.item.years + "}");

}

my_ds.addItem(my_ds.createItem({name:"Wilson", years:3}));
my_ds.addItem({name:"Tom", years:2});

my_ds.filtered = true;
my_ds.filterFunc = function(item:Object):Boolean {

return (item.years % 2 == 0);
};

See also

DataSet.itemClassName, DataSet.newItem, DataSet.schema

DataSet.currentItem
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.currentItem
352 Components Dictionary

Description

Property (read-only); returns the current item in the DataSet collection, or null if the
collection is empty or if the current iterator’s view of the collection is empty.

This property provides direct access to the item in the collection. Changes made by directly
accessing this object are not tracked (in the DataSet.deltaPacket property), nor are any of
the schema settings applied to any properties of this object.

Example

The following example displays the value of the name property defined in the current item in
the data set named customers_ds.
customers_ds.addItem({name:"Milton", years:3});
customers_ds.addItem({name:"Mark", years:3});
customers_ds.addItem({name:"Sarah", years:1});
customers_ds.addItem({name:"Michael", years:2});
customers_ds.addItem({name:"Frank", years:2});

trace(customers_ds.currentItem.name); // Frank

DataSet.dataProvider
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.dataProvider

Description

Property; the data provider for this data set. This property provides data to user interface
controls, such as the List and DataGrid components.

For more information about the DataProvider API, see “DataProvider API” on page 317.

Example

The following code assigns the dataProvider property of a DataSet object to the
corresponding property of a DataGrid component.
my_dg.dataProvider = my_ds.dataProvider;
DataSet.dataProvider 353

DataSet.deltaPacket
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.deltaPacket

Description

Property; returns a delta packet that contains all of the change operations made to the
dataSet collection and its items. This property is null until DataSet.applyUpdates() is
called on dataSet.

When DataSet.applyUpdates() is called, a transaction ID is assigned to the delta packet.
This transaction ID is used to identify the delta packet on an update round trip from the
server and back to the client. Any subsequent assignment to the deltaPacket property by a
delta packet with a matching transaction ID is assumed to be the server’s response to the
changes previously sent. A delta packet with a matching ID is used to update the collection
and report errors specified within the packet.

Errors or server messages are reported to listeners of the DataSet.resolveDelta event. Note
that the DataSet.logChanges settings are ignored when a delta packet with a matching ID is
assigned to DataSet.deltaPacket. A delta packet without a matching transaction ID
updates the collection, as if the DataSet API were used directly. This may create additional
delta entries, depending on the current DataSet.logChanges setting of dataSet and the
delta packet.

A DataSetError exception is thrown if a delta packet is assigned with a matching transaction
ID and one of the items in the newly assigned delta packet cannot be found in the original
delta packet.

See also

DataSet.applyUpdates(), DataSet.logChanges, DataSet.resolveDelta
354 Components Dictionary

DataSet.deltaPacketChanged
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.deltaPacketChanged = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("deltaPacketChanged", listenerObject);

Usage 2:
on (deltaPacketChanged) {

// ...
}

Description

Event; broadcast when the specified DataSet object’s deltaPacket property has been changed
and is ready to be used.

See also

DataSet.deltaPacket
DataSet.deltaPacketChanged 355

DataSet.disableEvents()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.disableEvents()

Returns

Nothing.

Description

Method; disables events for the DataSet object. While events are disabled, no user interface
controls (such as a DataGrid component) are updated when changes are made to items in the
collection, or when the DataSet object is scrolled to another item in the collection.

To reenable events, you must call DataSet.enableEvents(). The disableEvents()
method can be called multiple times, and enableEvents() must be called an equal number
of times to reenable the dispatching of events.

Example

In the following example, events are disabled before changes are made to items in the
collection, so that the DataSet object won’t affect performance by trying to refresh controls:
my_ds.addEventListener("modelChanged", onModelChanged);
function onModelChanged(evt_obj:Object):Void {

trace("model changed, DataSet now has " + evt_obj.target.items.length + "
items");

}
// Disable events for the data set.
my_ds.disableEvents();

my_ds.addItem({name:"Apples", price:14});
my_ds.addItem({name:"Bananas", price:8});

trace("Before:");
traceItems();

my_ds.last();
while(my_ds.hasPrevious()) {
 my_ds.price *= 0.5; // Everything's 50% off!
 my_ds.previous();
}

356 Components Dictionary

trace("After:");
traceItems();

// Tell the dataset it's time to update the controls now.
my_ds.enableEvents();

function traceItems():Void {
for (var i:Number = 0; i < my_ds.items.length; i++) {

trace("\t" + my_ds.items[i].name + " - $" + my_ds.items[i].price);
}
trace("");

}

See also

DataSet.enableEvents()

DataSet.enableEvents()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.enableEvents()

Returns

Nothing.

Description

Method; reenables events for the DataSet objects after events have been disabled by a call to
DataSet.disableEvents(). To reenable events for the DataSet object, the enableEvents()
method must be called an equal or greater number of times than disableEvents() was
called.
DataSet.enableEvents() 357

Example

In the following example, events are disabled before changes are made to items in the
collection, so that the DataSet object won’t affect performance by trying to refresh controls.
my_ds.addEventListener("modelChanged", onModelChanged);
function onModelChanged(evt_obj:Object):Void {

trace("model changed, DataSet now has " + evt_obj.target.items.length + "
items");

}
// Disable events for the data set.
my_ds.disableEvents();

my_ds.addItem({name:"Apples", price:14});
my_ds.addItem({name:"Bananas", price:8});

trace("Before:");
traceItems();

my_ds.last();
while(my_ds.hasPrevious()) {
 my_ds.price *= 0.5; // Everything's 50% off!
 my_ds.previous();
}

trace("After:");
traceItems();

// Tell the data set it's time to update the controls now.
my_ds.enableEvents();

function traceItems():Void {
for (var i:Number = 0; i < my_ds.items.length; i++) {

trace("\t" + my_ds.items[i].name + " - $" + my_ds.items[i].price);
}
trace("");

}

See also

DataSet.disableEvents()
358 Components Dictionary

DataSet.filtered
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.filtered

Description

Property; a Boolean value that indicates whether the data in the current iterator is filtered.
The default value is false.When this property is true, the filter function specified by
DataSet.filterFunc is called for each item in the collection.

Example

In the following example, filtering is enabled on the DataSet object named employee_ds.
Suppose that each record in the DataSet collection contains a field named empType. The
following filter function returns true if the empType field in the current item is set to
"management"; otherwise, it returns false.
employee_ds.filtered = true;
employee_ds.filterFunc = function (item:Object) {

// Filter out employees who are managers.
return(item.empType != "management");

};

The following example populates a DataGrid component from content dynamically loaded
using the XMLConnector component. When a user clicks a CheckBox instance on the Stage,
the contents of the DataSet component are filtered and are updated automatically in the
DataGrid component.

Drag the following components to the Stage, and give them the following instance names:

■ CheckBox (editorsChoice_ch)
■ DataGrid (reviews_dg)
■ DataSet (reviews_ds)
■ XMLConnector (reviews_xmlconn)
DataSet.filtered 359

Download a copy of the following XML document and save it to your local hard disk: http:/
/www.helpexamples.com/flash/xml/reviews.xml. This XML document will be loaded
dynamically using the XMLConnector component, but you’ll use the local copy to import the
XML schema into the DataSet component. Select the XMLConnector instance on the Stage
and select the Schema tab from the Component inspector. Select the results property and
click the “Import a schema from a sample XML file” button. Select the XML document that
you downloaded to your local hard disk and click Open. The schema of the XML document
should be imported into the DataSet component. With the reviews_xmlconn
XMLConnector instance still selected on the Stage, add a binding from the
reviews_xmlconn.results.reviews.review array to the dataProvider property of the
reviews_ds DataSet instance. Set the direction of the data binding to “out” in the Bindings
tab. Select the reviews_ds DataSet instance on the Stage and add another binding for the
dataProvider property. With the reviews_ds instance selected, select the Bindings tab of
the Component inspector. Click the Add binding button and add a binding from the
dataProvider property of the DataSet component to the dataProvider property of the
reviews_dg DataGrid instance.

Add the following code to Frame 1 of the main timeline:
editorsChoice_ch.label = "Editor's Choice";

reviews_xmlconn.direction = "receive";
reviews_xmlconn.multipleSimultaneousAllowed = false;
reviews_xmlconn.URL = "http://www.helpexamples.com/flash/xml/reviews.xml";
reviews_xmlconn.trigger();

reviews_dg.setSize(320, 240);
reviews_dg.addColumn("name");
reviews_dg.addColumn("rating");
reviews_dg.addColumn("reviewDate");
reviews_dg.getColumnAt(0).width = 100;
reviews_dg.getColumnAt(1).width = 100;
reviews_dg.getColumnAt(2).width = 100;
reviews_dg.setStyle("alternatingRowColors", [0xFFFFFF, 0xF6F6F6]);

editorsChoice_ch.addEventListener("click", editorsChoiceListener);
function editorsChoiceListener(evt_obj:Object):Void {

reviews_ds.filtered = evt_obj.target.selected;
reviews_ds.filterFunc = function(item:Object):Boolean {

return (item.editorsChoice == 1);
};

}

360 Components Dictionary

Select Control > Test Movie. By default, the DataGrid component should display each of the
reviews from the external XML document. Clicking on the Editor’s Choice CheckBox
component causes the DataSet component to be filtered, so that only the specific reviews
flagged as an editor’s choice appear.

See also

DataSet.filterFunc

DataSet.filterFunc
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.filterFunc = function (item:Object):Boolean {

// return true|false;
};

Description

Property; specifies a function that determines which items are included in the current view of
the collection. When DataSet.filtered is set to true, the function assigned to this property
is called for each record (transfer object) in the collection. For each item that is passed to the
function, it should return true if the item should be included in the current view, or false if
the item should not be included in the current view.

When changing the filter function on a data set, you must set the filtered property to
false and then true again in order for the proper modelChanged event to be generated.
Changing the filterFunc property won’t generate the event.

Also, if a filter is already in place when the data loads in (modelChanged or updateAll), the
filter isn’t applied until filtered is set to false and then back to true again.
DataSet.filterFunc 361

Example

In the following example, filtering is enabled on the DataSet object named employee_ds.
The specified filter function returns true if the empType field in each item is set to
"management"; otherwise, it returns false.
employee_ds.filtered = true;
employee_ds.filterFunc = function (item:Object):Boolean {

// Filter out employees who are managers.
return(item.empType != "management");

};

In the following example, you filter the contents of a DataSet component based on the
selected item in a ComboBox component. The ComboBox component lets you select all
people, males only, or females only.

Drag the a DataSet, DataGrid, and ComboBox components to the Stage, and give them
instance names of my_ds, data_dg, and filter_cb respectively. Select the my_ds DataSet
instance on the Stage and add two new properties: name and gender. Create a data binding
between the dataProvider property of the DataSet and the dataProvider of the DataGrid
component by using the Bindings panel of the Component inspector. Add the following
ActionScript code to Frame 1 of the main timeline:
my_ds.dataProvider = new Array({name:"Charles", gender:"M"}, {name:"Buddy",

gender:"M"}, {name:"Walter", gender:"M"}, {name:"Ellen", gender:"F"},
{name:"Jamie", gender:"F"}, {name:"Sarah", gender:"F"}, {name:"Adam",
gender:"M"});

my_ds.addSort("nameSort", ["name"]);
my_ds.addSort("genderSort", ["gender", "name"]);
my_ds.useSort("genderSort");

filter_cb.dataProvider = [{label:"All", value:""} , {label:"Male only",
value:"M"}, {label:"Female only", value:"F"}];

filter_cb.addEventListener("change", filterListener);
function filterListener(evt_obj:Object):Void {

var selItem:Object = evt_obj.target.selectedItem;
if (selItem.value.length == 0) {

my_ds.filtered = false;
} else {

my_ds.filtered = true;
my_ds.filterFunc = function(item:Object):Boolean {

return (item.gender == selItem.value);
}

}
}

362 Components Dictionary

The following example populates a DataGrid component from content dynamically loaded
using the XMLConnector component. When a user clicks a CheckBox instance on the Stage,
the contents of the DataSet component are filtered and are updated automatically in the
DataGrid component.

Drag the following components to the Stage, and give them the following instance names:

■ CheckBox (editorsChoice_ch)
■ DataGrid (reviews_dg)
■ DataSet (reviews_ds)
■ XMLConnector (reviews_xmlconn)

Download a copy of the following XML document, and save it to your local hard disk:
www.helpexamples.com/flash/xml/reviews.xml. This XML document loads dynamically
using the XMLConnector component,. You’ll use the local copy to import the XML schema
into the DataSet component. Select the XMLConnector instance on the Stage, and select the
Schema tab from the Component inspector. Select the results property, and click Import a
Schema From a Sample XML File. Select the XML document that you downloaded to your
local hard disk, and click Open. The schema of the XML document should import into the
DataSet component. With the reviews_xmlconn XMLConnector instance still selected on
the Stage, add a binding from the reviews_xmlconn.results.reviews.review array to the
dataProvider property of the reviews_ds DataSet instance. Set the direction of the data
binding to Out in the Bindings tab. Select the reviews_ds DataSet instance on the Stage,
and add another binding for the dataProvider property. With the reviews_ds instance
selected, select the Bindings tab of the Component inspector. Click the Add Binding button
and add a binding from the dataProvider property of the DataSet component to the
dataProvider property of the reviews_dg DataGrid instance.
DataSet.filterFunc 363

Add the following code to Frame 1 of the main timeline:
editorsChoice_ch.label = "Editor's Choice";

reviews_xmlconn.direction = "receive";
reviews_xmlconn.multipleSimultaneousAllowed = false;
reviews_xmlconn.URL = "http://www.helpexamples.com/flash/xml/reviews.xml";
reviews_xmlconn.trigger();

reviews_dg.setSize(320, 240);
reviews_dg.addColumn("name");
reviews_dg.addColumn("rating");
reviews_dg.addColumn("reviewDate");
reviews_dg.getColumnAt(0).width = 100;
reviews_dg.getColumnAt(1).width = 100;
reviews_dg.getColumnAt(2).width = 100;
reviews_dg.setStyle("alternatingRowColors", [0xFFFFFF, 0xF6F6F6]);

editorsChoice_ch.addEventListener("click", editorsChoiceListener);
function editorsChoiceListener(evt_obj:Object):Void {

reviews_ds.filtered = evt_obj.target.selected;
reviews_ds.filterFunc = function(item:Object):Boolean {

return (item.editorsChoice == 1);
};

}

Select Control > Test Movie. By default, the DataGrid component should display each of the
reviews from the external XML document. Clicking on the Editor’s Choice CheckBox
component causes the DataSet component to be filtered, so that only the specific reviews
flagged as an editor’s choice appear.

See also

DataSet.filtered

DataSet.find()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.find(searchValues)
364 Components Dictionary

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the values are found; otherwise, returns false.

Description

Method; searches the current view of the collection for an item with the field values specified
by searchValues. Which items are in the current view depends on any current filter and
range settings. If an item is found, it becomes the current item in the DataSet object.

The values specified by searchValues must be in the same order as the field list specified by
the current sort (see the example below).

If the current sort is not unique, the record (transfer object) found is nondeterministic. If you
want to find the first or last occurrence of a transfer object in a nonunique sort, use
DataSet.findFirst() or DataSet.findLast().

Conversion of the data specified is based on the underlying field’s type. For example, if you
specify ["05-02-02"] as a search value, the underlying date field is used to convert the value
using the date’s DataType.setAsString() method. If you specify [new
Date().getTime()], the date’s DataType.setAsNumber() method is used.

Example

The following example searches for an item in the current collection whose name and id fields
contain the values "Bobby" and 105, respectively. If found, DataSet.getItemId() is used to
get the unique identifier for the item in the collection, and DataSet.locateById() is used to
position the current iterator on that item.
var studentID:String = null;
student_ds.addSort("id", ["name","id"]);
// Locate the transfer object identified by "Bobby" and 105.
// Note that the order of the search fields matches those
// specified in addSort().
if (student_ds.find(["Bobby", 105])) {

studentID = student_ds.getItemId();
}
// Now use locateByID() to position the current iterator
// on the item in the collection whose ID matches studentID.
if (studentID != null) {

student_ds.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()
DataSet.find() 365

DataSet.findFirst()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.findFirst(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the items are found; otherwise, returns false.

Description

Method; searches the current view of the collection for the first item with the field values
specified by searchValues. Which items are in the current view depends on any current filter
and range settings.

The values specified by searchValues must be in the same order as the field list specified by
the current sort (see the example below).

Conversion of the data specified is based on the underlying field’s type. For example, if the
search value specified is ["05-02-02"], the underlying date field is used to convert the value
with the date’s setAsString() method. If the value specified is [new Date().getTime()],
the date’s setAsNumber() method is used.

Example

The following example uses DataSet.find() to search for an item in the current collection
whose name and id fields contain the values "Bobby" and 105, respectively. If found,
DataSet.getItemId() is used to get the unique identifier for that item, and
DataSet.locateById() is used to position the current iterator at that item.
366 Components Dictionary

To test this example, drag a DataSet component to the Stage, and give it an instance name of
student_ds. Add two properties, name (data type: String) and id (data type: Number) to the
DataSet by using the Schema tab of the Component inspector. If you don’t already have a
copy of the DataBindingClasses compiled clip in your library, drag a copy of the compiled
clip from the Classes library (Window > Common Libraries > Classes). Add the following
ActionScript to Frame 1 of the main timeline:
student_ds.addItem({name:"Barry", id:103});
student_ds.addItem({name:"Bobby", id:105});
student_ds.addItem({name:"Billy", id:107});

trace("Before find() > " + student_ds.currentItem.name); // Billy

var studentID:String;
student_ds.addSort("id", ["name","id"]);
if (student_ds.find(["Bobby", 105])) {

studentID = student_ds.getItemId();
student_ds.locateById(studentID);
trace("After find() > " + student_ds.currentItem.name); // Bobby

} else {
trace("We lost Billy!");

}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.findLast()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.findLast(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the items are found; otherwise, returns false.
DataSet.findLast() 367

Description

Method; searches the current view of the collection for the last item with the field values
specified by searchValues. Which items are in the current view depends on any current filter
and range settings.

The values specified by searchValues must be in the same order as the field list specified by
the current sort (see the example below).

Conversion of the data specified is based on the underlying field’s type. For example, if the
search value specified is ["05-02-02"], the underlying date field is used to convert the value
with the date’s setAsString() method. If the value specified is [new Date().getTime()],
the date’s setAsNumber() method is used.

Example

The following example searches for the last item in the current collection whose name and age
fields contain "Bobby" and "13". If found, DataSet.getItemId() is used to get the unique
identifier for the item in the collection, and DataSet.locateById() is used to position the
current iterator on that item.
var studentID:String = null;
student_ds.addSort("nameAndAge", ["name", "age"]);
// Locate the last transfer object with the specified values.
// Note that the order of the search fields matches those
// specified in addSort().
if (student_ds.findLast(["Bobby", "13"])) {

studentID = student_ds.getItemId();
}

// Now use locateByID() to position the current iterator
// on the item in the collection whose ID matches studentID.
if (studentID != null) {

student_ds.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()
368 Components Dictionary

DataSet.first()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.first()

Returns

Nothing.

Description

Method; makes the first item in the current view of the collection the current item. Which
items are in the current view depends on any current filter and range settings.

Example

The following code positions the data set inventory_ds at the first item in its collection,
and then displays the value of the price property contained by that item using the
DataSet.currentItem property.
inventory_ds.first();
trace("The price of the first item is:" + inventory_ds.currentItem.price);

The following example iterates over all of the items in the current view of the collection
(starting at its beginning) and performs a calculation on the price property of each item.
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});

my_ds.first();
while (my_ds.hasNext()) {

my_ds.currentItem.price *= 0.5; // Everything's 50% off!
my_ds.next();

}

for (var i in my_ds.items) {
trace(my_ds.items[i].name + ": " + my_ds.items[i].price);

}

See also

DataSet.last()
DataSet.first() 369

DataSet.getItemId()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.getItemId([index])

Parameters

index A number specifying the item in the current view for which to get the ID. This
parameter is optional.

Returns

A string.

Description

Method; returns the identifier of the current item in the collection, or that of the item
specified by index. This identifier is unique only in this collection and is assigned
automatically by DataSet.addItem().

Example

The following code gets the unique ID for the current item in the collection and then displays
it in the Output panel.
var itemNo:String = my_ds.getItemId();
trace("Employee id(" + itemNo + ")");

The following example uses DataSet.find() to search for an item in the current collection
whose name and id fields contain the values "Bobby" and 105, respectively. If found,
DataSet.getItemId() is used to get the unique identifier for that item, and
DataSet.locateById() is used to position the current iterator at that item.
370 Components Dictionary

To test this example, drag a DataSet component to the Stage, and give it an instance name of
student_ds. Add two properties, name (data type: String) and id (data type: Number) to the
DataSet by using the Schema tab of the Component inspector. If you don’t already have a
copy of the DataBindingClasses compiled clip in your library, drag a copy of the compiled
clip from the Classes library (Window > Common Libraries > Classes). Add the following
ActionScript to Frame 1 of the main timeline:
student_ds.addItem({name:"Barry", id:103});
student_ds.addItem({name:"Bobby", id:105});
student_ds.addItem({name:"Billy", id:107});

trace("Before find() > " + student_ds.currentItem.name); // Billy

var studentID:String;
student_ds.addSort("id", ["name","id"]);
if (student_ds.find(["Bobby", 105])) {

studentID = student_ds.getItemId();
student_ds.locateById(studentID);
trace("After find() > " + student_ds.currentItem.name); // Bobby

} else {
trace("We lost Billy!");

}

See also

DataSet.addItem()

DataSet.getIterator()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.getIterator()

Returns

A ValueListIterator object.
DataSet.getIterator() 371

Description

Method; returns a new iterator for this collection; this iterator is a clone of the current iterator
in use, including its current position in the collection. This method is mainly for advanced
users who want access to multiple, simultaneous views of the same collection.

Example

The following example uses DataSet.find() to search for an item in the current collection
whose name field contain the value "Bobby". Even though the myIterator iterator is
pointing to Bobby’s record, the main iterator of student_ds still points to the last record,
Billy.

To test this example, drag a DataSet component to the Stage, and give it an instance name of
student_ds. Add two properties, name (data type: String) and id (data type: Number) to the
DataSet component by using the Schema tab of the Component inspector. If you don’t
already have a copy of the DataBindingClasses compiled clip in your library, drag a copy of
the compiled clip from the Classes library (Window > Common Libraries > Classes). Add the
following ActionScript to Frame 1 of the main timeline:
import mx.data.to.ValueListIterator;

student_ds.addItem({name:"Barry", id:103});
student_ds.addItem({name:"Bobby", id:105});
student_ds.addItem({name:"Billy", id:107});

var myIterator:ValueListIterator = student_ds.getIterator();
myIterator.sortOn(["name"]);
myIterator.find({name:"Bobby"}).id = "999";

trace(student_ds.currentItem.name + " [" + student_ds.currentItem.id +
"]");
// Billy [107]

student_ds.addSort("id", ["name", "id"]);
if (student_ds.find({name:"Bobby", id:999})) {

student_ds.locateById(student_ds.getItemId());
trace(student_ds.currentItem.name + " [" + student_ds.currentItem.id +
"]");

// Bobby [999]
} else {

trace("We lost Billy!");
}

372 Components Dictionary

DataSet.getLength()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.getLength()

Returns

The number of items in the data set.

Description

Method; returns the number of items in the data set.

Example

The following example calls getLength():
//...
var my_ds:mx.data.components.DataSet;
my_ds = _parent.thisShelf.compactDiscs_ds;
trace ("Data set size is: " + my_ds.getLength());
//...

DataSet.hasNext()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.hasNext()

Returns

A Boolean value.
DataSet.hasNext() 373

Description

Method; returns false if the current iterator is at the end of its view of the collection;
otherwise, returns true.

Example

The following example iterates over all of the items in the current view of the collection
(starting at its beginning) and performs a calculation on the price property of each item.
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});

my_ds.first();
while (my_ds.hasNext()) {

my_ds.currentItem.price *= 0.5; // Everything's 50% off!
my_ds.next();

}

for (var i in my_ds.items) {
trace(my_ds.items[i].name + ": " + my_ds.items[i].price);

}

See also

DataSet.currentItem, DataSet.first(), DataSet.next()

DataSet.hasPrevious()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.hasPrevious()

Returns

A Boolean value.

Description

Method; returns false if the current iterator is at the beginning of its view of the collection;
otherwise, returns true.
374 Components Dictionary

Example

The following example iterates over all the items in the current view of the collection (starting
from the its last item) and performs a calculation on the price property of each item:
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});

my_ds.last();
while (my_ds.hasPrevious()) {

my_ds.currentItem.price *= 0.5; // Everything's 50% off!
my_ds.previous();

}

for (var i in my_ds.items) {
trace(my_ds.items[i].name + ": " + my_ds.items[i].price);

}

See also

DataSet.currentItem, DataSet.skip(), DataSet.previous()

DataSet.hasSort()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.hasSort(sortName)

Parameters

sortName A string that contains the name of a sort created with DataSet.addSort().

Returns

A Boolean value.

Description

Method; returns true if the sort specified by sortName exists; otherwise, returns false.
DataSet.hasSort() 375

Example

The following code tests whether a sort named “nameSort” exists. If the sort already exists, it
is made the current sort by means of DataSet.useSort(). If a sort by that name doesn’t exist,
one is created by means of DataSet.addSort(). To test this example, drag a DataSet
component and a List component to the Stage, and give them instance names of my_ds and
my_list respectively. Add a binding between the dataProvider property of the DataSet
component and the dataProvider property of the List component by using the Bindings tab
of the Component inspector. Create two properties in the schema of my_ds DataSet by using
the Schema tab of the Component inspector: name (data type: String) and years (data type:
Number). Add the following code on Frame 1 of the main timeline:
import mx.data.components.datasetclasses.DataSetIterator;
my_list.labelField = "name";

my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

if (my_ds.hasSort("nameSort")) {
my_ds.useSort("nameSort");

} else {
my_ds.addSort("nameSort", ["name"], DataSetIterator.Descending);

}

See also

DataSet.addSort(), DataSet.applyUpdates(), DataSet.useSort()

DataSet.isEmpty()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.isEmpty()

Returns

A Boolean value.
376 Components Dictionary

Description

Method; returns true if the specified DataSet object doesn’t contain any items (that is, if
dataSet.length == 0).

Example

The following code disables a Delete Record button (not shown) if the DataSet object it
applies to is empty:
if (my_ds.isEmpty()) {

delete_button.enabled = false;
}

See also

DataSet.length

DataSet.items
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.items

Description

Property; an array of items managed by my_ds.

Example

The following example assigns an array of objects to the items property of a DataSet object:
var recData:Array = [{id:0, firstName:"Mick", lastName:"Jones"},
 {id:1, firstName:"Joe", lastName:"Strummer"},
 {id:2, firstName:"Paul", lastName:"Simonon"}];
my_ds.items = recData;
DataSet.items 377

DataSet.itemClassName
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.itemClassName

Description

Property; a string indicating the name of the class that should be created when items are
added to the collection. The class you specify must implement the TransferObject interface,
shown below.
interface mx.data.to.TransferObject {

function clone():Object;
function getPropertyData():Object;
function setPropertyData(propData:Object):Void;

}

You can also set this property in the Property inspector.

To make the specified class available at runtime, you must also make a fully qualified reference
to this class somewhere in your SWF file’s code, as in the following code snippet:
var myItem:my.package.myItem;

A DataSetError exception is thrown if you try to modify the value of this property after the
DataSet.items array has been loaded.

For more information, see “TransferObject interface” on page 1233.

DataSet.iteratorScrolled
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
378 Components Dictionary

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.iteratorScrolled = function (eventObj:Object) {

// ...
};
dataSetInstance.addEventListener("iteratorScrolled", listenerObject);

Usage 2:
on (iteratorScrolled) {

// ...
}

Description

Event; generated immediately after the current iterator has scrolled to a new item in
the collection.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

scrolled A number that specifies how many items the iterator scrolled; positive values
indicate that the iterator moved forward in the collection; negative values indicate that it
moved backward in the collection.

Example

In the following example, the status bar of an application (not shown) is updated when the
position of the current iterator changes:
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

my_ds.addEventListener("iteratorScrolled", iteratorScrolledListener);

my_ds.first(); // Trigger the iteratorScrolled event.

function iteratorScrolledListener(evt_obj:Object):Void {
trace("The iterator was scrolled.");

}

DataSet.iteratorScrolled 379

DataSet.last()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.last()

Returns

Nothing.

Description

Method; makes the last item in the current view of the collection the current item.

Example

The following code, attached to a Button component, goes to the last item in the
DataSet collection:
function goLast(evt_obj:obj):Void {

inventory_ds.last();
}
goLast_button.addEventListener("click", goLast);
380 Components Dictionary

The following example iterates over all the items in the current view of the collection (starting
from the its last item) and performs a calculation on the price property of each item:
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});

my_ds.last();
while (my_ds.hasPrevious()) {

my_ds.currentItem.price *= 0.5; // Everything's 50% off!
my_ds.previous();

}

for (var i in my_ds.items) {
trace(my_ds.items[i].name + ": " + my_ds.items[i].price);

}

See also

DataSet.first()

DataSet.length
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.length

Description

Property (read-only); specifies the number of items in the current view of the collection. The
viewable number of items is based on the current filter and range settings.
DataSet.length 381

Example

In the following example, events are disabled before changes are made to items in the
collection, so that the DataSet object won’t affect performance by trying to refresh controls:
my_ds.addEventListener("modelChanged", onModelChanged);
function onModelChanged(evt_obj:Object):Void {

trace("model changed, DataSet now has " + evt_obj.target.length + "
items");

}
// Disable events for the data set.
my_ds.disableEvents();

my_ds.addItem({name:"Apples", price:14});
my_ds.addItem({name:"Bananas", price:8});

trace("Before:");
traceItems();

my_ds.last();
while(my_ds.hasPrevious()) {
 my_ds.price *= 0.5; // Everything's 50% off!
 my_ds.previous();
}

trace("After:");
traceItems();

// Tell the dataset it's time to update the controls now.
my_ds.enableEvents();

function traceItems(label:String):Void {
for (var i:Number = 0; i < my_ds.length; i++) {

trace("\t" + my_ds.items[i].name + " - $" + my_ds.items[i].price);
}
trace("");

}

DataSet.loadFromSharedObj()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
382 Components Dictionary

Usage
dataSetInstance.loadFromSharedObj(objName, [localPath])

Parameters

objName A string specifying the name of the shared object to retrieve. The name can
include forward slashes (for example, “work/addresses”). Spaces and the following characters
are not allowed in the specified name:
~ % & \ ; : " ' , < > ? #

localPath An optional string parameter that specifies the full or partial path to the SWF
file that created the shared object. This string is used to determine where the object is stored
on the user’s computer. The default value is the SWF file’s full path.

Returns

Nothing.

Description

Method; loads all of the relevant data needed to restore this DataSet collection from a shared
object. To save a DataSet collection to a shared object, use DataSet.saveToSharedObj().
The DataSet.loadFromSharedObject() method overwrites any data or pending changes
that might exist in this DataSet collection. Note that the instance name of the DataSet
collection is used to identify the data in the specified shared object.

This method throws a DataSetError exception if the specified shared object isn’t found or if
there is a problem retrieving the data from it.

Example

The following example attempts to load a shared object named webapp/customerInfo
associated with the data set named my_ds. The method is called within a try...catch
code block.
import mx.data.components.datasetclasses.DataSetError;
try {

my_ds.loadFromSharedObj("webapp/customerInfo");
} catch(e:DataSetError) {

trace("Unable to load shared object.");
}

See also

DataSet.saveToSharedObj()
DataSet.loadFromSharedObj() 383

DataSet.locateById()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.locateById(id)

Parameters

id A string identifier for the item in the collection to be located.

Returns

A Boolean value.

Description

Method; positions the current iterator on the collection item whose ID matches id. This
method returns true if the specified ID can be matched to an item in the collection;
otherwise, it returns false.

Example

The following example uses DataSet.find() to search for an item in the current collection
whose name and id fields contain the values "Bobby" and 105, respectively. If found,
DataSet.getItemId() is used to get the unique identifier for that item, and
DataSet.locateById() is used to position the current iterator at that item.
384 Components Dictionary

To test this example, drag a DataSet component to the Stage, and give it an instance name of
student_ds. Add two properties, name (String) and id (Number) to the DataSet by using the
Schema tab of the Component inspector. If you don’t already have a copy of the
DataBindingClasses compiled clip in your library, drag a copy of the compiled clip from
the Classes library (Window > Common Libraries > Classes). Add the following ActionScript
to Frame 1 of the main timeline:
student_ds.addItem({name:"Barry", id:103});
student_ds.addItem({name:"Bobby", id:105});
student_ds.addItem({name:"Billy", id:107});

trace("Before find() > " + student_ds.currentItem.name); // Billy

var studentID:String;
student_ds.addSort("id", ["name","id"]);
if (student_ds.find(["Bobby", 105])) {

studentID = student_ds.getItemId();
student_ds.locateById(studentID);
trace("After find() > " + student_ds.currentItem.name); // Bobby

} else {
trace("We lost Billy!");

}

See also

DataSet.applyUpdates(), DataSet.find(), DataSet.getItemId()

DataSet.logChanges
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.logChanges

Description

Property; a Boolean value that specifies whether changes made to the data set, or to its items,
should (true) or should not (false) be recorded in DataSet.deltaPacket.
DataSet.logChanges 385

When this property is set to true, operations performed at the collection level and item level
are logged. Collection-level changes include the addition and removal of items from the
collection. Item-level changes include property changes made to items and method calls made
on items by means of the DataSet component.

Example

The following example disables logging for the DataSet object named userData.
user_ds.logChanges = false;

See also

DataSet.deltaPacket

DataSet.modelChanged
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Description

Usage 1:
var listenerObject:Object = new Object();
listenerObject.modelChanged = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("modelChanged", listenerObject);

Usage 2:
on (modelChanged) {

// ...
}

Description

Event; broadcast when the collection changes in some way—for example, when items are
removed or added to the collection, when the value of an item’s property changes, or when the
collection is filtered or sorted.
386 Components Dictionary

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

firstItem The index (number) of the first item in the collection that was affected by
the change.

lastItem The index (number) of the last item in the collection that was affected by the
change (equals firstItem if only one item was affected).

fieldName A string that contains the name of the field being affected. This property is
undefined unless the change was made to a property of the DataSet object.

eventName A string that describes the change that took place. This can be one of the
following values:

Example

In the following example, the modelChanged event gets dispatched whenever an item is
added or removed from the data set:
my_ds.addEventListener("modelChanged", onModelChanged);
function onModelChanged(evt_obj:Object):Void {

trace("[event =" + evt_obj.eventName + "] the data set now has " +
evt_obj.target.items.length + " items.");

}
my_ds.addItem({name:"Apples", price:14});
my_ds.addItem({name:"Bananas", price:8});
my_ds.removeItemAt(0);

String value Description

"addItems" A series of items has been added.

"filterModel" The model has been filtered, and the view needs refreshing (reset scroll
position).

"removeItems" A series of items has been deleted.

"schemaLoaded" The fields definition of the data provider has been declared.

"sort" The data has been sorted.

"updateAll" The entire view needs refreshing, excluding scroll position.

"updateColumn" An entire field’s definition in the data provider needs refreshing.

"updateField" A field in an item has been changed and needs refreshing.

"updateItems" A series of items needs refreshing.
DataSet.modelChanged 387

In the following example, a Delete Item button is disabled if the items have been removed
from the collection and the target DataSet object has no more items:
my_ds.addEventListener("modelChanged", onModelChanged);
function onModelChanged(evt_obj:Object):Void {

trace("model changed, DataSet now has " + evt_obj.target.items.length + "
items");

}
// Disable events for the data set.
my_ds.disableEvents();

my_ds.addItem({name:"Apples", price:14});
my_ds.addItem({name:"Bananas", price:8});

trace("Before:");
traceItems();

my_ds.last();
while (my_ds.hasPrevious()) {
 my_ds.price *= 0.5; // Everything's 50% off!
 my_ds.previous();
}

trace("After:");
traceItems();

// Tell the dataset it's time to update the controls now.
my_ds.enableEvents();

function traceItems(label:String):Void {
for (var i:Number = 0; i < my_ds.items.length; i++) {

trace("\t" + my_ds.items[i].name + " - $" + my_ds.items[i].price);
}
trace("");

}

See also

DataSet.isEmpty()
388 Components Dictionary

DataSet.newItem
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.newItem = function (eventObj:Object) {

// ...
};
dataSetInstance.addEventListener("newItem", listenerObject);

Usage 2:
on (newItem) {

// ...
}

Description

Event; broadcast when a new transfer object is constructed by means of
DataSet.createItem(). A listener for this event can make modifications to the item before
it is added to the collection.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

item A referenece to the item that was created.

Example

The following example makes modifications to a newly created item before it’s added to
the collection:
function newItemEvent(evt_obj:Object):Void {

var employee:Object = evt_obj.item;
employee.name = "newGuy";
// Property data happens to be XML.
employee.zip =
employee.getPropertyData().firstChild.childNodes[1].attributes.zip;

}
employees_ds.addEventListener("newItem", newItemEvent);
DataSet.newItem 389

DataSet.next()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.next()

Returns

Nothing.

Description

Method; makes the next item in the current view of the collection the current item. Which
items are in the current view depends on any current filter and range settings.

Example

The following example iterates over all the items in the current view of the collection (starting
at its beginning) and performs a calculation on the price property of each item:
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});

my_ds.first();
while (my_ds.hasNext()) {

my_ds.currentItem.price *= 0.5; // Everything's 50% off!
my_ds.next();

}

for (var i in my_ds.items) {
trace(my_ds.items[i].name + ": " + my_ds.items[i].price);

}

See also

DataSet.first(), DataSet.hasNext()
390 Components Dictionary

DataSet.previous()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.previous()

Returns

Nothing.

Description

Method; makes the previous item in the current view of the collection the current item.
Which items are in the current view depends on any current filter and range settings.

Example

The following example loops over each item in a data set and traces each item’s price:
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});
my_ds.last();
while (my_ds.hasPrevious()) {

trace(my_ds.currentItem.price);
my_ds.previous();

}

The following example loops over all the items in the current view of the collection, starting
from the last item, and performs a calculation on a field in each item:
my_ds.last();
while (my_ds.hasPrevious()) {

my_ds.price *= 0.5; // Everything's 50% off!
my_ds.previous();

}

See also

DataSet.first(), DataSet.hasNext()
DataSet.previous() 391

DataSet.properties
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.properties

Description

Property (read-only); returns an object that contains all of the exposed properties (fields) for
any transfer object within this collection.

Example

The following example displays all the names of the properties in the DataSet object named
my_ds:
var i:String;
for (i in my_ds.properties) {

trace("field '" + i + "' has value " + my_ds.properties[i]);
}

DataSet.readOnly
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.readOnly

Description

Property; a Boolean value that specifies whether this collection can be modified (false) or is
read-only (true). Setting this property to true prevents updates to the collection. The default
value is false.

You can also set this property in the Property inspector.
392 Components Dictionary

Example

The following example makes the DataSet object named my_ds read-only, and then attempts
to change the value of a property that belongs to the current item in the collection. This
attempt throws a DataSetError exception.
import mx.data.components.datasetclasses.DataSetError;
my_ds.readOnly = true;
try {

// This throws an exception.
my_ds.addItem({name:'Joe'});

} catch (e:DataSetError) {
// Sort specified 'name' doesn’t exist for DataSet 'my_ds'.
trace("DataSetError >> " + e.message);

}

See also

DataSet.currentItem

DataSet.removeAll()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.removeAll()

Returns

Nothing.

Description

Method; removes all items in the DataSet collection.

Example

The following example removes all the items in the DataSet collection contact_ds:
contact_ds.removeAll();
DataSet.removeAll() 393

DataSet.removeItem
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.removeItem = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("removeItem", listenerObject);

Usage 2:
on (removeItem) {

// ...
}

Description

Event; generated just before a new item is deleted from this collection.

If you set the result property of the event object to false, the delete operation is canceled; if
you set it to true, the delete operation is allowed.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "removeItem".

item A reference to the item in the collection to be removed.

result A Boolean value that specifies whether the item should be removed. By default, this
value is true.
394 Components Dictionary

Example

In the following example, an on(removeItem) event handler cancels the deletion of the new
item if a user-defined function named userHasAdminPrivs() returns false; otherwise, the
deletion is allowed:
on (removeItem) {

if (globalObj.userHasAdminPrivs()) {
// Allow the item deletion.
eventObj.result = true;

} else {
// Don’t allow the item deletion; user doesn’t have admin privileges.
eventObj.result = false;

}
}

The following removeItem event handler cancels the removal of the existing item if a user-
defined function named userHasAdminPrivs() returns false; otherwise, the item removal
is allowed:
function userHasAdminPrivs():Boolean {

return false; // change this to true to allow inserts
}
function removeItemListener(evt_obj:Object):Void {

if (userHasAdminPrivs()) {
// Allow the item removal.
evt_obj.result = true;
trace("Item removed");

} else {
// Don't allow item removal; user doesn't have admin privileges.
evt_obj.result = false;
trace("Error, insufficient permissions");

}
}
my_ds.addEventListener("removeItem", removeItemListener);
my_ds.addItem({name:"item a", price:16});
my_ds.addItem({name:"item b", price:9});
my_ds.removeItemAt(0);

See also

DataSet.addItem
DataSet.removeItem 395

DataSet.removeItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.removeItem([item])

Parameters

item The item to be removed. This parameter is optional.

Returns

A Boolean value. Returns true if the item was successfully removed; otherwise, returns
false.

Description

Method; removes the specified item from the collection, or removes the current item if
the item parameter is omitted. This operation is logged to DataSet.deltaPacket if
DataSet.logChanges is true.

Example

The following code removes the item at the current iterator position. To test this example, add
a DataSet component to the Stage, and give it an instance name of my_ds. Add the following
code to Frame 1 of the main timeline:
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

trace(my_ds.getLength()); // 5
trace(my_ds.currentItem.name); // Frank
my_ds.removeItem();
trace(my_ds.getLength()); // 4
trace(my_ds.currentItem.name); // Michael

See also

DataSet.deltaPacket, DataSet.logChanges
396 Components Dictionary

DataSet.removeItemAt()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.removeItemAt(index)

Parameters

index A number greater than or equal to 0. This number is the index of the item to remove.

Returns

A Boolean value indicating whether the item was removed.

Description

Method; removes the item at the specified index. The indices after the removed index collapse
by one.

This method triggers the modelChanged event with the event name removeItems.

In addition, it triggers the DataSet.removeItem event, which contains the result and item
properties. The result property is used to determine if the item (referenced by the item
property of the event) can be removed. By default, the result property is set to true. If no
event listener is specified for the removeItem event, the item is removed by default.

An event listener can stop the item from being removed by listening for the removeItem event
and setting the result property of the event to false, as shown in the following example:
function removeItem(evt_obj:Object):Void {

// Don’t allow anyone to remove the item with customerId == 0.
evt_obj.result = (evt_obj.item.customerId != 0);

}

DataSet.removeItemAt() 397

Example

The following example removes an item from the data set at the first position:
my_ds.addItem({name:"Milton", years:3});
my_ds.addItem({name:"Mark", years:3});
my_ds.addItem({name:"Sarah", years:1});
my_ds.addItem({name:"Michael", years:2});
my_ds.addItem({name:"Frank", years:2});

trace(my_ds.getLength()); // 5
trace(my_ds.currentItem.name); // Frank
my_ds.removeItemAt(0);
trace(my_ds.getLength()); // 4
trace(my_ds.currentItem.name); // Frank

DataSet.removeRange()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.removeRange()

Returns

Nothing.

Description

Method; removes the current end point settings specified by DataSet.setRange() for the
current iterator.
398 Components Dictionary

Example
my_ds.addSort("name_id", ["name", "id"]);
my_ds.setRange(["Bobby", 105],["Cathy", 110]);
while (my_ds.hasNext()) {

my_ds.gradeLevel ="5"; // Change all of the grades in this range.
my_ds.next();

}
my_ds.removeRange();
my_ds.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(),
DataSet.removeSort(), DataSet.setRange()

DataSet.removeSort()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.removeSort(sortName)

Parameters

sortName A string that specifies the name of the sort to remove.

Returns

Nothing.

Description

Method; removes the specified sort from this DataSet object if the sort exists. If the specified
sort does not exist, this method throws a DataSetError exception.
DataSet.removeSort() 399

Example

The following example creates a range of items in the DataSet component and modifies the
gradeLevel property of each item. To test this example, drag a DataSet component to the
Stage, and give it an instance name of my_ds. With the DataSet component selected, create
three new properties in the schema of the DataSet component by using the Schema tab in the
Component inspector. Name the new properties name, id, and gradeLevel, and give them
the data types of String, Number, and Number respectively. Add a copy of the
DataBindingClasses compiled clip from the Classes common library (Window > Common
Libraries > Classes) and add the following ActionScript to Frame 1 of the main timeline:
my_ds.addItem({name:"Billy", id:104, gradeLevel:4});
my_ds.addItem({name:"Bobby", id:105, gradeLevel:4});
my_ds.addItem({name:"Carrie", id:106, gradeLevel:4});
my_ds.addItem({name:"Cathy", id:110, gradeLevel:4});
my_ds.addItem({name:"Mally", id:112, gradeLevel:3});

my_ds.addSort("name_id", ["name", "id"]);
my_ds.setRange(["Bobby", 105], ["Cathy", 110]);
while (my_ds.hasNext()) {

my_ds.gradeLevel = "5"; // Change all of the grades in this range.
my_ds.next();

}
my_ds.removeRange();
my_ds.removeSort("name_id");

for (var i=0; i<my_ds.length; i++) {
trace(my_ds.items[i].name + " > " + my_ds.items[i].gradeLevel);

}

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(),
DataSet.removeRange(), DataSet.setRange()
400 Components Dictionary

DataSet.resolveDelta
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.resolveDelta = function (eventObj:Object):Void {

// ...
};
dataSetInstance.addEventListener("resolveDelta", listenerObject);

Usage 2:
on (resolveDelta) {

// ...
}

Description

Event; broadcast when DataSet.deltaPacket is assigned a delta packet whose transaction
ID matches that of a delta packet previously retrieved from the DataSet object, and that has
messages associated with any of the deltas or DeltaItem objects contained by that delta packet.

This event gives you the chance to reconcile any error returned from the server while
attempting to apply changes previously submitted. Typically, you use this event to display a
“reconcile dialog box” with the conflicting values, allowing the user to make appropriate
modifications to the data so that it can be re-sent.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "resolveDelta".

data An array of deltas and associated DeltaItem objects that have nonzero length messages.
DataSet.resolveDelta 401

Example

The following example displays a form called reconcileForm (not shown) and calls a method
on that form object (setReconcileData()) that allows the user to reconcile any conflicting
values returned by the server:
import mx.data.components.datasetclasses.*;
my_ds.addEventListener("resolveDelta", onResolveDelta);
function onResolveDelta(eventObj:Object) {

reconcileForm.visible = true;
reconcileForm.setReconcileData(eventObj.data);

}
// in the reconcileForm code
function setReconcileData(data:Array):Void {

var di:DeltaItem;
var ops:Array = ["property", "method"];
var cl:Array;
// change list
var msg:String;
for (var i = 0; i<data.length; i++) {

cl = data[i].getChangeList();
for (var j = 0; j<cl.length; j++) {

di = cl[j];
msg = di.message;
if (msg.length>0) {

trace("The following problem occurred '"+msg+"' while performing a
'"+ops[di.kind]+"' modification on/with '"+di.name+"' current server
value ["+di.curValue+"], value sent ["+di.newValue+"] Please fix!");

}
}

}
}

DataSet.saveToSharedObj()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.saveToSharedObj(objName, [localPath])
402 Components Dictionary

Parameters

objName A string that specifies the name of the shared object to create. The name can
include forward slashes (for example, “work/addresses”). Spaces and the following characters
are not allowed in the specified name:
~ % & \ ; : " ' , < > ? #

localPath An optional string parameter that specifies the full or partial path to the SWF
file that created the shared object. This string is used to determine where the object is stored
on the user’s computer. The default value is the SWF file’s full path.

Returns

Nothing.

Description

Method; saves all of the relevant data needed to restore this DataSet collection to a shared
object. This allows users to work when disconnected from the source data, if it is a network
resource. This method overwrites any data that might exist within the specified shared object
for this DataSet collection. To restore a DataSet collection from a shared object, use
DataSet.loadFromSharedObj(). Note that the instance name of the DataSet collection is
used to identify the data within the specified shared object.

If the shared object can’t be created or there is a problem flushing the data to it, this method
throws a DataSetError exception.

Example

The following example calls saveToSharedObj() in a try..catch block and displays an
error if there is a problem saving the data to the shared object.
import mx.data.components.datasetclasses.DataSetError;
try {

my_ds.saveToSharedObj("webapp/customerInfo");
} catch(e:DataSetError) {

trace("Unable to create shared object”);
}

See also

DataSet.loadFromSharedObj()
DataSet.saveToSharedObj() 403

DataSet.schema
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.schema

Description

Property; provides the XML representation of the schema for this DataSet object. The XML
assigned to this property must have the following format:
<?xml version="1.0"?>
<properties>

<property name="propertyName">
<type name="dataType" />
<encoder name="dataType">

<options>
<dataFormat>format options<dataFormat/>

<options/>
<encoder/>
<kind name="dataKind">
</kind>

</property>
<property> ... </property>
...

</properties>

A DataSetError exception is thrown if the XML specified does not follow the above format.

Example

The following example sets the schema of the data set my_ds to a new XML object containing
appropriately formatted XML:
my_ds.schema = new XML("<properties><property name="billable"> ..etc.. </

properties>");
404 Components Dictionary

DataSet.selectedIndex
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.selectedIndex

Description

Property; specifies the selected index in the collection. You can bind this property to the
selected item in a DataGrid or List component, and vice versa. For a complete example that
demonstrates this, see “Creating an application with the DataSet component” on page 333.

Example

The following example sets the selected index of a DataSet object (user_ds) to the selected
index in a DataGrid component (user_dg).
user_ds.selectedIndex = user_dg.selectedIndex;

DataSet.setIterator()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.setIterator(iterator)

Parameters

iterator An iterator object returned by a call to DataSet.getIterator().

Returns

Nothing.
DataSet.setIterator() 405

Description

Method; assigns the specified iterator to this DataSet object and makes it the current iterator.
The specified iterator must come from a previous call to DataSet.getIterator() on the
DataSet object to which it is being assigned; otherwise; a DataSetError exception is thrown.

Example
import mx.data.to.ValueListIterator;
myIterator:ValueListIterator = my_ds.getIterator();
myIterator.sortOn(["name"]);
my_ds.setIterator(myIterator);

See also

DataSet.getIterator()

DataSet.setRange()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.setRange(startValues, endValues)

Parameters

startValues An array of key values of the properties of the first transfer object in
the range.

endValues An array of key values of the properties of the last transfer object in the range.

Returns

Nothing.

Description

Method; sets the end points for the current iterator. The end points define a range in which
the iterator operates. This is only valid if a valid sort has been set for the current iterator by
means of DataSet.addSort().

Setting a range for the current iterator is more efficient than using a filter function if you want
a grouping of values (see DataSet.filterFunc).
406 Components Dictionary

Example

The following example selects a range of students and traces each of their names to the
Output panel:
my_ds.addItem({name:"Billy", id:104, gradeLevel:4});
my_ds.addItem({name:"Bobby", id:105, gradeLevel:4});
my_ds.addItem({name:"Carrie", id:106, gradeLevel:4});
my_ds.addItem({name:"Cathy", id:110, gradeLevel:4});
my_ds.addItem({name:"Mally", id:112, gradeLevel:3});
my_ds.addSort("name_id",["name", "id"]);
my_ds.setRange(["Bobby", 105],["Cathy", 110]);
while (my_ds.hasNext()) {

trace(my_ds.name); // Bobby..Cathy
my_ds.next();

}

See also

DataSet.addSort(), DataSet.hasNext(), DataSet.next(), DataSet.removeRange(),
DataSet.removeSort()

DataSet.skip()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.skip(offSet)

Parameters

offSet An integer specifying the number of records by which to move the iterator position.

Returns

Nothing.

Description

Method; moves the current iterator’s position forward or backward in the collection by the
amount specified by offSet. Positive offSet values move the iterator’s position forward;
negative values move it backward.
DataSet.skip() 407

If the specified offset is beyond the beginning (or end) of the collection, the iterator is
positioned at the beginning (or end) of the collection.

Example

The following example positions the current iterator at the first item in the collection, moves
to the next-to-last item, and performs a calculation on a field belonging to that item:
my_ds.addItem({name:"Billy", id:104, gradeLevel:4});
my_ds.addItem({name:"Carrie", id:106, gradeLevel:4});
my_ds.addItem({name:"Mally", id:112, gradeLevel:3});
my_ds.addItem({name:"Cathy", id:110, gradeLevel:4});
my_ds.addItem({name:"Bobby", id:105, gradeLevel:4});
my_ds.first();
var itemsToSkip:Number = 3;
trace(my_ds.currentItem.name); // Billy
my_ds.skip(itemsToSkip);
trace(my_ds.currentItem.name); // Mally

DataSet.useSort()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
dataSetInstance.useSort(sortName, order)

Parameters

sortName A string that contains the name of the sort to use.

order An integer value that indicates the sort order for the sort; the value must be
DataSetIterator.Ascending or DataSetIterator.Descending.

Returns

Nothing.

Description

Method; switches the sort for the current iterator to the one specified by sortName, if it exists.
If the specified sort does not exist, a DataSetError exception is thrown.

To create a sort, use DataSet.addSort().
408 Components Dictionary

Example

The following example uses DataSet.hasSort() to determine if a sort named "customer"
exists. If it does, the code calls DataSet.useSort() to make "customer" the current sort.
Otherwise, the code creates a sort by that name using DataSet.addSort().
if (my_ds.hasSort("customer")) {

my_ds.useSort("customer");
} else {

my_ds.addSort("customer", ["customer"], DataSetIterator.Descending);
}

See also

DataSet.applyUpdates(), DataSet.hasSort()
DataSet.useSort() 409

410 Components Dictionary

14

CHAPTER 14

DateChooser component
(Flash Professional only)
The DateChooser component is a calendar that allows users to select a date. It has buttons
that allow users to scroll through months and click a date to select it. You can set parameters
that indicate the month and day names, the first day of the week, and disabled dates, as well as
highlighting the current date.

A live preview of each DateChooser instance reflects the values indicated by the Property
inspector or Component inspector during authoring.

Using the DateChooser component
(Flash Professional only)
The DateChooser can be used anywhere you want a user to select a date. For example, you
could use a DateChooser component in a hotel reservation system with certain dates
selectable and others disabled. You could also use the DateChooser component in an
application that displays current events, such as performances or meetings, when a user
chooses a date.

DateChooser parameters
You can set the following authoring parameters for each DateChooser component instance in
the Property inspector or in the Component inspector (Window > Component Inspector
menu option):

dayNames sets the names of the days of the week. The value is an array and the default value
is ["S", "M", "T", "W", "T", "F", "S"].

disabledDays indicates the disabled days of the week. This parameter is an array that can
have up to seven values. The default value is [] (an empty array).

firstDayOfWeek indicates which day of the week (0-6, with 0 being the first element of the
dayNames array) is displayed in the first column of the date chooser. This property changes
the display order of the day columns.
411

monthNames sets the month names that are displayed in the heading row of the calendar.
The value is an array and the default value is ["January", "February", "March",
"April", "May", "June", "July", "August", "September",

"October","November", "December"].

showToday indicates whether to highlight today’s date. The default value is true.

You can set the following additional parameters for each DateChooser component instance in
the Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the DateChooser
component using its properties, methods, and events. For more information, see
“DateChooser class (Flash Professional only)” on page 417.

Creating an application with the DateChooser
component
The following procedure explains how to add a DateChooser component to an application
while authoring. In this example, the date chooser allows a user to pick a date for an airline
reservation system. All dates before October 15th must be disabled. Also, a range in
December must be disabled to create a holiday black-out period, and Mondays must
be disabled.

To create an application with the DateChooser component:

1. Double-click the DateChooser component in the Components panel to add it to the Stage.

2. In the Property inspector, enter the instance name flightCalendar.

3. In the Actions panel, enter the following code on Frame 1 of the timeline to set the range
of selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2003, 9, 15),

rangeEnd:new Date(2003, 11, 31)}

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector will have no visible
effect.
412 DateChooser component (Flash Professional only)

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This
defines an upper and lower end of a range in which the user can select a date.

4. In the Actions panel, enter the following code on Frame 1 of the timeline to set a range of
holiday disabled dates:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 26)}];

5. In the Actions panel, enter the following code on Frame 1 of the timeline to
disable Mondays:
flightCalendar.disabledDays=[1];

6. Select Control > Test Movie.

To create a DateChooser component instance using ActionScript:

1. Drag the DateChooser component from the Components panel to the current
document’s library.

2. Select the first frame in the main Timeline, open the Actions panel, and enter the
following code:
this.createClassObject(mx.controls.DateChooser, "my_dc", 1);

This script uses the method “UIObject.createClassObject()” on page 1362 to create the
DateChooser instance, and then sizes and positions the grid.

3. Select Control > Test Movie.

Customizing the DateChooser
component (Flash Professional only)
You can transform a DateChooser component horizontally and vertically while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method
(see UIObject.setSize()).

Using styles with the DateChooser component
You can set style properties to change the appearance of a DateChooser instance. If the name
of a style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.
Customizing the DateChooser component (Flash Professional only) 413

A DateChooser component supports the following styles:

Style Theme Description

themeColor Halo The glow color for the rollover and selected dates.
Possible values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen".

backgroundColor Both The background color. The default value is 0xEFEBEF
(light gray).

borderColor Both The border color. The default value is 0x919999.

The DateChooser component uses a solid single-pixel
line as its border. This border cannot be modified
through styles or skinning.

headerColor Both The background color for the component heading. The
default color is white.

rollOverColor Both The background color of a rolled-over date. The default
value is 0xE3FFD6 (bright green) with the Halo theme
and 0xAAAAAA (light gray) with the Sample theme.

selectionColor Both The background color of the selected date. The default
value is 0xCDFFC1 (light green) with the Halo theme
and 0xEEEEEE (very light gray) with the Sample theme.

todayColor Both The background color for the today’s date. The default
value is 0x666666 (dark gray).

color Both The text color. The default value is 0x0B333C with the
Halo theme and blank with the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".
414 DateChooser component (Flash Professional only)

The DateChooser component uses four categories of text to display the month name, the days
of the week, today’s date, and regular dates. The text style properties set on the DateChooser
component itself control the regular date text and provide defaults for the other text. To set
text styles for specific categories of text, use the following class-level style declarations.

The following example demonstrates how to set the month name and days of the week to a
deep red color.
_global.styles.HeaderDateText.setStyle("color", 0x660000);
_global.styles.WeekDayStyle.setStyle("color", 0x660000);

Using skins with the DateChooser component
The DateChooser component uses skins to represent the forward and back month buttons
and the today indicator. To skin the DateChooser component while authoring, modify skin
symbols in the Flash UI Components 2/Themes/MMDefault/DateChooser Assets/States
folder in the library of one of the themes’ FLA files. For more information, see “About
skinning components” in Using Components.

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() returns "none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

Declaration name Description

HeaderDateText The month name.

WeekDayStyle The days of the week.

TodayStyle Today’s date.

Style Theme Description
Customizing the DateChooser component (Flash Professional only) 415

Only the month scrolling buttons can be dynamically skinned in this component. A
DateChooser component uses the following skin properties:

The button symbols are used exactly as is, without applying colors or resizing. The size is
determined by the symbol during authoring.

To create movie clip symbols for DateChooser skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library and then select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the DateChooser Assets folder to the library for your document.

4. Expand the DateChooser Assets/States folder in the library of your document.

5. Open the symbols that you want to customize for editing.

For example, open the backMonthDown symbol.
6. Customize the symbol as desired.

For example, change the tint of the arrow to red.
7. Repeat steps 5-6 for all symbols that you want to customize.

For example, change the tint of the forward arrow down symbol to match the back arrow.

Property Description

backMonthButtonUpSymbolName The month back button up state. The default value is
backMonthUp.

backMonthButtonDownSymbolName The month back button pressed state. The default
value is backMonthDown.

backMonthButtonDisabledSymbolName The month back button disabled state. The default
value is backMonthDisabled.

fwdMonthButtonUpSymbolName The month forward button up state. The default value
is fwdMonthUp.

fwdMonthButtonDownSymbolName The month forward button pressed state. The default
value is fwdMonthDown.

fwdMonthButtonDisabledSymbolName The month forward button disabled state. The default
value is fwdMonthDisabled.
416 DateChooser component (Flash Professional only)

8. Click the Back button to return to the main timeline.

9. Drag a DateChooser component to the Stage.

10. Select Control > Test Movie.

DateChooser class (Flash Professional
only)
Inheritance MovieClip > UIObject class > UIComponent class > DateChooser

ActionScript Class Name mx.controls.DateChooser

The properties of the DateChooser class let you access the selected date and the displayed
month and year. You can also set the names of the days and months, indicate disabled dates
and selectable dates, set the first day of the week, and indicate whether the current date should
be highlighted.

Setting a property of the DateChooser class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.DateChooser.version);

N
O

T
E

The DateChooser Assets/States folder also contains a Day Skins folder with a single
skin element, cal_todayIndicator. This element can be modified during authoring to
customize the today indicator. However, it cannot be changed dynamically on a
particular DateChooser instance to use a different symbol. In addition, the
cal_todayIndicator symbol must be a solid single-color graphic, because the
DateChooser component applies the todayColor color to the graphic as a whole. The
graphic may have cut-outs, but keep in mind that the default text color for today’s
date is white and the default background for the DateChooser is white, so a cut-out
in the middle of the today indicator skin element would make today’s date
unreadable unless either the background color or the today text color is
also changed.

N
O

T
E

The code trace(myDC.version); returns undefined.
DateChooser class (Flash Professional only) 417

Method summary for the DateChooser class
There are no methods exclusive to the DateChooser class.

Methods inherited from the UIObject class
The following table lists the methods the DateChooser class inherits from the UIObject class.
When calling these methods from the DateChooser object, use the form
dateChooserInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the DateChooser class inherits from the UIComponent
class. When calling these methods from the DateChooser object, use the form
dateChooserInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
418 DateChooser component (Flash Professional only)

Property summary for the DateChooser class
The following table lists the properties that are exclusive to the DateChooser class.

Properties inherited from the UIObject class
The following table lists the properties the DateChooser class inherits from the UIObject
class. When accessing these properties from the DateChooser object, use the form
dateChooserInstance.propertyName.

Property Description

DateChooser.dayNames An array indicating the names of the days of the week.

DateChooser.disabledDays An array indicating the days of the week that are disabled for
all applicable dates in the date chooser.

DateChooser.disabledRanges A range of disabled dates or a single disabled date.

DateChooser.displayedMonth A number indicating an element in the monthNames array to
display in the date chooser.

DateChooser.displayedYear A number indicating the year to display.

DateChooser.firstDayOfWeek A number indicating an element in the dayNames array to
display in the first column of the date chooser.

DateChooser.monthNames An array of strings indicating the month names.

DateChooser.selectableRange A single selectable date or a range of selectable dates.

DateChooser.selectedDate A Date object indicating the selected date.

DateChooser.showToday A Boolean value indicating whether the current date
is highlighted.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.
DateChooser class (Flash Professional only) 419

Properties inherited from the UIComponent class
The following table lists the properties the DateChooser class inherits from the
UIComponent class. When accessing these properties from the DateChooser object, use the
form dateChooserInstance.propertyName.

Event summary for the DateChooser class
The following table lists the events that are exclusive to the DateChooser class.

Events inherited from the UIObject class
The following table lists the events the DateChooser class inherits from the UIObject class.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

DateChooser.change Broadcast when a date is selected.

DateChooser.scroll Broadcast when the month buttons are clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

Property Description
420 DateChooser component (Flash Professional only)

Events inherited from the UIComponent class
The following table lists the events the DateChooser class inherits from the
UIComponent class.

DateChooser.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// ...
};
dateChooserInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

//...
}

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
DateChooser.change 421

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses a dispatcher/listener event model. A component instance
(dataChooserInstance) dispatches an event (in this case, change) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create.
You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an
event object (eventObject) to the listener object method. Each event object has properties
that contain information about the event. You can use these properties to write code that
handles the event. Finally, you call the EventDispatcher.addEventListener() method on
the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
DateChooser instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the date chooser my_dc, sends “_level0.my_dc” to the Output panel:
on (change) {

trace(this);
}

Example

This example, written on a frame of the timeline, sends a message to the Output panel when a
DateChooser instance called my_dc is changed. The first line of code creates a listener object
called form. The second line defines a function for the change event on the listener object.
Inside the function is a trace() statement that uses the event object that is automatically
passed to the function, in this example eventObj, to generate a message. The target
property of an event object is the component that generated the event (in this example,
my_dc).
// Create listener object.
var dcListener:Object = new Object();
dcListener.change = function(evt_obj:Object) {
 var thisDate:Date = evt_obj.target.selectedDate;
 trace("date selected: " + thisDate);
};

// Add listener object to date chooser.
my_dc.addEventListener("change", dcListener);
422 DateChooser component (Flash Professional only)

DateChooser.dayNames
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at
index position 0) and the rest of the day names follow in order. The default value is ["S",
"M", "T", "W", "T", "F", "S"].

Example

The following example changes the value of the days of the week:
my_dc.dayNames = new Array("Su", "Mo", "Tu", "We", "Th", "Fr", "Sa");

DateChooser.disabledDays
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall
on the specified day are disabled. The elements of this array can have values from 0 (Sunday)
to 6 (Saturday). The default value is [] (an empty array).

Example

The following example disables Sundays and Saturdays so that users can select only weekdays:
my_dc.disabledDays = [0, 6];
DateChooser.disabledDays 423

DateChooser.disabledRanges
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.disabledRanges

Description

Property; disables a single day or a range of days. This property is an array of objects. Each
object in the array must be either a Date object that specifies a single day to disable, or an
object that contains either or both of the properties rangeStart and rangeEnd, each of
whose value must be a Date object. The rangeStart and rangeEnd properties describe the
boundaries of the date range. If either property is omitted, the range is unbounded in that
direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property. For example,
specify new Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the
Date object returns the current date and time. If you don’t specify a time, the time is returned
as 00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that
disable the dates between May 7 and June 7:
my_dc.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
my_dc.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
my_dc.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
my_dc.disabledRanges = [new Date(2003, 11, 7)];

The following example disables April 7 and April 21:
my_dc.disabledRanges = [new Date(2003, 3, 7), new Date(2003, 3, 21)];
424 DateChooser component (Flash Professional only)

DateChooser.displayedMonth
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
my_dc.displayedMonth = 11;

See also

DateChooser.displayedYear

DateChooser.displayedYear
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.displayedYear

Description

Property; a four-digit number indicating which year is displayed. The default value is the
current year.
DateChooser.displayedYear 425

Example

The following example sets the displayed year to 2010:
my_dc.displayedYear = 2010;

See also

DateChooser.displayedMonth

DateChooser.firstDayOfWeek
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateChooser component. Changing
this property changes the order of the day columns but has no effect on the order of the
dayNames property. The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
// Sets the first day of the week to Monday in the calendar.
my_dc.firstDayOfWeek = 1;

// Disables day 0 (Sunday). Even though Monday is now the first day in the
DateChooser, Sunday is still array index 0.

my_dc.disabledDays = [0];

See also

DateChooser.dayNames
426 DateChooser component (Flash Professional only)

DateChooser.monthNames
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateChooser
component. The default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance my_dc:
my_dc.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug",

"Sept","Oct", "Nov", "Dec"];

DateChooser.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

//...
}
dateChooserInstance.addEventListener("scroll", listenerObject)

Usage 2:
on (scroll) {

//...
}

DateChooser.scroll 427

Description

Event; broadcast to all registered listeners when a month button is clicked.

The first usage example uses a dispatcher/listener event model. A component instance (myDC)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject)
to the listener object method. Each event object has properties that contain information about
the event. You can use these properties to write code that handles the event. The scroll event’s
event object has an additional property, detail, that can have one of the following values:
nextMonth, previousMonth, nextYear, previousYear.

Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
DateChooser instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the date chooser myDC, sends “_level0.myDC” to the Output panel:
on (scroll) {

trace(this);
}

Example

This example, written on a frame of the timeline, sends a message to the Output panel when a
month button is clicked on a DateChooser instance called my_dc. The first line of code
creates a listener object called form. The second line defines a function for the scroll event
on the listener object. Inside the function is a trace() statement that uses the event object
that is automatically passed to the function, in this example evt_obj, to generate a message.
// Create listener object.
var dcListener:Object = new Object();
dcListener.scroll = function(evt_obj:Object) {
 trace(evt_obj.detail);
};

// Add listener object to date chooser.
my_dc.addEventListener("scroll", dcListener);
428 DateChooser component (Flash Professional only)

DateChooser.selectableRange
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The user cannot scroll
beyond the selectable range. The value of this property is an object that consists of two Date
objects named rangeStart and rangeEnd. The rangeStart and rangeEnd properties
designate the boundaries of the selectable date range. If only rangeStart is defined, all the
dates after rangeStart are enabled. If only rangeEnd is defined, all the dates before
rangeEnd are enabled. The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates—for example, new Date(2003,6,24) rather than
new Date(). If you don’t specify a full date, the Date object returns the current date and time.
If you don’t specify a time, the time is returned as 00:00:00.

The value of DateChooser.selectedDate is set to undefined if it falls outside the
selectable range.

The values of DateChooser.displayedMonth and DateChooser.displayedYear are set to
the nearest last month in the selectable range if the current month falls outside the selectable
range. For example, if the current displayed month is August, and the selectable range is from
June 2003 to July, 2003, the displayed month changes to July 2003.
DateChooser.selectableRange 429

Example

The following example defines the selectable range as the dates between and including May 7
and June 7:
my_dc.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};

The following example defines the selectable range as the dates after and including May 7:
my_dc.selectableRange = {rangeStart: new Date(2005, 4, 7)};

The following example defines the selectable range as the dates before and including June 7:
my_dc.selectableRange = {rangeEnd: new Date(2005, 5, 7)};

The following example defines the selectable date as June 7 only:
my_dc.selectableRange = new Date(2005, 5, 7);

DateChooser.selectedDate
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.selectedDate

Description

Property; a Date object that indicates the selected date if that value falls within the value of
the selectableRange property. The default value is undefined.

You cannot set the selectedDate property within a disabled range, outside a selectable range,
or on a day that has been disabled. If this property is set to one of these dates, the value is
undefined.

Example

The following example sets the selected date to June 7:
my_dc.selectedDate = new Date(2005, 5, 7);
430 DateChooser component (Flash Professional only)

DateChooser.showToday
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateChooserInstance.showToday

Description

Property; a Boolean value that determines whether the current date is highlighted. The default
value is true.

Example

The following example turns off the highlighting on today’s date:
my_dc.showToday = false;
DateChooser.showToday 431

432 DateChooser component (Flash Professional only)

15

CHAPTER 15

DateField component (Flash
Professional only)
The DateField component is a nonselectable text field that displays the date with a calendar
icon on its right side. If no date has been selected, the text field is blank and the month of
today’s date is displayed in the date chooser. When a user clicks anywhere inside the bounding
box of the date field, a date chooser pops up and displays the dates in the month of the
selected date. When the date chooser is open, users can use the month scroll buttons to scroll
through months and years and select a date. When a date is selected, the date chooser closes
and the selection is entered in the date field.

The live preview of the DateField component does not reflect the values indicated by the
Property inspector or Component inspector during authoring, because it is a pop-up
component that is not visible during authoring.

Using the DateField component (Flash
Professional only)
The DateField component can be used anywhere you want a user to select a date. For
example, you could use a DateField component in a hotel reservation system with certain
dates selectable and others disabled. You could also use the DateField component in an
application that displays current events, such as performances or meetings, when a user
chooses a date.

N
O

T
E

The date field is cleared when a user selects the same date twice. To prevent users from
accidentally deselecting their desired date, see the example for
DateField.selectedDate on page 459.
433

DateField parameters
You can set the following authoring parameters for each DateField component instance in the
Property inspector or in the Component inspector:

dayNames sets the names of the days of the week. The value is an array and the default value
is ["S", "M", "T", "W", "T", "F", "S"].

disabledDays indicates the disabled days of the week. This parameter is an array that can
have up to seven values. The default value is [] (an empty array).

firstDayOfWeek indicates which day of the week (0-6, with 0 being the first element of
dayNames array) is displayed in the first column of the date chooser. This property changes
the display order of the day columns.

The default value is 0, which is "S" for sunday.

monthNames sets the month names that are displayed in the heading row of the calendar.
The value is an array and the default value is ["January", "February", "March",
"April", "May", "June", "July", "August", "September",

"October","November", "December"].

showToday indicates whether to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateField
component using its properties, methods, and events. For more information, see “DateField
class (Flash Professional only)” on page 439.

Creating an application with the DateField
component
The following procedure explains how to add a DateField component to an application while
authoring. In this example, the DateField component allows a user to pick a date for an airline
reservation system. All dates before today’s date must be disabled. Also, a 15-day range in
December must be disabled to create a holiday black-out period. Also, some flights are not
available on Mondays, so all Mondays must be disabled for those flights.

To create an application with the DateField component:

1. Double-click the DateField component in the Components panel to add it to the Stage.

2. In the Property inspector, enter the instance name flightCalendar.

3. In the Actions panel, enter the following code on Frame 1 of the timeline to set the range
of selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2001, 9, 1),

rangeEnd:new Date(2003, 11, 1)};
434 DateField component (Flash Professional only)

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This
defines an upper and lower end of a range within which the user can select a date.

4. In the Actions panel, enter the following code on Frame 1 of the timeline to set the ranges
of disabled dates, one during December, and one for all dates before the current date:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 31)}, {rangeEnd: new Date(2003, 6, 16)}];

5. In the Actions panel, enter the following code on Frame 1 of the timeline to
disable Mondays:
flightCalendar.disabledDays=[1];

6. Control > Test Movie.

To create a DateField component instance using ActionScript:

1. Drag the DateField component from the Components panel to the current
document’s library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Select the first frame in the main Timeline, open the Actions panel, and enter the

following code:
this.createClassObject(mx.controls.DateField, "my_df", 1);

This script uses the method UIObject.createClassObject() to create the
DateField instance.

3. Select Control > Test Movie.

Customizing the DateField component
(Flash Professional only)
You can transform a DateField component horizontally while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any
of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). Setting the width does not change the dimensions of the date chooser
in the DateField component. However, you can use the pullDown property to access the
DateChooser component and set its dimensions.
Customizing the DateField component (Flash Professional only) 435

Using styles with the DateField component
You can set style properties to change the appearance of a date field instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.

The DateField component supports the following styles:

Style Theme Description

themeColor Halo The glow color for the rollover and selected dates.
Possible values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen"

backgroundColor Both The background color. The default value is 0xEFEBEF
(light gray).

borderColor Both The border color. The default value is 0x919999.

The DateField component’s drop-down list uses a solid
single-pixel line as its border. This border cannot be
modified through styles or skinning.

headerColor Both The background color for the drop-down heading. The
default color is white.

rollOverColor Both The background color of a rolled-over date. The default
value is 0xE3FFD6 (bright green) with the Halo theme
and 0xAAAAAA (light gray) with the Sample theme.

selectionColor Both The background color of the selected date. The default
value is a 0xCDFFC1 (light green) with the Halo theme
and 0xEEEEEE (very light gray) with the Sample
theme.

todayColor Both The background color for the today’s date. The default
value is 0x666666 (dark gray).

color Both The text color. The default value is 0x0B333C with the
Halo theme and blank with the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).
436 DateField component (Flash Professional only)

The DateField component uses four categories of text to display the month name, the days of
the week, today’s date, and regular dates. The text style properties set on the DateField
component itself control the regular date text and the text displayed in the collapsed state, and
provide defaults for the other text. To set text styles for specific categories of text, use the
following class-level style declarations.

The following example demonstrates how to set the month name and days of the week to a
deep red color.
_global.styles.HeaderDateText.setStyle("color", 0x660000);
_global.styles.WeekDayStyle.setStyle("color", 0x660000);

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

Declaration name Description

HeaderDateText The month name.

WeekDayStyle The days of the week.

TodayStyle Today’s date.

Style Theme Description
Customizing the DateField component (Flash Professional only) 437

Using skins with the DateField component
The DateField component uses skins to represent the visual states of the pop-up icon, a
RectBorder instance for the border around the text input, and a DateChooser instance for the
pop-up. To skin the pop-up icon while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/DateField Assets/States folder in the library of one of
the themes’ FLA files. For more information, see “About skinning components” in Using
Components. For information about skinning the RectBorder and DateChooser instances, see
“RectBorder class” on page 1063 and “Using skins with the DateChooser component”
on page 415.

In addition to the skins used by the subcomponents mentioned earlier, a DateField
component uses the following skin properties to dynamically skin the pop-up icon:

To create movie clip symbols for DateField skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library and then select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the DateField Assets folder to the library of your document.

4. Expand the DateField Assets folder in the library of your document.

5. Make sure that the DateFieldAssets symbol is selected for Export in First Frame.

6. Expand the DateField Assets/States folder in the library of your document.

7. Open the symbols that you want to customize for editing.

For example, open the openIconUp symbol.
8. Customize the symbol as desired.

For example, draw a down arrow over the calendar image.
9. Repeat steps 7-8 for all symbols that you want to customize.

For example, draw a down arrow over all of the symbols.
10. Click the Back button to return to the main timeline.

Property Description

openDateUp The up state of the pop-up icon.

openDateDown The down state of the pop-up icon.

openDateOver The over state of the pop-up icon.

openDateDisabled The disabled state of the pop-up icon.
438 DateField component (Flash Professional only)

11. Drag a DateField component to the Stage.

12. Select Control > Test Movie.

DateField class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > ComboBase > DateField

ActionScript Class Name mx.controls.DateField

The properties of the DateField class let you access the selected date and the displayed month
and year. You can also set the names of the days and months, indicate disabled dates and
selectable dates, set the first day of the week, and indicate whether the current date should
be highlighted.

Setting a property of the DateField class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.DateField.version);

Method summary for the DateField class
The following table lists methods of the DateField class.

N
O

T
E

The code trace(myDateFieldInstance.version); returns undefined.

Method Description

DateField.close() Closes the pop-up DateChooser subcomponent.

DateField.open() Opens the pop-up DateChooser subcomponent.
DateField class (Flash Professional only) 439

Methods inherited from the UIObject class
The following table lists the methods the DateField class inherits from the UIObject class.
When calling these methods from the DateField object, use the form
dateFieldInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the DateField class inherits from the UIComponent
class. When calling these methods from the DateField object, use the form
dateFieldInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
440 DateField component (Flash Professional only)

Property summary for the DateField class
The following table lists properties of the DateField class.

Properties inherited from the UIObject class
The following table lists the properties the DateField class inherits from the UIObject class.
When accessing these properties from the DateField object, use the form
dateFieldInstance.propertyName.

Property Description

DateField.dateFormatter A function that formats the date to be displayed in the
text field.

DateField.dayNames An array indicating the names of the days of the week.

DateField.disabledDays An array indicating the disabled days of the week.

DateField.disabledRanges A range of disabled dates or a single disabled date.

DateField.displayedMonth A number indicating which element in the monthNames array
to display.

DateField.displayedYear A number indicating the year to display.

DateField.firstDayOfWeek A number indicating an element in the dayNames array to
display in the first column of the DateField component.

DateField.monthNames An array of strings indicating the month names.

DateField.pullDown A reference to the DateChooser subcomponent. This
property is read-only.

DateField.selectableRange A single selectable date or a range of selectable dates.

DateField.selectedDate A Date object indicating the selected date.

DateField.showToday A Boolean value indicating whether the current date
is highlighted.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.
DateField class (Flash Professional only) 441

Properties inherited from the UIComponent class
The following table lists the properties the DateField class inherits from the UIComponent
class. When accessing these properties from the DateField object, use the form
dateFieldInstance.propertyName.

Event summary for the DateField class
The following table lists events of the DateField class.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

DateField.change Broadcast when a date is selected.

DateField.close Broadcast when the DateChooser subcomponent closes.

DateField.open Broadcast when the DateChooser subcomponent opens.

DateField.scroll Broadcast when the month buttons are clicked.

Property Description
442 DateField component (Flash Professional only)

Events inherited from the UIObject class
The following table lists the events the DateField class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the DateField class inherits from the UIComponent class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
DateField class (Flash Professional only) 443

DateField.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// ...
};
dateFieldInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// ...
}

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses a dispatcher/listener event model. A component instance
(dateFieldInstance) dispatches an event (in this case, change) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the date field my_df,
sends “_level0.my_df” to the Output panel:
on (change) {

trace(this);
}

444 DateField component (Flash Professional only)

Example

The following example, written on a frame of the timeline, sends a message to the Output
panel when a date field called my_df is changed. The first line of code creates a listener object
called dfListener. The second line defines a function for the change event on the listener
object. Inside the function is a trace() statement that uses the event object that is
automatically passed to the function, in this example evt_obj, to generate a message. The
target property of an event object is the component that generated the event—in this
example, my_df. The DateField.selectedDate property is accessed from the event object’s
target property. The last line calls EventDispatcher.addEventListener() from my_df
and passes it the change event and the dfListener listener object as parameters.
// Create listener object.
var dfListener:Object = new Object();
dfListener.change = function(evt_obj:Object){
 var thisDate:Date = evt_obj.target.selectedDate;
 trace("date selected: " + thisDate);
}

// Add listener object to DateField.
my_df.addEventListener("change", dfListener);

DateField.close()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.close()

Returns

Nothing.

Description

Method; closes the pop-up menu.
DateField.close() 445

Example

The following code closes the date chooser pop-up of the my_df date field instance when the
button my_btn is clicked:
//Create listener object.
var btnListener:Object = new Object();
btnListener.click = function() {
 my_df.close();
};

//Add Button listener.
my_btn.addEventListener("click", btnListener);

DateField.close
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.close = function(eventObject:Object) {

// ...
};
dateFieldInstance.addEventListener("close", listenerObject);

Usage 2:
on (close) {

// ...
}

Description

Event; broadcast to all registered listeners when the DateChooser subcomponent closes after a
user clicks outside the icon or selects a date.
446 DateField component (Flash Professional only)

The first usage example uses a dispatcher/listener event model. A component instance
(dateFieldInstance) dispatches an event (in this case, close) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the date field my_df,
sends “_level0.my_df” to the Output panel:
on (close) {

trace(this);
}

Example

The following example, written on a frame of the timeline, sends a message to the Output
panel when the date chooser in my_df closes. The first line of code creates a listener object
called dfListener. The second line defines a function for the close event on the listener
object. Inside the function is a trace() statement that uses the event object that is
automatically passed to the function, in this example evt_obj, to generate a message. The
target property of an event object is the component that generated the event—in this
example, my_df. The selectedDate property is accessed from the event object’s target
property. The last line calls EventDispatcher.addEventListener() from my_df and passes
it the close event and the dfListener listener object as parameters.
//Create listener object.
var dfListener:Object = new Object();
dfListener.close = function(evt_obj:Object){

trace("PullDown Closed" + evt_obj.target.selectedDate);
}
//Add listener object to DateField.
my_df.addEventListener("close", dfListener);
DateField.close 447

DateField.dateFormatter
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.dateFormatter

Description

Property; a function that formats the date to be displayed in the text field. The function must
receive a Date object as parameter, and return a string in the format to be displayed.

Example

The following example sets the function to return the format of the date to be displayed:
my_df.dateFormatter = function(d:Date){

return d.getFullYear()+"/ "+(d.getMonth()+1)+"/ "+d.getDate();
};

DateField.dayNames
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at
index position 0) and the other day names follow in order. The default value is ["S", "M",
"T", "W", "T", "F", "S"].
448 DateField component (Flash Professional only)

Example

The following example changes the value of the fifth day of the week (Thursday) from “T” to
“R”:
my_df.dayNames[4] = "R";

The following example changes the value of all the days, accordingly:
my_df.dayNames = new Array("Su", "Mo", "Tu", "We", "Th", "Fr", "Sa");

DateField.disabledDays
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall
on the specified day are disabled. The elements of this array can have values between 0
(Sunday) and 6 (Saturday). The default value is [] (an empty array).

Example

The following example disables Sundays and Saturdays so that users can select only weekdays:
my_df.disabledDays = [0, 6];

DateField.disabledRanges
Availability

Flash Player 6 (6.0.79.0).

Edition

 Flash MX Professional 2004.

Usage
dateFieldInstance.disabledRanges
DateField.disabledRanges 449

Description

Property; disables a single day or a range of days. This property is an array of objects. Each
object in the array must be either a Date object specifying a single day to disable, or an object
containing either or both of the properties rangeStart and rangeEnd, each of whose value
must be a Date object. The rangeStart and rangeEnd properties describe the boundaries of
the date range. If either property is omitted, the range is unbounded in that direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property—for example,
new Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time
returns as 00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that
disable the dates between May 7 and June 7:
my_df.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
my_df.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
my_df.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
my_df.disabledRanges = [new Date(2003, 11, 7)];

The following example disables December 7 and December 20:
my_df.disabledRanges = [new Date(2003, 11, 7), new Date(2003, 11, 20)];

DateField.displayedMonth
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.displayedMonth
450 DateField component (Flash Professional only)

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
my_df.displayedMonth = 11;

See also

DateField.displayedYear

DateField.displayedYear
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.displayedYear

Description

Property; a number indicating which year is displayed. The default value is the current year.

Example

The following example sets the displayed year to 2010:
my_df.displayedYear = 2010;

See also

DateField.displayedMonth
DateField.displayedYear 451

DateField.firstDayOfWeek
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateField component. Changing this
property changes the order of the day columns but has no effect on the order of the dayNames
property. The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
my_df.firstDayOfWeek = 1;

See also

DateField.dayNames

DateField.monthNames
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateField
component. The default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December"].
452 DateField component (Flash Professional only)

Example

The following example sets the month names for the instance my_df:
my_df.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug",

"Sept","Oct", "Nov", "Dec"];

DateField.open()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.open()

Returns

Nothing.

Description

Method; opens the pop-up DateChooser subcomponent.

Example

The following code opens the date chooser pop-up of the my_df date field instance when the
button my_btn is clicked:
//Create listener object.
var btnListener:Object = new Object();
btnListener.click = function() {
 my_df.open();
};

//Add Button listener.
my_btn.addEventListener("click", btnListener);
DateField.open() 453

DateField.open
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.open = function(eventObject:Object) {

// ...
};
dateFieldInstance.addEventListener("open", listenerObject);

Usage 2:
on (open) {

// ...
}

Description

Event; broadcast to all registered listeners when a DateChooser subcomponent opens after a
user clicks the icon.

The first usage example uses a dispatcher/listener event model. A component instance
(dateFieldInstance) dispatches an event (in this case, open) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
454 DateField component (Flash Professional only)

The second usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the date field my_df,
sends “_level0.my_df” to the Output panel:
on (open) {

trace(this);
}

Example

The following example, written on a frame of the timeline, sends a message to the Output
panel when a date field called my_df is opened. The message ends with the index number for
the current month. The first line of code creates a listener object called dfListener. The
second line defines a function for the open event on the listener object. Inside the function is
a trace() statement that uses the event object that is automatically passed to the function, in
this example evt_obj, to generate a message. The target property of an event object is the
component that generated the event—in this example, my_df. The
DateField.selectedDate property is accessed from the event object’s target property. The
last line calls EventDispatcher.addEventListener() from my_df and passes it the open
event and the dfListener listener object as parameters.
// Create listener object.
var dfListener:Object = new Object();
dfListener.open = function(evt_obj:Object){

trace("PullDown Opened" + evt_obj.target.displayedMonth);
}
// Add listener object to DateField.
my_df.addEventListener("open", dfListener);

DateField.pullDown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.pullDown
DateField.pullDown 455

Description

Property (read-only); a reference to the DateChooser component contained by the DateField
component. The DateChooser subcomponent is instantiated when a user clicks on the
DateField component. However, if the pullDown property is referenced before the user clicks
on the component, the DateChooser is instantiated and then hidden.

Example

The following example sets the visibility of the DateChooser subcomponent to false and
then sets the size of the DateChooser subcomponent to 300 pixels high and 300 pixels wide:
my_df.pullDown._visible = false;
my_df.pullDown.setSize(300, 300);

DateField.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

// ...
};
dateFieldInstance.addEventListener("scroll", listenerObject);

Usage 2:
on (scroll) {

// ...
}

Description

Event; broadcast to all registered listeners when a month button is clicked.
456 DateField component (Flash Professional only)

The first usage example uses a dispatcher/listener event model. A component instance
(dateFieldInstance) dispatches an event (in this case, scroll) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. The scroll event’s event object has an additional property, detail, that can have
one of the following values: nextMonth, previousMonth, nextYear, previousYear.

Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the date field my_df,
sends “_level0.my_df” to the Output panel:
on (scroll) {

trace(this);
}

Example

The following example, written on a frame of the timeline, sends a message to the Output
panel when a user clicks a month button on a DateField instance called my_df. The first line
of code creates a listener object called dfListener. The second line defines a function for the
scroll event on the listener object. Inside the function is a trace() statement that uses the
event object that is automatically passed to the function, in this example evt_obj, to generate
a message. The target property of an event object is the component that generated the
event—in this example, my_df The last line calls EventDispatcher.addEventListener()
from my_df and passes it the scroll event and the dfListener listener object as parameters.
// Create listener object.
var dfListener:Object = new Object();
dfListener.scroll = function(evt_obj:Object) {
 trace(evt_obj.detail);
};

// Add listener object to DateField.
my_df.addEventListener("scroll", dfListener);
DateField.scroll 457

DateField.selectableRange
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The value of this property
is an object that consists of two Date objects named rangeStart and rangeEnd. The
rangeStart and rangeEnd properties designate the boundaries of the selectable date range. If
only rangeStart is defined, all the dates after rangeStart are enabled. If only rangeEnd is
defined, all the dates before rangeEnd are enabled. The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates—for example, new Date(2003,6,24) rather than
new Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateField.selectedDate is set to undefined if it falls outside the
selectable range.

The values of DateField.displayedMonth and DateField.displayedYear are set to the
nearest last month in the selectable range if the current month falls outside the selectable
range. For example, if the current displayed month is August, and the selectable range is from
June 2003 to July 2003, the displayed month changes to July 2003.
458 DateField component (Flash Professional only)

Example

The following example defines the selectable range as the dates between and including May 7
and June 7:
my_df.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};

The following example defines the selectable range as the dates after and including May 7:
my_df.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range as the dates before and including June 7:
my_df.selectableRange = {rangeEnd: new Date(2003, 5, 7)};

The following example defines the selectable date as June 7 only:
my_df.selectableRange = new Date(2003, 5, 7);

DateField.selectedDate
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.selectedDate

Description

Property; a Date object that indicates the selected date if that value falls within the value of
the selectableRange property. The default value is undefined.

Example

The following example sets the selected date to June 7:
my_df.selectedDate = new Date(2003, 5, 7);

The following example uses a DateField instance named my_df on the Stage to show how to
disable an already selected date (otherwise, the user can click it again to clear the date
field entry):
function dfListener(evt_obj:Object):Void {

my_df.disabledRanges = [my_df.selectedDate];
}
my_df.addEventListener("change", dfListener);
DateField.selectedDate 459

DateField.showToday
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
dateFieldInstance.showToday

Description

Property; a Boolean value that determines whether the current date is highlighted. The default
value is true.

Example

The following example turns off the highlighting on today’s date:
my_df.showToday = false;
460 DateField component (Flash Professional only)

16

CHAPTER 16

Delegate class
Inheritance Object > Delegate

ActionScript Class Name mx.utils.Delegate

The Delegate class lets you run a function in a specific scope. This class is provided so that
you can dispatch the same event to two different functions (see “Delegating events to
functions” in Using Components), and so that you can call functions within the scope of the
containing class.

When you pass a function as a parameter to EventDispatcher.addEventListener(), the
function is invoked in the scope of the broadcaster component instance, not the object in
which it is declared (see “Delegating the scope of a function” in Using Components). You can
call Delegate.create() to call the function within the scope of the declaring object.

Method summary for the Delegate class
The following table lists the method of the Delegate class.

Method Description

Delegate.create() A static method that allows you to run a function in a specific scope.
461

Delegate.create()

Availability
Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Delegate.create(scopeObject, function)

Parameters

scopeObject A reference to an object. This is the scope in which to run the function.

function A reference to a function.

Description

Method (static); allows you to delegate events to specific scopes and functions. Use the
following syntax:
import mx.utils.Delegate;
compInstance.addEventListener("eventName", Delegate.create(scopeObject,

function));

The scopeObject parameter specifies the scope in which the specified function is called.

Example

For examples of Delegate.create(), see “Delegating events” in Using Components.

See also

EventDispatcher.addEventListener()
462 Delegate class

17

CHAPTER 17

DeltaItem class (Flash
Professional only)
ActionScript Class Name mx.data.components.datasetclasses.DeltaItem

The DeltaItem class provides information about an individual operation performed on a
transfer object. It indicates whether a change was made directly to a property of the transfer
object or whether the change was made by a method call. It also provides the original state of
properties on a transfer object. For example, if the source of the delta packet was a data set,
the DeltaItem object contains information about any field that was edited.

In addition to the above, a DeltaItem object can contain server response information such as
current value and a message.

Use the DeltaItem class when accessing the changes in a delta packet. To access these changes,
use DeltaPacket.getIterator(), which returns an iterator of deltas. Each delta contains
zero or more DeltaItem instances, which you can access through Delta.getItemByName() or
Delta.getChangeList().

Property summary for the DeltaItem class
The following table lists the properties of the DeltaItem class.

Property Description

DeltaItem.argList If a change is made through a method call, this is the
array of values that were passed to the method. This
property is read-only.

DeltaItem.curValue If a change is made to a property, this is the current
server value of the property. This property is read-only.

DeltaItem.delta The associated delta for the DeltaItem object. This
property is read-only.

DeltaItem.kind The type of change.

DeltaItem.message The server message associated with the
DeltaItem object.
463

DeltaItem.argList
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.argList

Description

Property (read-only); an array of values passed to the change method. This property applies
only if the change’s kind is DeltaItem.Method.

DeltaItem.curValue
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.curValue

DeltaItem.name The name of the property or method that changed. This
property is read-only.

DeltaItem.newValue If a change was made to a property, this is the new value
of the property. This property is read-only.

DeltaItem.oldValue If a change was made to a property, this is the old value
of the property. This property is read-only.

Property Description
464 DeltaItem class (Flash Professional only)

Description

Property (read-only); an object containing the current property value on the server’s copy of
the transfer object. This property applies only if the change’s kind is DeltaItem.Property,
and the property is relevant only in a delta that has been returned from a server and is being
applied to the data set for user resolution.

DeltaItem.delta
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.delta

Description

Property (read-only); a delta associated with the DeltaItem object. When a DeltaItem object is
created, it is associated with a delta and adds itself to the delta’s list of changes. This property
provides a reference to the delta that this item belongs to.

DeltaItem.kind
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.kind

Description

Property; a number that indicates the type of change. Use the following constants to evaluate
this property:

■ DeltaItem.Property The change was made to a property on the transfer object.
■ DeltaItem.Method The change was made through a method call on the transfer object.
DeltaItem.kind 465

DeltaItem.message
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.message

Description

Property; a string containing a server message associated with this DeltaItem object. This can
be any message for the property or method call change attempted in the delta packet. This
message is usually relevant only in a delta that has been returned from a server and is being
applied to the DataSet for resolution.

DeltaItem.name
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.name

Description

Property (read-only); a string containing the name of the changed property (if the change’s
kind is DeltaItem.Property) or the name of the method that made the change (if the
change’s kind is DeltaItem.Method).
466 DeltaItem class (Flash Professional only)

DeltaItem.newValue
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.newValue

Description

Property (read-only); an object containing the new value of the property. This property
applies only if the change’s kind is DeltaItem.Property.

DeltaItem.oldValue
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaitem.oldValue

Description

Property (read-only); an object containing the old value of the property. This property applies
only if the change’s kind is DeltaItem.Property.
DeltaItem.oldValue 467

468 DeltaItem class (Flash Professional only)

18

CHAPTER 18

Delta interface (Flash
Professional only)
ActionScript Interface Name mx.data.components.datasetclasses.Delta

The Delta interface provides access to the transfer object, collection, and transfer object-level
changes. With this interface you can access the new and previous values in a transfer object.
For example, if the delta packet was obtained from a data set, each delta would represent an
added, edited, or deleted row.

The Delta interface also provides access to messages returned by the associated server-side
process. For more information on client-server interactions, see “RDBMSResolver
component (Flash Professional only)” on page 1047.

Use the Delta interface to examine the delta packet before sending changes to the server and
to review messages returned from server-side processing.

Method summary for the Delta interface
The following table lists the methods of the Delta interface.

Method Description

Delta.addDeltaItem() Adds the specified DeltaItem instance.

Delta.getChangeList() Returns an array of changes made to the current item.

Delta.getDeltaPacket() Returns the delta packet that contains the delta.

Delta.getId() Returns the unique ID of the current item within the
DeltaPacket collection.

Delta.getItemByName() Returns the specified DeltaItem object.

Delta.getMessage() Returns the message associated with the current item.

Delta.getOperation() Returns the operation that was performed on the current
item within the original collection.

Delta.getSource() Returns the transfer object on which the changes
were performed.
469

Delta.addDeltaItem()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.addDeltaItem(deltaitem)

Parameters

deltaitem DeltaItem instance to add to this delta.

Returns

Nothing.

Description

Method; adds the specified DeltaItem instance. If the specified DeltaItem instance already
exists, this method replaces it.

Example

The following example calls the addDeltaItem() method:
//...
var d:Delta = new DeltaImpl("ID1345678", curItem, DeltaPacketConsts.Added,

"", false);
d.addDeltaItem(new DeltaItem(DeltaItem.Property, "ID", {oldValue:15,

newValue:16}));
//...

Delta.getChangeList()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getChangeList()
470 Delta interface (Flash Professional only)

Parameters

None.

Returns

An array of associated DeltaItem instances.

Description

Method; returns an array of associated DeltaItem instances. Each DeltaItem instance in the
array describes a change made to the item.

Example

The following example calls the getChangeList() method.:
//...
case mx.data.components.datasetclasses.DeltaPacketConsts.Modified: {

// dpDelta is a variable of type Delta.
var changes:Array = dpDelta.getChangeList();
for(var i:Number = 0; i<changes.length; i++) {

// getChangeMessage is a user-defined method.
 changeMsg = _parent.getChangeMessage(changes[i]);
 trace(changeMsg);
}

//...

Delta.getDeltaPacket()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getDeltaPacket()

Parameters

None.

Returns

The delta packet that contains this delta.
Delta.getDeltaPacket() 471

Description

Method; returns the delta packet that contains this delta. This method lets you write code
that can handle delta packets generically at the delta level.

Example

The following example uses the getDeltaPacket() method to access the delta packet’s
data source:
while(dpCursor.hasNext()) {

dpDelta = Delta(dpCursor.next());
trace("DeltaPacket source is: " + dpDelta.getDeltaPacket().getSource());

}

Delta.getId()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getId()

Parameters

None.

Returns

An object; returns the unique ID of this item within the DeltaPacket collection.

Description

Method; returns a unique identifier for this item within the DeltaPacket collection. Use this
ID in the source component for the delta packet to receive updates and make changes to items
that the delta packet was generated from. For example, assuming that the DataSet component
sends updates to a server and the server returns new key field values, this method allows the
DataSet component to examine the resulting delta packet, find the original transfer object,
and make the appropriate updates to it.
472 Delta interface (Flash Professional only)

Example

The following example calls the getId() method:
while(dpCursor.hasNext()) {

dpDelta = Delta(dpCursor.next());
trace("id ["+dpDelta.getId()+"]");

}

Delta.getItemByName()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getItemByName(name)

Parameters

name A string that specifies the name of the property or method for the associated
DeltaItem object.

Returns

The DeltaItem object specified by name. If no DeltaItem object is found that matches name,
this method returns null.

Description

Method; returns the DeltaItem object specified by name. When method calls or property
changes on a transfer object are needed by name, this method provides the most
efficient access.
Delta.getItemByName() 473

Example

The following example calls the getItemByName() method:
private function buildFieldTag(deltaObj:Delta, field:Object,

isKey:Boolean):String {
var chgItem:DeltaItem = deltaObj.getItemByName(field.name);
var result:String= "<field name=\"" + field.name + "\" type=\"" +
field.type.name + "\"";
var oldValue:String;
var newValue:String;
if (deltaObj.getOperation() != DeltaPacketConsts.Added) {

oldValue = (chgItem != null ? (chgItem.oldValue != null ?
encodeFieldValue(field.name, chgItem.oldValue) : __nullValue) :
encodeFieldValue(field.name, deltaObj.getSource()[field.name]));

newValue = (chgItem.newValue != null ? encodeFieldValue(field.name,
chgItem.newValue) : __nullValue);

result+= " oldValue=\"" + oldValue + "\"";
result+= chgItem != null ? " newValue=\"" + newValue + "\"" : "";
result+= " key=\"" + isKey.toString() + "\" />";

}
else {

result+= " newValue=\"" +encodeFieldValue(field.name,
deltaObj.getSource()[field.name]) + "\"";

result+= " key=\"" + isKey.toString() + "\" />";
}
return result;

}

Delta.getMessage()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getMessage()

Parameters

None.

Returns

A string; returns the message associated with delta.
474 Delta interface (Flash Professional only)

Description

Method; returns the associated message for this delta. Typically this message is only populated
if the delta packet has been returned from a server in response to attempted updates. For more
information, see “RDBMSResolver component (Flash Professional only)” on page 1047.

Example

The following example calls the getMessage() method:
//...
var dpi:Iterator = dp.getIterator();
var d:Delta;
while(dpi.hasNext()) {
 d= dpi.next();
 trace(d.getMessage());
}
//...

Delta.getOperation()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getOperation()

Parameters

None.

Returns

A number; returns the operation that was performed on the item within the original
collection.

Description

Method; returns the operation that was performed on this item within the original collection.
Valid values for this are DeltaPacketConsts.Added, DeltaPacketConsts.Removed, and
DeltaPacketConsts.Modified.

You must either import mx.data.components.datasetclasses.DeltaPacketConsts or fully qualify
each constant.
Delta.getOperation() 475

Example

The following example calls the getOperation() method:
while(dpCursor.hasNext()) {

dpDelta = Delta(dpCursor.next());
op=dpDelta.getOperation();
trace("DeltaPacket source is: " + dpDelta.getDeltaPacket().getSource());
switch(op) {
 case mx.data.components.datasetclasses.DeltaPacketConsts.Added:
 trace("***In case DeltaPacketConsts.Added ***");
 case mx.data.components.datasetclasses.DeltaPacketConsts.Modified: {
 trace("***In case DeltaPacketConsts.Modified ***");
}

}

Delta.getSource()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
delta.getSource()

Parameters

None.

Returns

The transfer object on which the changes were performed.

Description

Method; returns the transfer object on which the changes were performed.
476 Delta interface (Flash Professional only)

Example

The following example calls the getSource() method:
while(dpCursor.hasNext()) {

dpDelta = Delta(dpCursor.next());
op=dpDelta.getOperation();
switch(op) {

case mx.data.components.datasetclasses.DeltaPacketConsts.Modified: {
// the original values are
trace("Unmodified source is: ");
var src = dpDelta.getDeltaPacket().getSource();
for(var i in src){

 if(typeof(src[i]) != "function"){
trace(i+"="+src[i]);

}
}

}
}

Delta.getSource() 477

478 Delta interface (Flash Professional only)

19

CHAPTER 19

DeltaPacket interface (Flash
Professional only)
ActionScript Interface Name mx.data.components.datasetclasses.DeltaPacket

The DeltaPacket interface is provided by the deltaPacket property of the DataSet
component, which is part of the data management functionality in Flash MX Professional
2004. (For more information, see Chapter 16, “Data Integration (Flash Professional Only),”
in Using Flash). Typically the delta packet is used internally by resolver components.The
DeltaPacket interface and the related Delta interface and DeltaItem class let you manage
changes made to the data. These components have no visual appearance at runtime.

A delta packet is an optimized set of instructions that describe all changes that have been
made to the data in a data set. When the DataSet.applyUpdates() method is called, the
DataSet component populates the DataSet.deltaPacket property. Typically, this property is
connected (by data binding) to a resolver component such as RDBMSResolver. The resolver
converts the delta packet into an update packet in the appropriate format.

A delta packet contains one or more deltas (see “Delta interface (Flash Professional only)”
on page 469), and each delta contains zero or more delta items (see “DeltaItem class (Flash
Professional only)” on page 463).

N
O

T
E

Unless you are writing your own custom resolver, it is unlikely you will ever need to know
about or write code that accesses methods or properties of a delta packet.
479

Method summary for the DeltaPacket interface
The following table lists the methods of the DeltaPacket interface.

DeltaPacket.getConfigInfo()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.getConfigInfo(info)

Properties

info Object; contains information specific to the implementation.

Returns

An object that contains information required for the specific DeltaPacket implementation.

Method Description

DeltaPacket.getConfigInfo() Returns configuration information that is specific to the
implementation of the DeltaPacket interface.

DeltaPacket.getIterator() Returns the iterator for the delta packet that iterates
through the delta packet’s list of deltas.

DeltaPacket.getSource() Returns the source of the delta packet. This is the
component that has exposed this delta packet.

DeltaPacket.getTimestamp() Returns the date and time at which the delta packet
was instantiated.

DeltaPacket.getTransactionId() Returns the transaction ID for this delta packet.

DeltaPacket.logChanges() Indicates whether the consumer of the delta packet
should log the changes it specifies.
480 DeltaPacket interface (Flash Professional only)

Description

Method; returns configuration information that is specific to the implementation of the
DeltaPacket interface. This method allows implementations of the DeltaPacket interface to
access custom information.

Example

The following example calls the getConfigInfo() method:
// ...
new DeltaPacketImpl(source, getTransactionId(), null, logChanges(),

getConfigInfo());
// ...

DeltaPacket.getIterator()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.getIterator()

Parameters

None.

Returns

An interface to the iterator for the DeltaPacket collection that iterates through the delta
packet’s list of deltas.

Description

Method; returns the iterator for the DeltaPacket collection. This provides a mechanism for
looping through the changes in the delta packet. For a complete description of this interface,
see “Iterator interface (Flash Professional only)” on page 749.
DeltaPacket.getIterator() 481

Example

The following example uses the getIterator() method to access the iterator for the deltas in
a delta packet and uses a while statement to loop through the deltas:
var deltapkt:DeltaPacket = _parent.myDataSet.deltaPacket;
trace("*** Test deltapacket. Trans ID is: " + deltapkt.getTransactionId() +

" ***");
var OPS:Array = new Array("added", "removed", "modified");
var dpCursor:Iterator = deltapkt.getIterator();
var dpDelta:Delta;
var op:Number;
var changeMsg:String;
while(dpCursor.hasNext()) {

dpDelta = Delta(dpCursor.next());
op=dpDelta.getOperation();

}

DeltaPacket.getSource()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.getSource()

Parameters

None.

Returns

An object; the source of the DeltaPacket collection. This object is typically a descendant of
MovieClip, but this is not required. For example, if the source is a data set, this object might
be _level0.myDataSet.

Description

Method; returns the source of the DeltaPacket collection.
482 DeltaPacket interface (Flash Professional only)

Example

The following example calls the getSource() method:
// ...
var deltapkt:DeltaPacket = _parent.myDataSet.deltaPacket;
var dpSourceText:String = "Source: " + deltapkt.getSource();
trace(dpSourceText);
// ...

DeltaPacket.getTimestamp()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.getTimestamp()

Parameters

None.

Returns

A Date object containing the date and time at which the delta packet was created.

Description

Method; returns the date and time at which the delta packet was created.

Example

The following example calls the getTimestamp() method:
// ...
var deltapkt:DeltaPacket = _parent.myDataSet.deltaPacket;
var dpTime:String = " Time: " + deltapkt.getTimestamp();
trace(dpTime);
// ...
DeltaPacket.getTimestamp() 483

DeltaPacket.getTransactionId()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.getTransactionId()

Parameters

None.

Returns

A string; the unique transaction ID for a single transaction grouping of delta packets.

Description

Method; returns the transaction ID for the delta packet. This unique identifier is used to
group a send/receive transaction for a delta packet. The data set uses this to determine
if the delta packet is part of the same transaction it originated with the
DataSet.applyUpdates() call.

Example

The following example calls the getTransactionId() method:
// ...
var deltapkt:DeltaPacket = _parent.myDataSet.deltaPacket;
trace("*** Trans ID is: " + deltapkt.getTransactionId() + " ***");
// ...
484 DeltaPacket interface (Flash Professional only)

DeltaPacket.logChanges()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
deltaPacket.logChanges()

Parameters

None.

Returns

A Boolean value; true if the consumer of the delta packet should log changes found in the
delta packet.

Description

Method; returns true if the consumer of this delta packet should log the changes it specifies.
This value is used mainly for communication of changes between data sets by means of shared
objects or from a server to a local data set. In both cases, the data set should not record the
changes specified.

Example

The following example calls the logChanges() method:
var deltapkt:DeltaPacket = _parent.myDataSet.deltaPacket;
if(deltapkt.logChanges()) {

trace("*** We need to log changes. ***");
}
else {

trace("*** We do not need to log changes");
}

DeltaPacket.logChanges() 485

486 DeltaPacket interface (Flash Professional only)

20

CHAPTER 20

DepthManager class
ActionScript Class Name mx.managers.DepthManager

The DepthManager class allows you to manage the relative depth assignments of any
component or movie clip, including _root. It also lets you manage reserved depths in a
special highest-depth clip on _root for system-level services such as the pointer and tooltips.

In general, Depth Manager manages components automatically, using its own “shuffling”
algorithm. You do not need to use its APIs unless you are an advanced Flash developer.

The following methods constitute the relative depth-ordering API:

■ DepthManager.createChildAtDepth()

■ DepthManager.createClassChildAtDepth()

■ DepthManager.setDepthAbove()

■ DepthManager.setDepthBelow()

■ DepthManager.setDepthTo()

The following methods constitute the reserved depth space API:

■ DepthManager.createClassObjectAtDepth()

■ DepthManager.createObjectAtDepth()

N
O

T
E

To use the DepthManager class for movie clip instances, you need to have a component
in the library or on the Stage, and use "import mx.managers.DepthManager" at the
beginning of your ActionScript.
487

Method summary for the DepthManager class
The following table lists the methods of the DepthManager class.

Property summary for the DepthManager class
The following table lists the properties of the DepthManager class. The constant values shown
are the default values that the DepthManager algorithm uses to arrange depth. If you trace the
following properties, you will see those constant values in the Output panel.

However, after you implement a DepthManager method, such as
DepthManager.setDepthTo(), using one of the following properties, and then trace the
component or movie clip depth, you see that DepthManager sets the depths in increments of
20. The algorithm increments depths in case Flash needs to insert something else in the
middle, based on other scripts, components, and so on.

Method Description

DepthManager.createChildAtDepth() Creates a child of the specified symbol at the
specified depth.

DepthManager.createClassChildAtDepth() Creates an object of the specified class at the
specified depth.

DepthManager.createClassObjectAtDepth() Creates an instance of the specified class at a
specified depth in the special highest-depth clip.

DepthManager.createObjectAtDepth() Creates an object at a specified depth in the
highest-depth clip.

DepthManager.setDepthAbove() Sets the depth above the specified instance.

DepthManager.setDepthBelow() Sets the depth below the specified instance.

DepthManager.setDepthTo() Sets the depth to the specified instance in the
highest-depth clip.

Property Description

DepthManager.kBottom A static property with the constant value 202.

DepthManager.kCursor A static property with the constant value 101. This
is the cursor depth.

DepthManager.kNotopmost A static property with the constant value 204.

DepthManager.kTooltip A static property with the constant value 102.
This is the tooltip depth.
488 DepthManager class

DepthManager.createChildAtDepth()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
movieClipInstance.createChildAtDepth(linkageName, depthFlag[, initObj])

Parameters

linkageName A linkage identifier. This parameter is a string.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties
of the DepthManger class. You must either reference the DepthManager package (for
example, mx.managers.DepthManager.kTopmost), or use the import statement to import
the DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the object created. The return type is MovieClip.

Description

Method; creates a child instance of the symbol specified by linkageName at the depth
specified by depthFlag.

Example

The following example creates a minuteHand instance of the MinuteSymbol movie clip and
places it in front of the clock:
import mx.managers.DepthManager;
minuteHand = clock.createChildAtDepth("MinuteSymbol", DepthManager.kTop);

DepthManager.kTop A static property with the constant value 201.

DepthManager.kTopmost A static property with the constant value 203.

Property Description
DepthManager.createChildAtDepth() 489

DepthManager.createClassChildAtDepth()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
movieClipInstance.createClassChildAtDepth(className, depthFlag[, initObj])

Parameters

className A class name. This parameter is a of type Function.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties
of the DepthManger class. You must either reference the DepthManager package (for
example, mx.managers.DepthManager.kTopmost), or use the import statement to import
the DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created child. The return type is UIObject.

Description

Method; creates a child of the class specified by className at the depth specified by
depthFlag.

Example

The following code draws a focus rectangle in front of all NoTopmost objects:
import mx.managers.DepthManager
this.ring = createClassChildAtDepth(mx.skins.RectBorder,

DepthManager.kTop);

The following code creates an instance of the Button class and passes it a value for its label
property as an initObj parameter:
import mx.managers.DepthManager
button1 = createClassChildAtDepth(mx.controls.Button, DepthManager.kTop,

{label: "Top Button"});
490 DepthManager class

DepthManager.createClassObjectAtDepth()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.createClassObjectAtDepth(className, depthSpace[, initObj])

Parameters

className A class name. This parameter is of type Function.

depthSpace One of the following values: DepthManager.kCursor,
DepthManager.kTooltip. All depth flags are static properties of the DepthManger class. You
must either reference the DepthManager package (for example,
mx.managers.DepthManager.kCursor), or use the import statement to import the
DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created object. The return type is UIObject.

Description

Method; creates an object of the class specified by className at the depth specified by
depthSpace. This method is used for accessing the reserved depth spaces in the special
highest-depth clip.

Example

The following example creates an object from the Button class:
import mx.managers.DepthManager
myCursorButton = Detph.createClassObjectAtDepth(mx.controls.Button,

DepthManager.kCursor, {label: "Cursor"});
DepthManager.createClassObjectAtDepth() 491

DepthManager.createObjectAtDepth()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.createObjectAtDepth(linkageName, depthSpace[, initObj])

Parameters

linkageName A linkage identifier. This parameter is of type String.

depthSpace One of the following values: DepthManager.kCursor,
DepthManager.kTooltip. All depth flags are static properties of the DepthManger class. You
must either reference the DepthManager package (for example,
mx.managers.DepthManager.kCursor), or use the import statement to import the
DepthManager package.

initObj An optional initialization object.

Returns

A reference to the created object. The return type is MovieClip.

Description

Method; creates an object at the specified depth. This method is used for accessing the
reserved depth spaces in the special highest-depth clip.

Example

The following example creates an instance of the TooltipSymbol symbol and places it at the
reserved depth for tooltips:
import mx.managers.DepthManager
myCursorTooltip = DepthManager.createObjectAtDepth("TooltipSymbol",

DepthManager.kTooltip);
492 DepthManager class

DepthManager.kBottom
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.kBottom

Description

Property (static); a property with the constant value 202. This property is passed as a
parameter in calls to DepthManager.createClassChildAtDepth() and
DepthManager.createChildAtDepth() to place content behind other content.

DepthManager.kCursor
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.kCursor

Description

Property (static); a property with the constant value 101. This property is passed as a
parameter in calls to DepthManager.createClassObjectAtDepth() and
DepthManager.createObjectAtDepth() to request placement at cursor depth.

DepthManager.kNotopmost
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
DepthManager.kNotopmost 493

Usage
DepthManager.kNotopmost

Description

Property (static); a property with the constant value 204. This property is passed as a
parameter in calls to DepthManager.createClassChildAtDepth() and
DepthManager.createChildAtDepth() to request removal from the topmost layer.

DepthManager.kTooltip
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.kTooltip

Description

Property (static); a property with the constant value 102. This property is passed as a
parameter in calls to DepthManager.createClassObjectAtDepth() and
DepthManager.createObjectAtDepth() to place an object at the tooltip depth.

DepthManager.kTop
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.kTop

Description

Property (static); a property with the constant value 201. This property is passed as a
parameter in calls to DepthManager.createClassChildAtDepth() and
DepthManager.createChildAtDepth() to request placement on top of other content but
below DepthManager.kTopmost content.
494 DepthManager class

DepthManager.kTopmost
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
DepthManager.kTopmost

Description

Property (static); a property with the constant value 203. This property is used in calls to
DepthManager.createClassChildAtDepth() and DepthManager.createChildAtDepth()
to request placement on top of other content, including DepthManager.kTop objects.

DepthManager.setDepthAbove()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
movieClipInstance.setDepthAbove(instance)

Parameters

instance An instance name. This parameter is of type MovieClip.

Returns

Nothing.

Description

Method; sets the depth of a movie clip or component instance above the depth of the instance
specified by the instance parameter and moves other objects if necessary.
DepthManager.setDepthAbove() 495

DepthManager.setDepthBelow()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
movieClipInstance.setDepthBelow(instance)

Parameters

instance An instance name. This parameter is of type MovieClip.

Returns

Nothing.

Description

Method; sets the depth of a movie clip or component instance below the depth of the
specified instance and moves other objects if necessary.

Example

The following code sets the depth of the textInput instance below the depth of button:
textInput.setDepthBelow(button);

DepthManager.setDepthTo()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
movieClipInstance.setDepthTo(depthFlag)
496 DepthManager class

Parameters

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties
of the DepthManger class. You must either reference the DepthManager package (for
example, mx.managers.DepthManager.kTopmost) or use the import statement to import
the DepthManager package.

Returns

Nothing.

Description

Method; sets the depth of movieClipInstance to the value specified by depthFlag. This
method moves an instance to another depth to make room for another object. DepthManager
uses a “shuffling” algorithm to set the depths in increments of 20. The algorithm increments
depths in case Flash needs to insert something else in the middle, based on other scripts,
components, and so on.

Example

The following example uses two components (or movie clips) to raise their depth alternately
in increments of 20 as each one is clicked. First add a Button component to the Stage and give
it instance name a_btn Then add another Button component to the Stage and give it instance
name b_btn. Make sure the buttons overlap as follows:

import mx.managers.DepthManager;

a_btn.onRelease = function() {
b_btn.setDepthTo(DepthManager.kTop);
var b_depth:Number = b_btn.getDepth();
trace(b_depth);
}

b_btn.onRelease = function() {
a_btn.setDepthTo(DepthManager.kTop);
var a_depth:Number = a_btn.getDepth();
trace(a_depth);
}

DepthManager.setDepthTo() 497

Test the SWF file. When you click the top button, the other button changes depth and moves
to the front, and the Output panel displays that button’s depth. The values are 20, then 40,
then 60, incremented by 20 each time you click.

For more information about depth and stacking order, see “Determining the next highest
available depth” in Learning ActionScript 2.0 in Flash.

N
O

T
E

If you use DepthManager with movie clip instances instead of component instances, you
may need to add a UI component to your library (if one isn’t already there) for
DepthManager to operate properly. DepthManager requires a component on the Stage
or in the library to function.
498 DepthManager class

21

CHAPTER 21

EventDispatcher class
Events let your application know when the user has interacted with a component, and when
important changes have occurred in the appearance or life cycle of a component—such as its
creation, destruction, or resizing.

The methods of the EventDispatcher class let you add and remove event listeners so that your
code can react to events appropriately. For example, you use the
EventDispatcher.addEventListener() method to register a listener with a component
instance. The listener is invoked when a component’s event is triggered.

If you want to write a custom object that emits events that aren’t related to the user interface,
EventDispatcher is smaller and faster to use as a mix-in for UIComponent than
UIEventDispatcher.

Event objects
An event object is passed to a listener as a parameter. The event object is an ActionScript
object that has properties that contain information about the event that occurred. You can use
the event object inside the listener callback function to access the name of the event that was
broadcast, or the instance name of the component that broadcast the event. For example, the
following code uses the target property of the evtObj event object to access the label
property of the myButton instance and send the value to the Output panel:
listener = new Object();
listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);
499

Some event object properties are defined in the W3C specification (www.w3.org/TR/DOM-
Level-3-Events/events.html) but aren’t implemented in version 2 of the Macromedia
Component Architecture. Every version 2 event object has the properties listed in the table
below. Some events have additional properties defined, and if so, the properties are listed in
the event’s entry.

EventDispatcher class (API)
ActionScript Class Name mx.events.EventDispatcher

Method summary for the EventDispatcher class
The following table lists the methods of the EventDispatcher class.

Property Description

type A string indicating the name of the event.

target A reference to the component instance broadcasting
the event.

Method Description

EventDispatcher.addEventListener() Registers a listener with a component instance.

EventDispatcher.dispatchEvent() Dispatches an event programmatically.

EventDispatcher.removeEventListener() Removes an event listener from a
component instance.
500 EventDispatcher class

http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html

EventDispatcher.addEventListener()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
componentInstance.addEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.

Description

Method; registers a listener object with a component instance that is broadcasting an event.
When the event occurs, the listener object or function is notified. You can call this method
from any component instance. For example, the following code registers a listener to the
component instance myButton:
myButton.addEventListener("click", myListener);

You must define the listener as either an object or a function before you call
addEventListener() to register the listener with the component instance. If the listener is
an object, it must have a callback function defined that is invoked when the event occurs.
Usually, that callback function has the same name as the event with which the listener is
registered. If the listener is a function, the function is invoked when the event occurs. For
more information, see “Using listeners to handle events” in Using Components.
EventDispatcher.addEventListener() 501

You can register multiple listeners to a single component instance, but you must use a separate
call to addEventListener() for each listener. Also, you can register one listener to multiple
component instances, but you must use a separate call to addEventListener() for each
instance. For example, the following code defines one listener object and assigns it to two
Button component instances, whose label properties are button1 and button2, respectively:
lo = new Object();
lo.click = function(evt){

trace(evt.target.label + " clicked");
}
button1.addEventListener("click", lo);
button2.addEventListener("click", lo);

Execution order is not guaranteed. You cannot expect one listener to be called before another.

An event object is passed to the listener as a parameter. The event object has properties that
contain information about the event that occurred. You can use the event object inside the
listener callback function to access information about the type of event that occurred and
which instance broadcast the event. In the example above, the event object is evt (you can use
any identifier as the event object name), and it is used in the if statements to determine
which button instance was clicked. For more information, see “About the event object” in
Using Components.

Example

The following example defines a listener object, myListener, and defines the callback
function for the click event. It then calls addEventListener() to register the myListener
listener object with the component instance myButton.
myListener = new Object();
myListener.click = function(evt){

trace(evt.type + " triggered");
}
myButton.addEventListener("click", myListener);

To test this code, place a Button component on the Stage with the instance name myButton,
and place this code in Frame 1.
502 EventDispatcher class

EventDispatcher.dispatchEvent()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
dispatchEvent(eventObject)

Parameters

eventObject A reference to an event object. The event object must have a type property
that is a string indicating the name of the event. Generally, the event object also has a target
property that is the name of the instance broadcasting the event. You can define other
properties on the event object that help a user capture information about the event when it is
dispatched.

Returns

Nothing.

Description

Method; dispatches an event to any listener registered with an instance of the class. This
method is usually called from within a component’s class file. For example, the
SimpleButton.as class file dispatches the click event.

Example

The following example dispatches a click event:
dispatchEvent({type:"click"});
EventDispatcher.dispatchEvent() 503

EventDispatcher.removeEventListener()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
componentInstance.removeEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.

Description

Method; unregisters a listener object from a component instance that is broadcasting
an event.
504 EventDispatcher class

22

CHAPTER 22

FLVPlayback Component
(Flash Professional Only)
The FLVPlayback component lets you easily include a video player in your Flash application
to play progressively downloaded Flash video (FLV) files over HTTP or play streaming FLV
files from a Flash Communication Server (FCS) or from a Flash Video Streaming Service
(FVSS).

The easy-to-use FLVPlayback component has the following characteristics and benefits:

■ Can be dragged to the Stage and implemented quickly and successfully
■ Provides a collection of predesigned skins that allow you to customize the appearance of its

playback controls
■ Allows advanced users to create their own skins
■ Provides cue points that allow you to synchronize your video with text, graphics,

and animation
■ Provides live preview of customizations
■ Maintains a reasonably sized SWF file
505

The FLVPlayback component includes the FLV Playback Custom UI components. The
FLVPlayback component is a combination of the display area, or video player, in which you
view the FLV file and the controls that allow you to operate it. The FLV Playback Custom UI
components provide control buttons and mechanisms that you can use to play, stop, pause,
and otherwise control the FLV file. These controls include the BackButton, BufferingBar,
ForwardButton, MuteButton, PauseButton, PlayButton, PlayPauseButton, SeekBar,
StopButton, and VolumeBar. The FLVPlayback component and the FLV Playback Custom
UI controls appear in the Components panel, as shown in the following figure:

The process of adding playback controls to the FLVPlayback component is called skinning.
The FLVPlayback component has an initial default skin, ClearOverPlaySeekMute.swf, that
provides transparent controls for the play, seek, and mute functions. To change this skin, you
have the following choices:

■ Select from an collection of predesigned skins
■ Select individual controls from the FLV Playback Custom UI components and

customize them
■ Create a custom skin and add it to the collection of predesigned skins

After you select a different skin, the selected skin becomes the new default skin.

For more information about selecting or creating a skin for the FLVPlayback component, see
“Customizing the FLVPlayback component” on page 524.
506 FLVPlayback Component (Flash Professional Only)

The FLVPlayback component also includes an ActionScript application programming
interface (API). The API includes the FLVPlayback, VideoError, and VideoPlayer classes. For
more information on these classes, see “FLVPlayback class” on page 539, the “VideoPlayer
class” on page 706, and the “VideoError class” on page 698.

Using the FLVPlayback component
Using the FLVPlayback component basically consists of putting it on the Stage and specifying
an FLV file for it to play. In addition, however, you can also set various parameters that govern
its behavior and describe the FLV file.

Creating an application with the FLVPlayback
component
You can include the FLVPlayback component in your application in the following ways:

■ Drag the FLVPlayback component from the Components panel to the Stage, and specify a
value for the contentPath parameter.

■ Use the Video Import wizard to create the component on the Stage, and customize it by
selecting a skin.

■ Use the MovieClip attachMovie() method to dynamically create an FLVPlayback
instance on the Stage, assuming the component is in the library.

To drag the FLVPlayback component from the Components panel:

1. In the Components panel, click the Plus (+) button to open the FLV Playback - Player 8
entry.

2. Drag the FLVPlayback component to the Stage.

3. With the FLVPlayback component selected on the Stage, locate the Value cell for the
contentPath parameter in the Parameters tab of the Component inspector, and enter a
string that specifies one of the following:

■ A local path to an FLV file
■ A URL to an FLV file
■ A URL to an XML file that describes how to play an FLV file
For information on how to create an XML file to describe one or more FLV files, see
“Using a SMIL file” on page 712.

4. On the Parameters tab in the Component inspector, with the FLVPlayback component
selected on the Stage, click the Value cell for the skin parameter.
Using the FLVPlayback component 507

5. Click the magnifying-glass icon to open the Select Skin dialog box.

6. Select one of the following options:

■ From the drop-down Skin list, select one of the predesigned skins to attach a set of
playback controls to the component.

■ If you created a custom skin, select Custom Skin URL from the pop-up menu, and
enter, in the URL text box, the URL for the SWF file that contains the skin.

■ Select None, and drag individual FLV Playback Custom UI components to the Stage
to add playback controls.

7. Click OK to close the Select Skin dialog box.

8. Select Test Movie from the Control menu to execute the SWF file and start the video.

To use the Video Import wizard:

1. Select File > Import > Import Video.

2. Indicate the location of the video file by selecting one of the following options:

■ On my local computer
■ Already deployed to a web, FCS, or FVSS server

3. Depending on your choice, enter either the path or the URL that specifies the location of
the video file; then click Next.

4. If you selected a file path, you’ll see a Deployment dialog box next where you can select one
of the options listed to specify how you would like to deploy your video:

■ Progressive download from a standard web server
■ Stream from Flash Video Streaming Service
■ Stream from Flash Communication Server
■ Embed video in SWF and play in timeline

5. Click Next.

N
O

T
E

In the first two cases, a preview of the skin appears in the viewing pane above the
pop-up menu.

W
A

R
N

IN
G

Do not select the Embed Video option. The FLVPlayback component plays only
external streaming video. This option will not place an FLVPlayback component on
the Stage.
508 FLVPlayback Component (Flash Professional Only)

6. Select one of the following options:

■ From the drop-down Skin list, select one of the predesigned skins to attach a set of
playback controls to the component.

■ If you created a custom skin for the component, select Custom Skin URL from the
pop-up menu, and enter the URL for the SWF file that contains the skin in the URL
text box.

■ Select None, and drag individual FLV Playback Custom UI components to the Stage
to add playback controls.

7. Click OK to close the Select Skin dialog box.

8. Read the Finish Video Import dialog box to note what happens next, and then click Finish.

9. If you have not saved your FLA file, a Save As dialog box appears.

10. Select Test Movie from the Control menu to execute the SWF file, and start the video.

To create an instance dynamically using ActionScript:

1. Drag the FLVPlayback component from the Components panel to the Library (Window >
Library).

2. Add the following code to the Actions panel on Frame 1 of the Timeline. Change
install_drive to the drive on which you installed Flash 8 and modify the path to reflect
the location of the Skins folder for your installation:
import mx.video.*;
this.attachMovie("FLVPlayback", "my_FLVPlybk", 10, {width:320,

height:240, x:100, y:100});
my_FLVPlybk.skin = "file:///install_drive|/Program Files/Macromedia/

Flash 8/en/Configuration/Skins/ClearOverPlaySeekMute.swf"
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

The attachMovie() method belongs to the MovieClip class. You can use it create an
instance of the FLVPlayback component because the FLVPlayback class extends the
MovieClip class.

3. Select Test Movie from the Control menu to execute the SWF file and start the FLV file.

N
O

T
E

In the first two cases, a preview of the skin appears in the viewing pane above the
pop-up menu.

N
O

T
E

Without setting the contentPath and skin properties, the generated movie clip will
appear to be empty.
Using the FLVPlayback component 509

FLVPlayback component parameters
For each instance of the FLVPlayback component, you can set the following parameters in the
Component inspector or the Property inspector:

autoPlay A Boolean value that determines how to play the FLV file. If true, the
component plays the FLV file immediately when it is loaded. If false, the component loads
the first frame and pauses. The default value is true for the default video player (0) and false
for others. For more information about using multiple video players in a single FLVPlayback
instance, see “Playing multiple FLV files” on page 521.

autoRewind A Boolean value that determines whether the FLV file will rewind
automatically when it finishes playing. If true, the FLVPlayback component automatically
rewinds the FLV file to the beginning when the playhead reaches the end or when the user
clicks the Stop button. If false, the component stops play on the last frame of the FLV file
and does not rewind automatically. The default value is true.

autoSize A Boolean value that, if true, resizes the component at runtime to use the source
FLV file dimensions. These dimensions are encoded in the FLV file and are different than the
default dimensions of the FLVPlayback component. The default value is false. For more
information, see FLVPlayback.autoSize on page 558.

bufferTime The number of seconds to buffer the FLV file in memory before beginning
playback. This parameter affects streaming FLV files, which are buffered in memory but not
downloaded. For an FLV file that is progressively downloaded over HTTP, there is little
advantage to increasing this value, although it can improve viewing a high-quality video on an
older, slower computer. The default value is 0.1 For more information, see
FLVPlayback.bufferTime on page 571.

contentPath A string that specifies the URL to an FLV file or an XML file that describes
how to play one or more FLV files. You can specify a path on your local computer, an HTTP
path, or a Real-Time Messaging Protocol (RTMP) path. Double-click the value cell for this
parameter to open the Content Path dialog box. The default is an empty string.

If you do not specify a value for the contentPath parameter, nothing happens when Flash
executes the FLVPlayback instance. For more information, see “Specifying the contentPath
parameter” on page 512.

cuePoints A string that describes the cue points for the FLV file. Cue points allow you to
synchronize specific points in the FLV file with Flash animation, graphics, or text. The default
value is an empty string. For more information, see “Using cue points” on page 513.

N
O

T
E

Setting this parameter does not guarantee that a certain amount of the FLV file will
download before playback begins.
510 FLVPlayback Component (Flash Professional Only)

isLive A Boolean value that, if true, specifies that the FLV file is streaming live from Flash
Communication Server. One example of a live stream is a video of news events as they are
taking place. The default value is false. For more information, see FLVPlayback.isLive
on page 601.

maintainAspectRatio A Boolean value that, if true, resizes the video player within the
FLVPlayback component to retain the aspect ratio of the source FLV file; the source FLV file
is scaled to the dimensions of the FLVPlayback component on the Stage. The autoSize
parameter takes precedence over this parameter. The default value is true. For more
information, see FLVPlayback.maintainAspectRatio on page 605.

skin A parameter that opens the Select Skin dialog box from which you can select a skin for
the component. The default value is initially a predesigned skin, but it subsequently becomes
the last selected skin. If you select None, the FLVPlayback instance does not have control
elements to operate the FLV file. If the autoPlay parameter is set to true, the FLV file plays
automatically. For more information, see “Customizing the FLVPlayback component”
on page 524.

skinAutoHide A Boolean value that, if true, hides the skin when the mouse is not over the
FLV file or the skin region, if it is an external skin that is not on the FLV file viewing area. The
default value is false. For more information, see FLVPlayback.skin on page 670.

totalTime The total number of seconds, to a precision of milliseconds, in the source FLV
file. The default value is 0.

If you use FCS or FVSS, the component always takes the total time from the server.

If you use progressively download over HTTP, the component uses this number if it is set to a
value greater than zero. Otherwise, it tries to take the time from the FLV file metadata. For
more information, see FLVPlayback.totalTime on page 683.

volume A number from 0 to 100 that represents a percentage of the maximum volume
(100). For more information, see FLVPlayback.volume on page 690.

Each of these parameters has an equivalent property in the FLVPlayback class. Setting the
property overrides the parameter setting in the Component inspector or the Property
inspector.
Using the FLVPlayback component 511

Specifying the contentPath parameter
The contentPath parameter lets you specify the name and location of the FLV file, both of
which inform Flash how to play the file.

Open the Content Path dialog box by double-clicking the Value cell for the contentPath
parameter in the Component inspector. The dialog box looks like the following figure:

The dialog box provides two check boxes that can determine the dimensions of the
FLVPlayback instance and specify whether to acquire the dimensions and cue point
information from the FLV file. For more information, see “The FLV file options”
on page 513.

The content path
Enter the URL or local path for either the FLV file or an XML file that describes how to play
the FLV file. If you do not know the exact location of an FLV file, click the folder icon to
open a Browser dialog box to help you find the correct location. When browsing for an FLV
file, if it is at or below the location of the target SWF file, Flash automatically makes the path
relative to that location so you can serve it from a web server. Otherwise, the path is an
absolute Windows or Macintosh path. To enter the name of a local XML file, you must type
the path and name.

If you specify an HTTP URL, the FLV file plays as a progressive download. If you specify a
URL that is an RTMP URL, the FLV file streams from a FCS or a FVSS. A URL to an XML
file could also be a streaming FLV file from a FCS or a FVSS.

You can also specify the location of an XML file that describes how to play multiple FLV file
streams for multiple bandwidths. The XML file uses the Synchronized Multimedia
Integration Language (SMIL) to describe the FLV files. For a description of the XML SMIL
file, see “Using a SMIL file” on page 712.

C
A

U
T

IO
N

When you click OK in the Content Path dialog box, the component updates the value of
the cuePoints parameter because it might no longer apply if the content path changed.
As a result, you could lose any disabled cue points, but not ActionScript cue points. (You
will not lose disabled cue points if the new FLV file contains the same cue points, which
can happen if you simply change the path.) For this reason, you might want to disable
non-ActionScript cue points through ActionScript rather than through the Cue Points
dialog box.
512 FLVPlayback Component (Flash Professional Only)

You can also specify the name and location of the FLV file using the ActionScript
FLVPlayback.contentPath property and the FLVPlayback.play() and
FLVPlayback.load() methods. These three alternatives take precedence over the
contentPath parameter in the Component inspector. For more information, see
FLVPlayback.contentPath on page 579, FLVPlayback.play() on page 620 and
FLVPlayback.load() on page 603.

The FLV file options
The Content Path dialog box also has two options. The first option, Match Source FLV
Dimensions, specifies whether the FLVPlayback instance on the Stage should match the
dimensions of the source FLV file. The source FLV file contains preferred height and width
dimensions for playing. If you select the first option, the dimensions of the FLVPlayback
instance are resized to match these preferred dimensions. However, this option is available
only if the second option is also checked.

The second option, Download FLV for Cue Points and Dimensions, is enabled only if the
content path is an HTTP or RTMP URL, which means the FLV file is not local. Any path
that does not end in .flv is also considered a network path because it must be an XML file and
could point to FLV files anywhere. This option specifies whether to download or stream a
portion of the FLV file to acquire the FLV file dimensions and any cue point definitions that
are embedded within it. Flash uses the dimensions to resize the FLVPlayback instance, and it
loads the cue point definitions into the cuePoints parameter in the Component inspector. If
this option is not selected, the first option is disabled.

Using cue points
A cue point is a point at which the video player dispatches a cuePoint event while an FLV
file plays. You can add cue points to an FLV file at times that you want to interact with
another element on the web page. You might want to display text or a graphic, for example, or
synchronize with a Flash animation or affect the playing of the FLV file by pausing it, seeking
to a different point in time, or switching to a different FLV file. Cue points let you receive
control in your ActionScript code and synchronize those points in your FLV file with other
actions on the web page.

There are three types of cue points: navigation, event, and ActionScript. The navigation and
event cue points are also known as embedded cue points because they are embedded in the
FLV file stream and in the FLV file’s metadata packet.
Using cue points 513

A navigation cue point allows you to seek to a particular frame in the FLV file because it creates
a keyframe within the FLV file as near as possible to the time that you specify. A keyframe is a
data segment that occurs between image frames in the FLV file stream. When you seek to a
navigation cue point, the component seeks to the keyframe and starts the cuePoint event.

An event cue point enables you to synchronize a point in time within the FLV file with an
external event on the web page. The cuePoint event occurs precisely at the specified time.
You can embed navigation and event cue points in an FLV file using either the Video Import
wizard or the Flash Video encoder. For more information on the Video Import wizard and the
Flash Video encoder, see Chapter 11, “Working with Video,” in Using Flash.

An ActionScript cue point is an external cue point that you can add either through the
component’s Flash Video Cue Points dialog box or through the
FLVPlayback.addASCuePoint() method. The component stores and tracks ActionScript
cue points apart from the FLV file, and consequently, they are less accurate than embedded
cue points. ActionScript cue points are accurate to a tenth of a second. You can increase the
accuracy of ActionScript cue points by lowering the value of the playheadUpdateInterval
property because the component generates the cuePoint event for ActionScript cue points
when the playhead updates. For more information, see
“FLVPlayback.playheadUpdateInterval” on page 626.

In ActionScript and within the FLV file’s metadata, a cue point is represented as an object
with the following properties: name, time, type, and parameters. The name property is a
string that contains the assigned name of the cue point. The time property is a number
representing the time in hours, minutes, seconds, and milliseconds (HH:MM:SS.mmm)
when the cue point occurs. The type property is a string whose value is "navigation",
"event", or "actionscript", depending on the type of cue point that you created. The
parameters property is an array of specified name-and-value pairs.

When a cuePoint event occurs, the cue point object is available in the event object through
the info property. For more information, see “Listening for cuePoint events” on page 517.
514 FLVPlayback Component (Flash Professional Only)

Using the Flash Video Cue Points dialog box
Open the Flash Video Cue Points dialog box by double-clicking the Value cell of the
cuePoints parameter in the Component inspector. The dialog box looks like the
following figure:

The dialog box displays embedded and ActionScript cue points. You can use this dialog box to
add and delete ActionScript cue points as well as cue point parameters. You can also enable or
disable embedded cue points. However, you cannot add, change, or delete embedded
cue points.

To add an ActionScript cue point:

1. Double-click the value cell of the cuePoints parameter in the Component inspector to
open the Flash Cue Points dialog box.

2. Click the plus (+) sign in the upper-left corner, above the list of cue points, to add a default
ActionScript cue point entry.

3. Click the New Cue Point text in the Name column, and edit the text to name the
cue point.

4. Click the Time value of 00:00:00:000 to edit it, and assign a time for the cue point to
occur. You can specify the time in hours, minutes, seconds, and milliseconds
(HH:MM:SS.mmm).

If multiple cue points exist, the dialog box moves the new cue point to its chronological
position in the list.
Using cue points 515

5. To add a parameter for the selected cue point, click the plus (+) sign above the Parameters
section, and enter values in the Name and Value columns. Repeat this step for each
parameter.

6. To add more ActionScript cue points, repeat steps 2 through 5 for each one.

7. Click OK to save your changes.

To delete an ActionScript cue point:

1. Double-click the value cell of the cuePoints parameter in the Component inspector to
open the Flash Cue Points dialog box.

2. Select the cue point that you want to delete.

3. Click the minus (-) sign in the upper-left corner, above the list of cue points, to delete it.

4. Repeat steps 2 and 3 for each cue point that you want to delete.

5. Click OK to save your changes.

To enable or disable an embedded FLV file cue point:

1. Double-click the value cell of the cuePoints parameter in the Component inspector to
open the Flash Cue Points dialog box.

2. Select the cue point you want to enable or disable.

3. Click the value in the Type column to trigger the pop-up menu, or click the Down arrow.

4. Click the name of the type of cue point (for example, Event or Navigation) to enable it.
Click Disabled to disable it.

5. Click OK to save your changes.

Using ActionScript with cue points
You can use ActionScript to add ActionScript cue points, listen for cuePoint events, find cue
points of any type or a specific type, seek to a navigation cue point, enable or disable a cue
point, check whether a cue point is enabled, and remove a cue point.

The examples in this section use an FLV file called cuepoints.flv, which contains the following
three cue points:

Name Time Type

point1 00:00:00.418 Navigation

point2 00:00:07.748 Navigation

point3 00:00:16.020 Navigation
516 FLVPlayback Component (Flash Professional Only)

Adding ActionScript cue points
You can add ActionScript cue points to an FLV file using the addASCuePoint() method. The
following example adds two ActionScript cue points to the FLV file when it is ready to play. It
adds the first cue point using a cue point object, which specifies the time, name, and type of
the cue point in its properties. The second call specifies the time and name using the method’s
time and name parameters.
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv"
var cuePt:Object = new Object(); //create cue point object
cuePt.time = 2.02;
cuePt.name = "ASpt1";
cuePt.type = "actionscript";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
// add 2nd AS cue point using time and name parameters
my_FLVPlybk.addASCuePoint(5, "ASpt2");

For more information, see FLVPlayback.addASCuePoint() on page 552.

Listening for cuePoint events
The cuePoint event allows you to receive control in your ActionScript code when a
cuePoint event occurs. When cue points occur in the following example, the cuePoint
listener calls an event handler function that displays the value of the playheadTime property
and the name and type of the cue point.
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

trace("Elapsed time in seconds: " + my_FLVPlybk.playheadTime);
trace("Cue point name is: " + eventObject.info.name);
trace("Cue point type is: " + eventObject.info.type);

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

For more information on the cuePoint event, see FLVPlayback.cuePoint on page 580.

Finding cue points
Using ActionScript, you can find a cue point of any type, find the nearest cue point to a time,
or find the next cue point with a specific name.
Using cue points 517

The ready event handler in the following example calls the findCuePoint() method to find
the cue point ASpt1 and then calls the findNearestCuePoint() method to find the
navigation cue point that is nearest to the time of cue point ASpt1:
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv"
var rtn_obj:Object = new Object(); //create cue point object
my_FLVPlybk.addASCuePoint(2.02, "ASpt1"); //add AS cue point
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

rtn_obj = my_FLVPlybk.findCuePoint("ASpt1");
traceit(rtn_obj);
rtn_obj = my_FLVPlybk.findNearestCuePoint(rtn_obj.time,
FLVPlayback.NAVIGATION);
traceit(rtn_obj);

}
my_FLVPlybk.addEventListener("ready", listenerObject);
function traceit(cuePoint:Object):Void {

trace("Cue point name is: " + cuePoint.name);
trace("Cue point time is: " + cuePoint.time);
trace("Cue point type is: " + cuePoint.type);

}

In the following example, the ready event handler finds cue point ASpt and calls the
findNextCuePointWithName() method to find the next cue point with the same name:
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv"
var rtn_obj:Object = new Object(); //create cue point object
my_FLVPlybk.addASCuePoint(2.02, "ASpt"); //add AS cue point
my_FLVPlybk.addASCuePoint(3.4, "ASpt"); //add 2nd Aspt
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

rtn_obj = my_FLVPlybk.findCuePoint("ASpt");
traceit(rtn_obj);
rtn_obj = my_FLVPlybk.findNextCuePointWithName(rtn_obj);
traceit(rtn_obj);

}
my_FLVPlybk.addEventListener("ready", listenerObject);
function traceit(cuePoint:Object):Void {

trace("Cue point name is: " + cuePoint.name);
trace("Cue point time is: " + cuePoint.time);
trace("Cue point type is: " + cuePoint.type);

}

For more information about finding cue points, see FLVPlayback.findCuePoint()
on page 586, FLVPlayback.findNearestCuePoint() on page 589, and
FLVPlayback.findNextCuePointWithName() on page 592.
518 FLVPlayback Component (Flash Professional Only)

Seeking navigation cue points
You can seek to a navigation cue point, seek to the next navigation cue point from a specified
time, and seek to the previous navigation cue point from a specified time. The following
example plays the FLV file cuepoints.flv and seeks to the cue point at 7.748 when the ready
event occurs. When the cuePoint event occurs, the example calls the
seekToPrevNavCuePoint() method to seek to the first cue point. When that cuePoint
event occurs, the example calls the seekToNextNavCuePoint() method to seek to the last cue
point by adding 10 seconds to eventObject.info.time, which is the time of the current cue
point.
import mx.video.*;

var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

my_FLVPlybk.seekToNavCuePoint("point2");
}
my_FLVPlybk.addEventListener("ready", listenerObject);
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

trace(eventObject.info.time);
if(eventObject.info.time == 7.748)

my_FLVPlybk.seekToPrevNavCuePoint(eventObject.info.time - .005);
else

my_FLVPlybk.seekToNextNavCuePoint(eventObject.info.time + 10);
}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://helpexamples.com/flash/video/

cuepoints.flv";

For more information, see FLVPlayback.seekToNavCuePoint() on page 660,
FLVPlayback.seekToNextNavCuePoint() on page 661, and
FLVPlayback.seekToPrevNavCuePoint() on page 663.

Enabling and disabling embedded FLV file cue points
You can enable and disable embedded FLV file cue points using the
setFLVCuePointEnabled() method. Disabled cue points do not trigger cuePoint events
and do not work with the seekToCuePoint(), seekToNextNavCuePoint(), and
seekToPrevNavCuePoint() methods. You can find disabled cue points, however, with the
findCuePoint(), findNearestCuePoint(), and findNextCuePointWithName() methods.
Using cue points 519

You can test whether an embedded FLV file cue point is enabled using the
isFLVCuePointEnabled() method. The following example disables the embedded cue
points point2 and point3 when the video is ready to play. When the first cuePoint event
occurs, however, the event handler tests to see if cue point point3 is disabled and, if so,
enables it.
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.setFLVCuePointEnabled(false, "point2");
my_FLVPlybk.setFLVCuePointEnabled(false, "point3");

}
my_FLVPlybk.addEventListener("ready", listenerObject);
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

trace("Cue point time is: " + eventObject.info.time);
trace("Cue point name is: " + eventObject.info.name);
trace("Cue point type is: " + eventObject.info.type);
if (my_FLVPlybk.isFLVCuePointEnabled("point2") == false) {

my_FLVPlybk.setFLVCuePointEnabled(true, "point2");
}

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

For more information, see FLVPlayback.isFLVCuePointEnabled() on page 599 and
FLVPlayback.setFLVCuePointEnabled() on page 665.

Removing an ActionScript cue point
You can remove an ActionScript cue point using the removeASCuePoint() method. The
following example removes the cue point ASpt2 when cue point ASpt1 occurs:
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

trace("Cue point name is: " + eventObject.info.name);
if (eventObject.info.name == "ASpt1") {

my_FLVPlybk.removeASCuePoint("ASpt2");
trace("Removed cue point ASpt2");

}
}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

For more information, see FLVPlayback.removeASCuePoint() on page 638.
520 FLVPlayback Component (Flash Professional Only)

Playing multiple FLV files
You can play FLV files sequentially in an FLVPlayback instance simply by loading a new URL
in the contentPath property when the previous FLV file finishes playing. For example, the
following ActionScript code listens for the complete event, which occurs when an FLV file
finishes playing. When this event occurs, the code sets the name and location of a new FLV
file in the contentPath property and calls the play() method to play the new video.
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
var listenerObject:Object = new Object();
// listen for complete event; play new FLV
listenerObject.complete = function(eventObject:Object):Void {

if (my_FLVPlybk.contentPath == "http://www.helpexamples.com/flash/video/
clouds.flv") {

my_FLVPlybk.play("http://www.helpexamples.com/flash/video/water.flv");
}

};
my_FLVPlybk.addEventListener("complete", listenerObject);

Using multiple video players
You can also open multiple video players within a single instance of the FLVPlayback
component to play multiple videos and switch between them as they play.

You create the initial video player when you drag the FLVPlayback component to the Stage.
The component automatically assigns the initial video player the number 0 and makes it the
default player. To create an additional video player, simply set the activeVideoPlayerIndex
property to a new number. Setting the activeVideoPlayerIndex property also makes the
specified video player the active video player, which is the one that will be affected by the
properties and methods of the FLVPlayback class. Setting the activeVideoPlayerIndex
property does not make the video player visible, however. To make the video player visible, set
the visibleVideoPlayerIndex property to the video player’s number. For more information
on how these properties interact with the methods and properties of the FLVPlayback class,
see FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.
Playing multiple FLV files 521

The following ActionScript code loads the contentPath property to play an FLV file in the
default video player and adds a cue point for it. When the ready event occurs, the event
handler opens a second video player by setting the activeVideoPlayerIndex property to the
number 1. It specifies an FLV file and a cue point for the second video player and then makes
the default player (0) the active video player again.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
// add a cue point to the default player
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
my_FLVPlybk.addASCuePoint(3, "1st_switch");
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

// add a second video player and create a cue point for it
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";
my_FLVPlybk.addASCuePoint(3, "2nd_switch");
my_FLVPlybk.activeVideoPlayerIndex = 0;

};
my_FLVPlybk.addEventListener("ready", listenerObject);

To switch to another FLV file while one is playing, you must obtain control to make the
switch in your ActionScript code. Cue points allow you to intervene at specific points in the
FLV file using a cuePoint event. The following code creates a listener for the cuePoint event
and calls a handler function that pauses the active video player (0), switches to the second
player (1), and plays its FLV file:
// create a listener object
var listenerObject:Object = new Object();
// add a handler function for the cuePoint event
listenerObject.cuePoint = function(eventObject:Object):Void {

// display the no. of the video player causing the event
trace("Hit cuePoint event for player: " + eventObject.vp);
// test for the video player and switch FLVs accordingly
if (eventObject.vp == 0) {

my_FLVPlybk.pause(); //pause the first FLV
my_FLVPlybk.activeVideoPlayerIndex = 1; // make the 2nd player active
my_FLVPlybk.visibleVideoPlayerIndex = 1; // make the 2nd player

visible
my_FLVPlybk.play(); // begin playing the new player/FLV

} else if (eventObject.vp == 1) {
my_FLVPlybk.pause(); // pause the 2nd FLV
my_FLVPlybk.activeVideoPlayerIndex = 0; // make the 1st player active
522 FLVPlayback Component (Flash Professional Only)

my_FLVPlybk.visibleVideoPlayerIndex = 0; // make the 1st player
visible

my_FLVPlybk.play(); // begin playing the 1st player
}

}
// add listener for a cuePoint event
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
listenerObject.complete = function(eventObject:Object):Void {

trace("Hit complete event for player: " + eventObject.vp);
if (eventObject.vp == 0) {

my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.visibleVideoPlayerIndex = 1;
my_FLVPlybk.play();

} else {
my_FLVPlybk.closeVideoPlayer(1);

}
}
my_FLVPlybk.addEventListener("complete", listenerObject);

When you create a new video player, the FLVPlayback instance sets its properties to the value
of the default video player, except for the contentPath, totalTime, and isLive properties,
which the FLVPlayback instance always sets to the default values: empty string, 0, and false,
respectively. It sets the autoPlay property, which defaults to true for the default video player,
to false. The cuePoints property has no effect, and it has no effect on a subsequent load
into the default video player.

The methods and properties that control volume, positioning, dimensions, visibility, and user
interface controls are always global and their behavior is not affected by setting the
activeVideoPlayerIndex property. For more information on these methods and properties
and the effect of setting the activeVideoPlayerIndex property, see
FLVPlayback.activeVideoPlayerIndex on page 549. The remaining properties and
methods target the video player identified by the value of the activeVideoPlayerIndex
property.

Properties and methods that control dimensions do interact with the
visibleVideoPlayerIndex property, however. For more information, see
“FLVPlayback.visibleVideoPlayerIndex” on page 688.
Playing multiple FLV files 523

Streaming FLV files from a FCS
If you use a FCS to stream FLV files to the FLVPlayback component, you must add the
main.asc file to your Flash Communication Server FLV application. You can find the main.asc
file in your Flash 8 application folder under Flash 8/Samples and Tutorials/Samples/
Components/FLVPlayback/main.asc.

To set up your FCS for streaming FLV files:

1. Create a folder in your FCS application folder, and give it a name such as my_application.

2. Copy the main.asc file into the my_application folder.

3. Create a folder named streams in the my_application folder.

4. Create a folder named _definst_ inside the streams folder.

5. Place your FLV files in the _definst_ folder.

To access your FLV files on the Flash Communication Server, use a URL such as rtmp://
my_servername/my_application/stream.flv.

For more information on administering the Flash Communication Server, including how to
set up a live stream, see the FCS documentation at www.macromedia.com/support/
documentation/en/flashcom/. When playing a live stream with FCS, you need to set the
FLVPlayback property isLive to true. For more information, see FLVPlayback.isLive
on page 601.

Customizing the FLVPlayback
component
This section explains how to customize the FLVPlayback component. For a comprehensive
overview of customizing components, which includes terminology and the basic concepts of
working with styles, skins, and themes, see “Customizing Components” in Using Components.
Most of the methods used to customize other components, however, do not work with the
FLVPlayback component. To customize the FLVPlayback component, use only the
techniques described in this section.

You have the following choices for customizing the FLVPlayback component: select a
predesigned skin, skin FLV Playback Custom UI components individually, or create a new
skin. You can also use FLVPlayback properties to modify the behavior of a skin.

N
O

T
E

You must upload your skin SWF file to the web server along with your application SWF
file for the skin to work with your FLVPlayback component.
524 FLVPlayback Component (Flash Professional Only)

http://www.macromedia.com/support/documentation/en/flashcom/
http://www.macromedia.com/support/documentation/en/flashcom/

Selecting a predesigned skin
You can select a skin for the FLVPlayback component by clicking the value cell for the skin
parameter in the Component inspector. Then click the magnifying glass icon to open the
following Select Skin dialog box, in which you can select a skin or provide a URL that
specifies the location of the skin SWF file.

Skins that are listed in the Skin pop-up menu are located in the Flash 8 Configuration/Skins
folder or in the user’s local Configuration/Skins folder. You can make new skins available to
this dialog box by creating them and placing the SWF file in the Skins folder. The name
appears in the pop-up menu with a .swf extension. For more information about creating a
skin set, see “Creating a new skin” on page 532.

If you want to skin the FLVPlayback component using the FLV Playback Custom UI
components, select None from the pop-up menu.

Skinning FLV Playback Custom UI components
individually
The FLV Playback Custom UI components allow you to customize the appearance of the
FLVPlayback controls within your FLA file and allow you to see the results when you preview
your web page. These components are not designed to be scaled, however. You should edit a
movie clip and its contents to be a specific size. For this reason, it is generally best to have the
FLVPlayback component on the Stage at the desired size, with the autoSize and
maintainAspectRatio properties set to false.
Customizing the FLVPlayback component 525

To begin, simply drag the FLV Playback Custom UI components that you want from the
Components panel, place them where you want them on the Stage, and give each one an
instance name in the Property inspector. After your components are on the Stage, you edit
them as you would any other symbol.

After you open the components, you can see that each one is set up a little differently from
the others.

Button components
The button components have a similar structure. The buttons include the BackButton,
ForwardButton, MuteButton, PauseButton, PlayButton, PlayPauseButton, and StopButton.
Most have a single movie clip on Frame 1 with the instance name placeholder_mc. This is
usually an instance of the normal state for the button, but not necessarily so. On Frame 2,
there are four movie clips on the Stage for each display state: normal, over, down and disabled.
(At runtime, the component never actually goes to Frame 2; these movie clips are placed here
to make editing more convenient and to force them to load into the SWF file without
checking the Export in First Frame check box in the Symbol Properties dialog box. You must
still select the Export for ActionScript option, however.)

To skin the button, you simply edit each of these movie clips. You can change their size as well
as their appearance.

Some ActionScript usually appears on Frame 1. You should not need to change this script. It
simply stops the playhead on Frame 1 and specifies which movie clips to use for which states.

PlayPauseButton and MuteButton buttons

The PlayPauseButton and MuteButton buttons are set up differently than the other buttons;
they have only one frame with two layers and no script. On that frame, there are two buttons,
one on top of the other—in the first case, a Play and a Pause button; in the second case, a
Mute-on and a Mute-off button. To skin the PlayPauseButton or MuteButton buttons, skin
each of these two internal buttons as described in “Skinning FLV Playback Custom UI
components individually” on page 525; no additional action is required.

BackButton and ForwardButton buttons

The BackButton and ForwardButton buttons are also set up differently than the other
buttons. On Frame 2, they have extra movie clips that you can use as a frame around one or
both of the buttons. These movie clips are not required and have no special capability; they
are provided only as a convenience. To use them, simply drag them on the Stage from your
Library panel and place them where you want them. If you don’t want them, either don’t use
them or delete them from your Library panel.
526 FLVPlayback Component (Flash Professional Only)

Most of the buttons, as supplied, are based on a common set of movie clips so that you can
change the appearance of all the buttons at once. You can use this capability, or you can
replace those common clips and make every button look different.

BufferingBar component
The buffering bar component is simple: It consists of an animation that is made visible when
the component enters the buffering state, and it does not require any special ActionScript to
configure it. By default, it is a striped bar moved from left to right with a rectangular mask on
it to give it a “barber pole” effect, but there is nothing special about this configuration.

Although the buffering bars in the skin SWF files use 9-slice scaling because they need to be
scaled at runtime, the BufferingBar FLV Custom UI Component does not and cannot use 9-
slice scaling because it has nested movie clips. If you want to make the BufferingBar wider or
taller, you might want to change its contents rather than scale it.

SeekBar and VolumeBar components
The SeekBar and VolumeBar components are similar, although they have different functions.
Each has handles, uses the same handle tracking mechanisms, and has support for clips nested
within to track progress and fullness.

There are many places where the ActionScript code in the FLVPlayback component assumes
that the registration point of your SeekBar or VolumeBar component is at the upper-left
corner of the content, so it is important to maintain this convention. Otherwise, you might
have problems with handles and with progress and fullness movie clips.

Although the seek bars in the skin SWF files use 9-slice scaling because they need to be scaled
at runtime, the SeekBar FLV Custom UI component does not and cannot use 9-slice scaling
because it has nested movie clips. If you want to make the SeekBar wider or taller, you might
want to change its contents rather than scale it.

Handle

An instance of the handle movie clip is on Frame 2. As with the BackButton and
ForwardButton components, the component never actually goes to Frame 2; these movie clips
are placed here to make editing more convenient and as a way to force them to be loaded into
the SWF file without checking the Export in First Frame check box in the Symbol Properties
dialog box. You still must select the Export for ActionScript option, however.
Customizing the FLVPlayback component 527

You might notice that the handle movie clip has a rectangle in the background with alpha set
to 0. This rectangle increases the size of the handle’s hit area, making it easier to grab without
changing its appearance, similar to the hit state of a button. Because the handle is created
dynamically at runtime, it must be a movie clip and not a button. This rectangle with alpha
set to 0 is not necessary for any other reason and, generally, you can replace the inside of the
handle with any image you want. It works best, however, to keep the registration point
centered horizontally in the middle of the handle movie clip.

The following ActionScript code is on Frame 1 of the SeekBar component to manage
the handle:
stop();
handleLinkageID = "SeekBarHandle";
handleLeftMargin = 2;
handleRightMargin = 2;
handleY = 11;

The call to the stop() function is necessary due to the content of Frame 2.

The second line specifies which symbol to use as the handle, and you should not need to
change this if you simply edit the handle movie clip instance on Frame 2. At runtime, the
FLVPlayback component creates an instance of the specified movie clip on the Stage as a
sibling of the Bar component instance, which means that they have the same parent movie
clip. So, if your bar is at the root level, your handle must also be at the root level.

The variable handleLeftMargin determines the handle’s original location (0%), and the
variable handleRightMargin determines where it is at the end (100%). The numbers give the
offsets from the left and right ends of the bar control, with positive numbers marking the
limits within the bar, and negative numbers marking the limits outside the bar. These offsets
specify where the handle can go, based on its registration point. If you put your registration
point in the middle of the handle, the handle’s far left and right sides will go past the margins.
A seek bar movie clip must have its registration point as the upper-left corner of its content to
work properly.

The variable handleY determines the y position of the handle, relative to the bar instance.
This is based on the registration points of each movie clip. The registration point in the
sample handle is at the tip of the triangle to place it relative to the visible part, disregarding
the invisible hit state rectangle. Also, the bar movie clip must keep its registration point as the
upper-left corner of its content to work properly.

So, for example, with these limits, if there a bar control is set at (100, 100), and it is 100 pixels
wide, the handle can range from 102 to 198 horizontally and stay at 111 vertically. If you
change the handleLeftMargin and handleRightMargin to -2 and handleY to -11, the
handle can range from 98 to 202 horizontally and stay at 89 vertically.
528 FLVPlayback Component (Flash Professional Only)

Progress and fullness movie clips

The SeekBar component has a progress movie clip and the VolumeBar has a fullness movie clip,
but in practice, any SeekBar or VolumeBar can have either, neither, or both of these movie
clips. They are structurally the same and behave similarly but track different values. A progress
movie clip fills up as the FLV file downloads (which is useful for an HTTP download only,
because it is always full if streaming from FCS) and a fullness movie clip fills up as the handle
moves from left to right.

The FLVPlayback component finds these movie clip instances by looking for a specific
instance name, so your progress movie clip instance must have your bar movie clip as its
parent and have the instance name progress_mc. The fullness movie clip instance must have
the instance name fullness_mc.

You can set the progress and fullness movie clips with or without the fill_mc movie clip
instance nested inside. The VolumeBar fullness_mc movie clip shows the method with the
fill_mc movie clip, and the SeekBar progress_mc movie clip shows the method without the
fill_mc movie clip.

The method with the fill_mc movie clip nested inside is useful when you want a fill that
cannot be scaled without distorting the appearance.

In the VolumeBar fullness_mc movie clip, the nested fill_mc movie clip instance is masked.
You can either mask it when you create the movie clip, or a mask will be created dynamically
at runtime. If you mask it with a movie clip, name the instance mask_mc and set it up so that
fill_mc appears as it would when percentage is 100%. If you do not mask fill_mc, the
dynamically created mask will be rectangular and the same size as fill_mc at 100%.

The fill_mc movie clip is revealed with the mask in one of two ways, depending on whether
fill_mc.slideReveal is true or false.

If fill_mc.slideReveal is true, then fill_mc is moved from left to right to expose it through the
mask. At 0%, it is all the way to the left so, that none of it shows through the mask. As the
percentage increases, it moves to the right, until at 100%, it is back where it was created on
the Stage.

If fill_mc.slideReveal is false or undefined (the default behavior), the mask will be resized
from left to right to reveal more of fill_mc. When it is at 0%, the mask will be scaled to 05
horizontally, and as the percentage increases, the _xscale increases until, at 100%, it reveals
all of fill_mc. This is not necessarily _xscale = 100 because mask_mc might have been scaled
when it was created.

The method without fill_mc is simpler than the method with fill_mc, but it distorts the fill
horizontally. If you do not that distortion, you must use fill_mc. The SeekBar progress_mc
illustrates this method.
Customizing the FLVPlayback component 529

The progress or fullness movie clip is scaled horizontally based on the percentage. At 0%, the
instance’s _xscale is set to 0, making it invisible. As the percentage grows, the _xscale is
adjusted until, at 100%, the clip is the same size it was on the Stage when it was created.
Again, this is not necessarily _xscale = 100 because the clip instance might have been scaled
when it was created.

Connecting your FLV Playback Custom UI components
You must write ActionScript code to connect your FLV Playback Custom UI components to
your instance of the FLVPlayback component. First, you must assign a name to the
FLVPlayback instance and then use ActionScript to assign your FLV Playback Custom UI
component instances to the corresponding FLVPlayback properties. In the following example,
the FLVPlayback instance is my_FLVPlybk, the FLVPlayback property names follow the
periods (.), and the FLV Playback Custom UI control instances are to the right of the equal
(=) signs:
//FLVPlayback instance = my_FLVPlybk
my_FLVPlybk.playButton = playbtn; // set playButton property to playbtn,

etc.
my_FLVPlybk.pauseButton = pausebtn;
my_FLVPlybk.playPauseButton = playpausebtn;
my_FLVPlybk.stopButton = stopbtn;
my_FLVPlybk.muteButton = mutebtn;
my_FLVPlybk.backButton = backbtn;
my_FLVPlybk.forwardButton = forbtn;
my_FLVPlybk.volumeBar = volbar;
my_FLVPlybk.seekBar = seekbar;
my_FLVPlybk.bufferingBar = bufbar;

Example

The following steps create custom StopButton, PlayPauseButton, MuteButton, and SeekBar
controls:

1. Drag the FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk.

2. Set the contentPath parameter through the Component inspector to http://
www.helpexamples.com/flash/video/cuepoints.flv.

3. Set the Skin parameter to None.

4. Drag a StopButton, a PlayPauseButton, and a MuteButton to the Stage, and place them
over the FLVPlayback instance, stacking them vertically on the left. Give each button an
instance name in the Property inspector (such as my_stopbttn, my_plypausbttn, and
my_mutebttn).
530 FLVPlayback Component (Flash Professional Only)

5. In the Library panel, open the FLVPlayback Skins folder, and then open the SquareButton
folder below it.

6. Select the SquareBgDown movie clip, and double-click it to open it on the Stage.

7. Right-click (Windows) or Control-click (Macintosh), select Select All from the menu, and
delete the symbol.

8. Select the oval tool, draw an oval in the same location, and set the fill to blue #(0033FF).

9. In Property inspector, set the width (W:) to 40 and the height (H:) to 20. Set the x-
coordinate (X:) to 0.0 and y-coordinate (Y:) to 0.0.

10. Repeat steps 6 to 8 for SquareBgNormal, but change the fill to yellow (#FFFF00).

11. Repeat steps 6 to 8 for SquareBgOver, but change the fill to green (#006600).

12. Edit the movie clips for the various symbol icons within the buttons (PauseIcon, PlayIcon,
MuteOnIcon, MuteOffIcon, and StopIcon). You can find these movie clips in the Library
panel under FLV Playback Skins/Label Button/Assets, where Label is the name of the
button, such as Play, Pause, and so on. Do the following steps for each one:

a. Select the Select All option.
b. Change the color to red (#FF0000).
c. Scale by 300%.
d. Change the X: location of the content to 7.0 to alter the horizontal placement of the

icon in every button state.

13. Click the blue Back arrow above the Timeline to return to Scene 1, Frame 1.

14. Drag a SeekBar component to the Stage, and place it in the lower-right corner of the
FLVPlayback instance.

15. In the Library panel, double-click the SeekBar to open it on the Stage.

16. Scale it to 400%.

17. Select the outline, and set the color to red (#FF0000).

18. Double-click SeekBarProgress in the FLVPlayback Skins/Seek Bar folder, and set the color
to yellow (#FFFF00).

19. Double-click SeekBarHandle in the FLVPlayback Skins/Seek Bar folder and set the color
to red (#FF0000).

20.Click the blue Back arrow above the Timeline to return to Scene 1, Frame 1.

21. Select the SeekBar instance on the Stage, and give it an instance name of my_seekbar.

N
O

T
E

By changing the location this way, you avoid opening every button state and
moving the icon movie clip instance.
Customizing the FLVPlayback component 531

22.In the Actions panel on Frame 1 of the Timeline, add an import statement for the video
classes, and assign the button and seek bar names to the corresponding FLVPlayback
properties, as shown in the following example:
import mx.video.*;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.playPausebttn = my_plypausbttn;
my_FLVPlybk.muteButton = my_mutebttn;
my_FLVPlybk.seekBar = my_seekbar;

23.Press Control+Enter to test the movie.

Creating a new skin
The best way to create a skin SWF file is to copy one of the skin files that come with Flash 8,
and use it as a starting point. You can find the FLA files for these skins in the Flash 8
application folder in <lang code>/Configuration/SkinFLA. To make your finished skin SWF
file available as an option in the Select Skin dialog box, put it in the <lang code>/
Configuration/Skins folder either in the Flash 8 application folder or in a user’s local
Configuration/Skins folder.

You will find that simple modifications that change the appearance of a button or of the
chrome (the background) of a button, without changing the dimensions, are fairly easy. All the
installed skins have the same buttons based on different-colored chromes, so you can make
dramatic changes by simply changing the color of the chrome. You can make changes, such as
rearranging controls in the layout movie clip, by simply moving the placeholder clips. You can
see these changes exactly as they will appear in the finished SWF file.

When looking at the installed Flash 8 skin FLA files, it might seem that certain things on the
Stage are unnecessary, but many of these things are put into guide layers. To quickly see what
actually appears in the SWF file, type Ctl-Enter to test the movie. This will also show you
how 9-slice scaling affects certain controls, because 9-slice scaling is not in effect when you are
authoring.

The following sections cover more complex customizations and changes to the SeekBar,
BufferingBar, and VolumeBar movie clips.

Using layout_mc
When you open a Flash 8 skin FLA file, you will find a movie clip named layout_mc in the
upper-left corner of the Stage. This clip must be named layout_mc. The layout_mc clip and
the ActionScript code that you find on the same frame define how the controls will be laid out
at runtime.
532 FLVPlayback Component (Flash Professional Only)

Although layout_mc looks a lot like how the skin will look like at runtime, the contents of
this clip are not visible at runtime. It is used only to calculate where to place the controls. The
other controls on the Stage will be used at runtime.

Within layout_mc is a placeholder for the FLVPlayback component named video_mc. All the
other controls are laid out relative to video_mc. If you start with one of the Flash 8 FLA files
and change the size of the controls, you can probably fix the layout by moving these
placeholder clips.

Each of the placeholder clips has a specific instance name. The names of the placeholder clips
are: playpause_mc, play_mc, pause_mc, stop_mc, back_mc, bufferingBar_mc, seekBar_mc,
volumeMute_mc, and volumeBar_mc.

Which clip is used for a control is not important. Generally, for buttons the normal state clip
is used. For other controls the clip for that control is used, but this is only for convenience. All
that is important are the x (horizontal) and y (vertical) location and the height and the width
of the placeholder.

You can also have as many background and foreground clips as you want besides the standard
controls. You must use the following naming convention, however: bg1_mc, bg2_mc, and so
on for background clips; and fg1_mc, fg2_mc, and so on for foreground clips. You cannot
skip numbers. For example, if you have bg1_mc and bg3_mc but no bg2_mc, bg3_mc will
not be used. This scheme is designed to put background clips behind the controls, with
bg1_mc on the bottom and bg2_mc above it, and the foreground clips above the controls,
with fg1_mc first and fg2_mc above fg1_mc, and so on. However, the layered relationship of
the clips is actually determined by the ordering of the corresponding controls on the Stage, so
make sure that is correct.

The bg1_mc clip is special. If you set the FlvPlayback.skinAutoHide property to true, the
skin shows when the mouse is over the bg1_mc clip. This is important for skins that appear
outside the bounds of the video player. For information on the skinAutoHide property, see
“Modifying skin behavior” on page 538.

In the Flash 8 FLA files, bg1_mc is used for the chrome, and some use bg2_mc for the border
around the Forward and Back buttons.

ActionScript

The following ActionScript code applies to all controls generally. Some controls have specific
ActionScript that defines additional behavior, and that is explained in the section for
that control.
Customizing the FLVPlayback component 533

The initial ActionScript code defines the minimum width and height for the skin. The Select
Skin dialog box shows these values and they are used at runtime to prevent the skin from
scaling below its minimum size. If you do not want to specify a minimum size, leave it as
undefined or less than or equal to zero.
// minimum width and height of video recommended to use this skin,
// leave as undefined or <= 0 if there is no minimum
layout_mc.minWidth = 270;
layout_mc.minHeight = 60;

Each placeholder can have the following properties applied to it:

If both the anchorLeft and anchorRight properties are true, the control will be scaled
horizontally at runtime. If both the anchorTop and anchorBottom properties are true, the
control will be scaled vertically at runtime.

To see the effects of these properties, see how they are used in the Flash 8 skins. The
BufferingBar and SeekBar controls are the only ones that scale, and they are laid on top of one
another and have both the anchorLeft and anchorRight properties set to true. All controls
to the left of the BufferingBar and SeekBar have anchorLeft set to true, and all controls to
their right have anchorRight set to true. All controls have anchorBottom set to true.

You can try editing the layout_mc movie clip to make a skin where the controls sit at the top
rather than at the bottom. You simply need to move the controls to the top, relative to
video_mc, and set anchorTop equal to true for all controls.

Property Description

mc:MovieClip The instance on the Stage for this control. If not set,
layout_mc.foo_mc.mc would default to foo_mc.

anchorLeft:Boolean Positions the control relative to the left side of the
FLVPlayback instance. Defaults to true unless
anchorRight is explicitly set to true, and then it defaults to
false

anchorRight:Boolean Positions the control relative to the right side of the
FLVPlayback instance. Defaults to false.

anchorBottom:Boolean Positions the control relative to the bottom of the
FLVPlayback instance. Defaults to true, unless anchorTop
is explicitly set to true, and then it defaults to false.

anchorTop:Boolean Positions the control relative to the top of the
FLVPlayback instance. Defaults to false.
534 FLVPlayback Component (Flash Professional Only)

Button states
All the button states are laid out on the Stage, but where these movie clip instances are placed
on the Stage is not important. It is important, however, that they are nested within movie
clips in a specific way and that every clip instance has the correct instance name.

The structure of the clip instances and their instance names are shown in the following
example:
playpause_mc

play_mc
up_mc, over_mc, down_mc, disabled_mc

pause_mc
up_mc, over_mc, down_mc, disabled_mc

stop_mc
up_mc, over_mc, down_mc, disabled_mc

back_mc
up_mc, over_mc, down_mc, disabled_mc

forward_mc
up_mc, over_mc, down_mc, disabled_mc

volumeMute_mc
on_mc

up_mc, over_mc, down_mc, disabled_mc
off_mc

up_mc, over_mc, down_mc, disabled_mc

Notice that the Flash 8 FLA files have additional Forward and Back buttons on the Stage.
These are on guide layers and are there to show the use of the ForwardBackBorder,
ForwardBorder, and BackBorder movie clips. For more information, see “Background and
foreground clips” on page 538.

You can edit the various states as desired. Remember that all states are placed in the same place
by their registration points, so if some states are bigger than others, you might not be able to
place your art at (0, 0) as it is in most of the Flash 8 button skins. You might find it easier, in
some cases, to keep the registration point in the center of the art.

If you do not want to use all the states, you can omit some, but you should include up_mc.
The up_mc clip is used for omitted states.

If you want to have separate Play and Pause buttons, rather than a combined Play-Pause
button, simply place the play_mc and pause_mc clips on the Stage without wrapping them
with a playpause_mc clip.

No additional ActionScript code is necessary to set up the buttons besides the code described
in “Using layout_mc” on page 532.
Customizing the FLVPlayback component 535

Buffering bar
The buffering bar has two movie clips: bufferingBar_mc and bufferingBarFill_mc. Each clip’s
position on the Stage relative to the other clip is important because this relative positioning is
maintained. The buffering bar uses two separate clips because the component scales
bufferingBar_mc but not bufferingBarFill_mc.

The bufferingBar_mc clip has 9-slice scaling applied to it, so the borders won’t distort when it
scales. The bufferingBarFill_mc clip is extremely wide, so that it will always be wide enough
without needing to be scaled. It is automatically masked at runtime to show only the portion
above the stretched bufferingBar_mc. By default, the exact dimensions of the mask will
maintain an equal margin on the left and right within the bufferingBar_mc, based on the
difference between the x (horizontal) positions of bufferingBar_mc and bufferingBarFill_mc.
You can customize the positioning with ActionScript code.

If your buffering bar does not need to scale or does not use 9-slice scaling, you could set it up
like the FLV Playback Custom UI BufferingBar component. For more information, see
“BufferingBar component” on page 527.

The buffering bar has the following additional property:

Seek bar and volume bar
The seek bar also has two movie clips: seekBar_mc and seekBarProgess_mc. Each clip’s
position on the Stage relative to the other clip is important because this relative positioning is
maintained. Although both clips scale, the seekBarProgress_mc cannot be nested within
seekBar_mc because seekBar_mc uses 9-slice scaling, which does not work well with nested
movie clips.

The seekBar_mc clip has 9-slice scaling applied to it, so the borders won’t distort when it
scales. The seekBarProgress_mc clip also scales, but it does distort. It does not use 9-slice
scaling because it is a fill, which looks fine when distorted.

Property Description

fill_mc:MovieClip Specifies the instance name of the buffering bar fill. Defaults to
bufferingBarFill_mc.
536 FLVPlayback Component (Flash Professional Only)

The seekBarProgress_mc clip works without a fill_mc, much like the way a progress_mc clip
works in FLV Playback Custom UI Components. In other words, it is not masked and is
scaled horizontally. The exact dimensions of the bufferingBarProgress_mc at 100% is defined
by left and right margins within the bufferingBar_mc clip. These dimensions are, by default,
equal and based on the difference between the x (horizontal) positions of seekBar_mc and
seekBarProgress_mc. You can customize the dimensions with ActionScript in the seek bar
movie clip, as shown in the following example:
progressLeftMargin = 2;
progressRightMargin = 2;
progressY = 11;
fullnessLeftMargin = 2;
fullnessRightMargin = 2;
fullnessY = 11;

As with the FLV Playback Custom UI SeekBar component, it is possible to create a fullness
movie clip for the seek bar. If your seek bar does not need to scale, or if it does scale but does
not use 9-slice scaling, you could set up your progress_mc or fullness_mc using any of the
methods used for FLV Playback Custom UI components. For more information, see “Progress
and fullness movie clips” on page 529.

Because the volume bar in the Flash 8 skins does not scale, it is constructed the same way as
the VolumeBar FLV Playback Custom UI component. For more information, see “SeekBar
and VolumeBar components” on page 527. The exception is that the handle is implemented
differently. For more information on that, see the following section.

Handle

The SeekBar and VolumeBar handles are placed on the Stage next to the bar. By default, the
handle’s left margin, right margin, and y-axis values are set by its position relative to the bar
movie clip. The left margin is set by the difference between the handle’s x (horizontal) location
and the bar’s x (horizontal) location, and the right margin is equal to the left margin. You can
customize these values through ActionScript in the SeekBar or VolumeBar movie clip. The
following example is the same ActionScript code that is used with the FLV Playback Custom
UI components:
handleLeftMargin = 2;
handleRightMargin = 2;
handleY = 11;

Beyond these properties, the handles are simple movie clips, set up the same way as they are in
the FLV Playback Custom UI components. Both have rectangle backgrounds with the alpha
property set to 0. These are present only to increase the hit region and are not required.
Customizing the FLVPlayback component 537

ActionScript

The seek bar and volume bar support the following additional properties:

Background and foreground clips
The movie clips chrome_mc and forwardBackBorder_mc are implemented as background
clips.

Of the ForwardBackBorder, ForwardBorder, and BackBorder movie clips on the Stage and the
placeholder Forward and Back buttons, the only one that is not on a guide layer is
ForwardBackBorder. It is only in the skins that actually use the Forward and Back buttons.

No additional ActionScript is required to set up the background and foreground clips.

Modifying skin behavior
The bufferingBarHidesAndDisablesOthers property and the skinAutoHide property
allow you to customize the behavior of your FLVPlayback skin.

Setting the bufferingBarHidesAndDisablesOthers property to true causes the
FLVPlayback component to hide the SeekBar and its handle as well as disable the Play and
Pause buttons when the component enters the buffering state. This can be useful when an
FLV file is streaming from FCS over a slow connection with a high setting for the
bufferTime property (10, for example). In this situation, an impatient user might try to start
seeking by clicking the Play and Pause buttons, which could delay playing the file even longer.
You can prevent this activity by setting bufferingBarHidesAndDisablesOthers to true
and disabling the SeekBar element and the Pause and Play buttons while the component is in
the buffering state.

The skinAutoHide property affects only predesigned skin SWF files and not controls created
from the FLV Playback Custom UI components. If set to true, the FLVPlayback component
hides the skin when the mouse is not over the viewing area. The default value of this property
is true.

Property Description

handle_mc:MovieClip The movie clip for the handle. Defaults to
seekBarHandle_mc or volumeBarHandle_mc

progress_mc:MovieClip The movie clip for progress. Defaults to
seekBarProgress_mc or volumeBarProgress_mc.

fullness_mc:MovieClip The movie clip for fullness. Defaults to seekBarFullness or
volumeBarFullness.
538 FLVPlayback Component (Flash Professional Only)

FLVPlayback class
Inheritance MovieClip > FLVPlayback class

ActionScript Class Name mx.video.FLVPlayback

FLVPlayback extends the MovieClip class and wraps a VideoPlayer object. For information
on the VideoPlayer class, see “VideoPlayer class” on page 706.

Unlike other components, the FLVPlayback component does not extend UIObject or
UIComponent and, therefore, does not support the methods and properties of these classes.
For example, you must call the MovieClip method, attachMovie(), rather than the
UIObject method, createClassObject(), to create an instance of the component in
ActionScript.

The methods and properties of the FLVPlayback class enable you to play and manipulate FLV
files using the FLVPlayback component in your Flash application.

Setting a property of the FLVPlayback class with ActionScript overrides an equivalent
parameter that initially set the property in the Property inspector or the Component
inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. The following code shows the version in the Output panel:
trace(mx.video.FLVPlayback.version);

Method summary for the FLVPlayback class
The following table lists the methods of the FLVPlayback class:

Method Description

FLVPlayback.addASCuePoint() Adds an ActionScript cue point.

FLVPlayback.addEventListener() Creates a listener for a specified event.

FLVPlayback.bringVideoPlayerToFront() Brings a video player to the front of the stack of
video players.

FLVPlayback.closeVideoPlayer() Close NetStream for the video player with the
specified index and deletes the video player.

FLVPlayback.findCuePoint() Finds the specified type of cue point that has the
specified time, the specified name, or the
specified time and name.

FLVPlayback.findNearestCuePoint() Finds the specified type of cue point at or near
the given time or with the given name.
FLVPlayback class 539

FLVPlayback.findNextCuePointWithName() Finds the next cue point with the same name as a
cue point returned by the findCuePoint() or
findNearestCuePoint() methods.

FLVPlayback.getVideoPlayer() Gets the video player specified by the index
parameter.

FLVPlayback.isFLVCuePointEnabled() Returns false if the FLV file embedded cue point
is disabled by ActionScript.

FLVPlayback.load() Begins loading the FLV file with the autoPlay
property set to false.

FLVPlayback.pause() Pauses playing the video stream.

FLVPlayback.play() Begins playing the video stream and also allows
loading and playing of a new FLV file.

FLVPlayback.removeASCuePoint() Removes an ActionScript cue point.

FLVPlayback.removeEventListener() Removes an event listener.

FLVPlayback.seek() Seeks to a given time in the file, given in seconds,
with decimal precision up to milliseconds.

FLVPlayback.seekPercent() Seeks to a percentage of the way through the
file.

FLVPlayback.seekSeconds() Same as FLVPlayback.seek().

FLVPlayback.seekToNavCuePoint() Seeks to the navigation cue point with the given
name at or after the specified time.

FLVPlayback.seekToNextNavCuePoint() Seeks to the next navigation cue point, based on
the specified time.

FLVPlayback.seekToPrevNavCuePoint() Seeks to the previous navigation cue point,
based on the specified time.

FLVPlayback.setFLVCuePointEnabled() Enables or disables one or more FLV file cue
points.

FLVPlayback.setScale() Sets scaleX and scaleY simultaneously.

FLVPlayback.setSize() Sets width and height simultaneously.

FLVPlayback.stop() Stops playing the video stream.

Method Description
540 FLVPlayback Component (Flash Professional Only)

Property summary for the FLVPlayback class
The FLVPlayback class has both class and instance properties.

FLVPlayback Class properties
The following properties occur only for the FLVPlayback class. They are read-only constants
that apply to all instances of the FLVPlayback component in your application.

Property Value Description

FLVPlayback.ACTIONSCRIPT "actionscript" Can use as type parameter for
findCuePoint() and
findNearestCuePoint() methods.

FLVPlayback.ALL "all" Can use as type parameter for
findCuePoint() and
findNearestCuePoint() methods.

FLVPlayback.BUFFERING "buffering" A value for testing state property.

FLVPlayback.CONNECTION_ERROR "connectionError" A value for testing state property.

FLVPlayback.DISCONNECTED "disconnected" A value for testing state property.

FLVPlayback.EVENT "event" Can use as type parameter for
findCuePoint() and
findNearestCuePoint() methods.

FLVPlayback.FLV "flv" Can use as type parameter for
findCuePoint() and
findNearestCuePoint() methods.

FLVPlayback.LOADING "loading" A value for testing state property.

FLVPlayback.NAVIGATION "navigation" Can use as type parameter for
findCuePoint() and
findNearestCuePoint() methods.

FLVPlayback.PAUSED "paused" A value for testing state property.

FLVPlayback.PLAYING "playing" A value for testing state property.

FLVPlayback.REWINDING "rewinding" A value for testing state property.

FLVPlayback.SEEKING "seeking" A value for testing state property.

FLVPlayback.STOPPED "stopped" A value for testing state property.

FLVPlayback.version A number that is
the component’s
version number

To determine what version of the
FLVPlayback component you are
using.
FLVPlayback class 541

Instance properties
The following table lists the instance properties of the FLVPlayback class This set of
properties applies to each instance of an FLVPlayback component in the application. For
example, if you drag two instances of the FLVPlayback component to the Stage, each instance
has a set of these properties.

Property Description

FLVPlayback.activeVideoPlayerIndex A number that specifies which FLV file
stream is affected by other methods,
properties, and events. Use this property
to manage multiple FLV file streams;
Default is 0.

FLVPlayback.autoPlay A Boolean value that, if true, specifies
that the component plays the FLV file
immediately when it is loaded. Default is
true.

FLVPlayback.autoRewind A Boolean value that, if true, causes the
FLV file to rewind to the Frame 1 when
play stops.

FLVPlayback.autoSize A Boolean value that, if true, causes the
video to automatically size to the source
dimensions.

FLVPlayback.backButton A MovieClip object that is the
backButton control.

FLVPlayback.bitrate A number that specifies the user’s
bandwidth in bits per second. Used in
some cases to decide which FLV file to
play.

FLVPlayback.buffering A Boolean value that is true if the video
is in a buffering state. Read-only.

FLVPlayback.bufferingBar A MovieClip object that is the
bufferingBar control.

FLVPlayback.bufferingBarHidesAndDisablesOthers Affects behavior of controls when the
component enters the buffering state.

FLVPlayback.bufferTime A number that specifies the number of
seconds to buffer in memory before
beginning playback of a video stream.
542 FLVPlayback Component (Flash Professional Only)

FLVPlayback.bytesLoaded A number that indicates the extent of
downloading in number of bytes for an
HTTP download. Read only.

FLVPlayback.bytesTotal A number that specifies the total number
of bytes downloaded for an HTTP
download. Read-only.

FLVPlayback.contentPath A string that specifies the URL of an
FLV file to load.

FLVPlayback.cuePoints An array that describes ActionScript cue
points and disabled embedded FLV file
cue points. Should never be used
directly with ActionScript. Should be set
only through the Cue Points dialog box.

FLVPlayback.forwardButton A MovieClip object that is the
ForwardButton control.

FLVPlayback.height A number that specifies the height of the
video in pixels.

FLVPlayback.idleTimeout The amount of time, in milliseconds,
before Flash terminates an idle
connection to the FCS because playing
is paused or stopped.

FLVPlayback.isLive A Boolean value that is true if the video
stream is live.

FLVPlayback.isRTMP A Boolean value that is true if the FLV
file is streaming from an FCS or an
FVSS. Read-only.

FLVPlayback.maintainAspectRatio A Boolean value that, if true, maintains
the video aspect ratio.

FLVPlayback.metadata An object that is a metadata information
packet that is received from a call to the
onMetaData() callback function, if
available. Read-only.

FLVPlayback.metadataLoaded A Boolean value that is true if a
metadata packet has been encountered
and processed or if it is clear that it will
not be processed. Read-only.

FLVPlayback.muteButton A MovieClip object that is the
MuteButton control.

Property Description
FLVPlayback class 543

FLVPlayback.ncMgr An INCManager object that provides
access to an instance of the class
implementing INCManager. Read-only.

FLVPlayback.pauseButton A MovieClip object that is the
PauseButton control.

FLVPlayback.paused A Boolean value that is true if the FLV
file is in a paused state. Read-only.

FLVPlayback.playButton A MovieClip object that is the
PlayButton control.

FLVPlayback.playheadPercentage A number that specifies playhead time
as a percentage of the total FLV file
duration.

FLVPlayback.playheadTime A number that is the current playhead
time or position, measured in seconds,
which can be a fractional value.

FLVPlayback.playheadUpdateInterval A number that is the amount of time, in
milliseconds, between each
playheadUpdate event.

FLVPlayback.playing A Boolean value that is true if the FLV
file is playing. Read-only.

FLVPlayback.playPauseButton A MovieClip object that is the
PlayPauseButton control.

FLVPlayback.preferredHeight A number that specifies the height of the
source FLV file.

FLVPlayback.preferredWidth A number that specifies the width of the
source FLV file.

FLVPlayback.progressInterval A number that is the amount of time, in
milliseconds, between each
progress event.

FLVPlayback.scaleX A number that specifies the
horizontal scale.

FLVPlayback.scaleY A number that specifies the
vertical scale.

FLVPlayback.scrubbing A Boolean value that is true if the user is
dragging the seekBar handle. Read-
only.

Property Description
544 FLVPlayback Component (Flash Professional Only)

FLVPlayback.seekBar A MovieClip object that is the SeekBar
control.

FLVPlayback.seekBarInterval A number that specifies, in milliseconds,
how often to check the seekBar handle
when scrubbing. The default value
is 250.

FLVPlayback.seekBarScrubTolerance A number (percentage) that specifies
how far a user can move the scrubBar
handle before an update occurs. The
value is specified as a percentage,
ranging from 1 to 100.

FLVPlayback.seekToPrevOffset A number, in seconds, that the
seekToPrevNavCuePoint() method uses
when it compares its time against the
previous cue point.

FLVPlayback.skin A string that specifies the name of a skin
SWF file.

FLVPlayback.skinAutoHide A Boolean value that, if true, hides the
component skin when the mouse is not
over the video. Defaults to false.

FLVPlayback.state A string that specifies the state of the
component. Set with the load(), play(),
stop(), pause() and seek() methods.
Read-only.

FLVPlayback.stateResponsive A Boolean value that is true if the state is
responsive. Read-only.

FLVPlayback.stopButton A MovieClip object that is the
StopButton control.

FLVPlayback.stopped A Boolean value that is true if the state is
stopped. Read-only.

FLVPlayback.totalTime A number that is the total playing time for
the video in seconds

FLVPlayback.transform An object that provides direct access to
the Sound.setTransform() and
Sound.getTransform() methods to
provide more sound control.

FLVPlayback.visible A Boolean value that, if true, makes the
FLVPlayback component visible.

Property Description
FLVPlayback class 545

Event summary for the FLVPlayback class
The following table lists the events of the FLVPlayback class:

FLVPlayback.visibleVideoPlayerIndex A number that you can use to manage
multiple FLV file streams. Sets which
video player instance is visible and
audible. Default is 0.

FLVPlayback.volume A number in the range of 0 to 100 that
indicates the volume control setting.

FLVPlayback.volumeBar A MovieClip object that is the
VolumeBar control.

FLVPlayback.volumeBarInterval A number that specifies, in milliseconds,
how often to check the volumeBar
handle when scrubbing. The default
value is 250.

FLVPlayback.volumeBarScrubTolerance A number (percentage) that specifies
how far a user can move the volume bar
handle before an update occurs.

FLVPlayback.width A number that specifies the width of the
component instance in pixels.

FLVPlayback.x A number that specifies the horizontal
location of the video player in pixels.

FLVPlayback.y A number that specifies the vertical
location of the video player in pixels.

Event Description

FLVPlayback.buffering Dispatched when the buffering state is entered.

FLVPlayback.close Dispatched when NetConnection is closed, whether through
timeout or a call to the close() method.

FLVPlayback.complete Dispatched when playing completes by reaching the end of
the FLV file.

FLVPlayback.cuePoint Dispatched when a cue point is reached.

FLVPlayback.fastForward Dispatched when the location of the playhead is moved
forward by a call to the seek() method.

FLVPlayback.metadata Dispatched the first time the FLV file metadata is reached.

Property Description
546 FLVPlayback Component (Flash Professional Only)

FLVPlayback.paused Dispatched when the pause state is entered.

FLVPlayback.playheadUpdate Dispatched every .25 seconds by default while the FLV file
is playing. You can specify frequency with the
playheadUpdateInterval property.

FLVPlayback.playing Dispatched when the playing state is entered.

FLVPlayback.progress Dispatched every .25 seconds, starting when the load()
method is called and ending when all bytes are loaded or
there is a network error. You can specify frequency with the
progressInterval property.

FLVPlayback.ready Dispatched when the FLV file is loaded and ready to display.

FLVPlayback.resize Dispatched when the video is resized.

FLVPlayback.rewind Dispatched when the location of the playhead is moved
backward by a call to seek() or when the automatic rewind
operation completes.

FLVPlayback.scrubFinish Dispatched when the user stops scrubbing the timeline with
the SeekBar.

FLVPlayback.scrubStart Dispatched when user begins scrubbing the timeline with the
SeekBar.

FLVPlayback.seek Dispatched when the location of the playhead is changed by
a call to seek() or by using the corresponding control.

FLVPlayback.skinError Dispatched when an error occurs loading a skin SWF file.

FLVPlayback.skinLoaded Dispatched when a skin SWF file is loaded.

FLVPlayback.stateChange Dispatched when the playback state changes.

FLVPlayback.stopped Dispatched when the stopped state is entered.

FLVPlayback.volumeUpdate Dispatched when the volume is changed through the volume
property.

Event Description
FLVPlayback class 547

FLVPlayback.ACTIONSCRIPT

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.ACTIONSCRIPT

Description

A read-only FLVPlayback class property that contains the string constant, "actionscript",
for use as the type property with the findCuePoint() and findNearestCuePoint()
methods.

Example

The following example uses the ACTIONSCRIPT constant to set the type property of the
findCuePoint() method.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

var cuePt:Object = new Object(); // create cue point object
cuePt.time = 2.444;
cuePt.name = "ASCuePt1";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point

}
my_FLVPlybk.addEventListener("ready", listenerObject)
listenerObject.playing = function(eventObject:Object) {

var rtn_obj:Object = new Object();
if(rtn_obj = my_FLVPlybk.findCuePoint(2.444,

FLVPlayback.ACTIONSCRIPT)){
trace("Found cue point " + rtn_obj.name);

}
}

my_FLVPlybk.addEventListener("playing", listenerObject)
548 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.findCuePoint()

FLVPlayback.activeVideoPlayerIndex

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.activeVideoPlayerIndex

Description

Property; a number that specifies which video player instance is affected by other APIs. Use
this property to manage multiple FLV file streams. The default value is 0.

This property does not make the video player visible; use the visibleVideoPlayerIndex
property to do that.

A new video player is created the first time activeVideoPlayerIndex is set to a number.
When the new video player is created, its properties are set to the value of the default video
player (activeVideoPlayerIndex == 0) except for contentPath, totalTime, and isLive,
which are always set to the default values (empty string, 0, and false, respectively), and
autoPlay, which is always false (the default is true only for the default video player, 0). The
cuePoints property has no effect, as it would have no effect on a subsequent load into the
default video player.
FLVPlayback class 549

APIs that control volume, positioning, dimensions, visibility, and UI controls are always
global, and their behavior is not affected by setting activeVideoPlayerIndex. Specifically,
setting the activeVideoPlayerIndex property does not affect the following properties
and methods.

APIs that control dimensions do interact with the visibleVideoPlayerIndex property,
however. For more information, see “FLVPlayback.visibleVideoPlayerIndex” on page 688.

The remaining APIs target a specific video player based on the setting of
activeVideoPlayerIndex.

When listening for events, you get all events for all video players. To distinguish which video
player the event is for, use the event’s vp property, a number corresponding to the number set
in activeVideoPlayerIndex and visibleVideoPlayerIndex. All events have this property
except for resize and volume, which are not specific to a video player but are global for the
FLVPlayback instance.

For example, to load a second FLV file in the background, set activeVideoPlayerIndex to 1
and call the load() method. When you are ready to show this FLV file and hide the first one,
set visibleVideoPlayerIndex to 1.

Example

The following example creates two video players to play two FLV files consecutively in a single
FLV file instance. It sets the activeVideoPlayerIndex property to switch between the video
players and their respective FLV files.

Properties and Methods Not Affected by activeVideoPlayerIndex

backButton playPauseButton skin width

bufferingBar scaleX stopButton x

bufferingBarHidesAndDisablesOthers transform y

forwardButton scaleY visible setSize()

height seekBar volume setScale()

muteButton seekBarInterval volumeBar

pauseButton seekBarScrubTolerance volumeBarInterval

playButton seekToPrevOffset volumeBarScrubTolera
nce

N
O

T
E

The visibleVideoPlayerIndex property, not the activeVideoPlayerIndex property,
determines which video player the skin controls.
550 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// specify name and location of FLV for default player
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

// add a second video player and specify the name and loc of its FLV
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";
// reset to default video player, which plays its FLV automatically
my_FLVPlybk.activeVideoPlayerIndex = 0;

};
my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.complete = function(eventObject:Object):Void {

// if complete is for 2nd FLV, make default active and visible
if (eventObject.vp == 1) {

my_FLVPlybk.activeVideoPlayerIndex = 0;
my_FLVPlybk.visibleVideoPlayerIndex = 0;

}
else { // make 2nd player active & visible and play FLV

my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.visibleVideoPlayerIndex = 1;
my_FLVPlybk.play();

}
};
// add listener for complete event
my_FLVPlybk.addEventListener("complete", listenerObject);

See also

FLVPlayback.bringVideoPlayerToFront(), FLVPlayback.getVideoPlayer(),
VideoPlayer class, FLVPlayback.visibleVideoPlayerIndex,
FLVPlayback class 551

FLVPlayback.addASCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.addASCuePoint(cuePoint:Object)
my_FLVplybk.addASCuePoint(time:Number, name:String[, parameters:Object])

Parameters

cuePoint An object having name:String and time:Number (in seconds) properties, which
describe the cue point. It also might have a parameters:Object property that holds name/
value pairs. It may have type:String set to "actionscript". If type is missing or set to
something else, it is set automatically. If the object does not conform to these conventions, the
method throws a VideoError error.

time A number that is the time for the new cue point to be added. If you use the time
parameter, the name parameter must follow.

name A string that specifies the name of the cue point if you submit a time parameter
instead of the CuePoint object.

parameters Optional parameters for the cue point.

Returns

A copy of the cue point object that was added with the following additional properties:

■ array The array of cue points that were searched. Treat this array as read-only, because
adding, removing, or editing objects within it can cause cue points to malfunction.

■ index The index into the array for the returned cue point.

Description

Method; adds an ActionScript cue point and has the same effect as adding an ActionScript
cue point using the Cue Points dialog box, except that it occurs when an application executes
rather than during application development.

Cue point information is wiped out when the contentPath property is set. To set cue point
information for the next FLV file to be loaded, set the contentPath property first.

It is valid to add multiple ActionScript cue points with the same name and time. When you
remove ActionScript cue points with the removeASCuePoint() method, all cue points with
the same name and time are removed.
552 FLVPlayback Component (Flash Professional Only)

Example

The following example adds two ActionScript cue points to an FLV file. The example adds
the first one using a CuePoint parameter and the second one using the time and name
parameters. When each cue point occurs while playing, a listener for cuePoint events shows
the value of the playheadTime property in a text area.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance,
and give it an instance name of my_ta. Then add the following code to the Actions panel on
Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_ta.visible = false;
// create cue point object
var cuePt:Object = new Object(); // create cue point object
cuePt.time = 2.444;
cuePt.name = "ASCuePt1";
cuePt.type = "actionscript";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
// add 2nd AS cue point using time and name parameters
my_FLVPlybk.addASCuePoint(5, "ASCuePt2");
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

my_ta.text = "Elapsed time in seconds: " + my_FLVPlybk.playheadTime;
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

See also

FLVPlayback.findCuePoint(), FLVPlayback.removeASCuePoint()

FLVPlayback.addEventListener()

Availability

Flash Player 8.

Edition

Flash Professional 8.
FLVPlayback class 553

Usage:
my_FLVPlybk.addEventListener(event:String, listener:Object):Void
my_FLVPlybk.addEventListener(event:String, listener:Function):Void

Parameters

event A string that specifies the name of the event for which you are registering a listener. If
the listener is an object, this is also the name of the listener object function to call.

listener The name of the listener object or function that you are registering for the event.

Returns

Nothing.

Description

Method; registers a listener object or function for a specified event. If the listener is an object,
the object must have a function defined for it with the same name as the event. If the listener
is a function, it is the name of the function that will be called to handle the event.

Example

The following example listens for a complete event and displays a message in a text area when
it occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance,
and give it an instance name of my_ta. Then add the following code to the Actions panel on
Frame 1 of the Timeline:
Usage 1:: listener object
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_ta.visible = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object(); // create listener object
listenerObject.complete = function(eventObject:Object):Void {

my_ta.text = "That's All Folks!";
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("complete", listenerObject);
554 FLVPlayback Component (Flash Professional Only)

Usage 2: listener function
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_ta.visible = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
function the_end(eventObject:Object):Void {

my_ta.text = "That's All Folks!";
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("complete", the_end);

See also

Event summary for the FLVPlayback class, FLVPlayback.removeEventListener(),

FLVPlayback.ALL

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.ALL

Description

A read-only FLVPlayback class property that contains the string constant, "all". You can use
this property as the type parameter for the findCuePoint() and findNearestCuePoint()
methods.

Example

The following example looks among all cue points for a cue point named point2 that has a
time of 7.748. The example shows the type and time properties for the cue point that
was found.
FLVPlayback class 555

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
// create cue point object
var listenerObject = new Object();
listenerObject.ready = function(eventObject:Object):Void {

var cuePt:Object = new Object(); // create cue point object
cuePt.name = "point2";
cuePt.time = 7.748;
if(cuePt = my_FLVPlybk.findCuePoint(cuePt, FLVPlayback.ALL)) //find cue
point

trace("found a " + cuePt.type + " cue point at " + cuePt.time);
else

trace("cue point not found");
}
my_FLVPlybk.addEventListener("ready", listenerObject);

See also

FLVPlayback.findCuePoint()

FLVPlayback.autoPlay

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.autoPlay
556 FLVPlayback Component (Flash Professional Only)

Description

Property; a Boolean value that, if set to true, causes the FLV file to play immediately when
the contentPath property is set. If set to false, the component waits for the play command.
Even if autoPlay is set to false, the component loads the content immediately. The default
value is true.

If you set the property to true between the loading of new FLV files, it has no effect until
contentPath is set.

Example

The following example disables the FLV file from playing to set the playhead 30 percent into
the playing time and begin playing at that point.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoPlay = false;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.seekPercent(30);
my_FLVPlybk.play();

};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.activeVideoPlayerIndex

FLVPlayback.autoRewind

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.autoRewind
FLVPlayback class 557

Description

Property; a Boolean value that, if true, causes the FLV file to rewind to Frame 1 when play
stops, either because the player reached the end of the stream or the stop() method was
called. This property is meaningless for live streams. The default value is true.

Example

The following example sets the autoRewind property to false to prevent the FLV file from
automatically rewinding when it finishes playing.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component in the Library
*/
my_FLVPlybk.autoRewind = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

FLVPlayback.autoSize

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.autoSize

Description

Property; a Boolean value that, if true, causes the video to size automatically to the
dimensions of the source FLV file. If this property is set from false to true after an FLV file
has been loaded, the automatic resizing starts immediately. The default value is false.
558 FLVPlayback Component (Flash Professional Only)

Example

The following example first show the source dimensions of the FLV file (preferredWidth
and preferredHeight) when the FLV file is ready to play. Then it calls the setSize() to
change the dimensions of the FLVPlayback instance, triggering a resize event. Next, it sets
the autoSize property to true, triggering another resize event that restores the size to the
dimensions of the source FLV file. The resize event handler displays the dimensions of the
FLVPlayback instance in the Output panel after each event.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component in the Library
*/
import mx.video.*;
my_FLVPlybk.maintainAspectRatio = false;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

trace("FLV width is: " + my_FLVPlybk.preferredWidth + " FLV height is: "
+ my_FLVPlybk.preferredHeight);
my_FLVPlybk.setSize(400, 400);
my_FLVPlybk.autoSize = true;

};
my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.resize = function(eventObject:Object) {

trace("my_FLVPlybk width is: " + my_FLVPlybk.width + ";
my_FLVPlybk.height is: " + my_FLVPlybk.height);

};
my_FLVPlybk.addEventListener("resize", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.maintainAspectRatio, FLVPlayback.preferredHeight,
FLVPlayback.preferredWidth, FLVPlayback.resize

FLVPlayback.backButton

Availability

Flash Player 8.

Edition

Flash Professional 8.
FLVPlayback class 559

Usage
my_FLVPlybk.backButton

Description

Property; a MovieClip object that is the BackButton playback control. For more information
on using FLV Playback Custom UI components for playback controls, see “Skinning FLV
Playback Custom UI components individually” on page 525.

Clicking the BackButton control causes a rewind event.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
and stopButton properties to attach individual FLV Playback Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, and give it an instance name of my_FLVPlybk
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Playback Custom UI components and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayButton
(my_plybttn), PauseButton (my_pausbttn), and StopButton (my_stopbttn). Then add the
following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton, and

 StopButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.forwardButton, FLVPlayback.rewind
560 FLVPlayback Component (Flash Professional Only)

FLVPlayback.bitrate

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVplybk.bitrate

Description

Property; a number that specifies the bits per second at which to transfer the FLV file.

When doing a progressive download, you can use the SMIL format, but you must set the bit
rate because there is no automatic detection.

When streaming video from a FCS, you can provide a SMIL file that describes how to switch
between multiple streams based on bandwidth. Bandwidth is automatically detected by FCS,
and, in this case, bitrate is ignored, if it is set.

For more information on using a SMIL file, see “Using a SMIL file” on page 712.

Example

The following example checks two radio buttons to determine what bit rate to use when
selecting an FLV file from the specified SMIL file. The relevant video tags in the SMIL file
are shown in the following code:
<switch>

<video src="myvideo_mdm.flv" system-bitrate="56000" dur="3:00.1">
<video src="myvideo_isdn.flv" dur="3:00.1">

</switch>

For a low-speed connection, the code sets the bitrate property to force selection of the
appropriate FLV file. For higher speed connections, it takes advantage of automatic
bandwidth detection for streaming from FCS and does not set the bit rate.
FLVPlayback class 561

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a RadioButton component and then a Label component to the Library
panel. Then add the following code to the Actions panel on Frame 1 of the Timeline. In the
statement that loads the contentPath property, replace the italicized text with the name and
location of your SMIL file.
/**
 Requires:
 - FLVPlayback component in the Library
 - RadioButton component in the Library
 - Label component in the Library
*/
import mx.video.*;
import mx.controls.*;

this.createClassObject(Label, "my_prompt", 10);
my_prompt.text = "Please indicate your connection speed: ";
this.createClassObject(RadioButton, "dialup", 20, {label:"Dialup modem (56

KB)", groupName:"radioGroup"});
this.createClassObject(RadioButton, "isdn", 30, {label:"ISDN (128 KB)",

groupName:"radioGroup"});
my_prompt.autoSize = "left";
dialup.setSize(200, 30);
isdn.setSize(200, 30);
// Position RadioButtons on Stage.
my_prompt.move(my_FLVPlybk.x, my_FLVPlybk.y + my_FLVPlybk.height + 40);
dialup.move(my_FLVPlybk.x, my_prompt.y + my_prompt.height + 5);
isdn.move(my_FLVPlybk.x, dialup.y + 15);

// Create listener object
var rbListener:Object = new Object();
rbListener.click = function(eventObject:Object){
 if(dialup.selected) { // for modem
 my_FLVPlybk.bitrate = 56000;
 } // for isdn (or higher bandwidths) allow automatic detection
}
// Add listener
radioGroup.addEventListener("click", rbListener);
my_FLVPlybk.contentPath = "http://www.someserver.com/video/sample.smil";
562 FLVPlayback Component (Flash Professional Only)

FLVPlayback.bringVideoPlayerToFront()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.bringVideoPlayerToFront(index:Number)

Parameters

index A number that is the index of the video player to move to the front

Description

Method; brings a video player to the front of the stack of video players. Useful for custom
transitions between video players. The stack order is the same as it is for the
activeVideoPlayerIndex property: 0 is on the bottom, 1 is above it, 2 is above 1, and so on.

Example

The following example uses two video players to play two FLV files. When each of the three
cue points in the first FLV file (cuepoints.flv) occurs, the example calls the
bringVideoPlayerToFront() method to bring the other FLV file to the front. Because the
example sets the _alpha property to 75 for video player number 1, the FLV file
(plane_cuepoints) playing in that player is transparent, making both FLV files visible
simultaneously when that FLV file is in front.
FLVPlayback class 563

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
my_FLVPlybk.load("http://www.helpexamples.com/flash/video/cuepoints.flv");
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {
 if (eventObject.target.contentPath == "http://www.helpexamples.com/

flash/video/cuepoints.flv") {
 //this fires after the first flv is ready
 my_FLVPlybk.activeVideoPlayerIndex = 1;
 my_FLVPlybk.load("http://www.helpexamples.com/flash/video/

plane_cuepoints.flv");
 } else {
 //this fires after the second flv is ready
 eventObject.target.activeVideoPlayerIndex = 0;
 eventObject.target.play();
 eventObject.target.activeVideoPlayerIndex = 1;
 eventObject.target.play();
 var layerOnTop:MovieClip = eventObject.target.getVideoPlayer(1);
 layerOnTop._alpha = 75;
 layerOnTop._visible = true;
 }
}
my_FLVPlybk.addEventListener("ready", listenerObject);

var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

 //based upon the cue name, bring one or the other to the front
 if (eventObject.info.name == "point1") {

trace(eventObject.info.name + " : 0 to front");
 eventObject.target.bringVideoPlayerToFront(1);
 } else if (eventObject.info.name == "point2") {

trace(eventObject.info.name + " : 1 to front");
 eventObject.target.bringVideoPlayerToFront(0);
 }else if (eventObject.info.name == "point3") {

trace(eventObject.info.name + " : 0 to front");
 eventObject.target.bringVideoPlayerToFront(1);
 }
}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
564 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.getVideoPlayer(), VideoPlayer
class, FLVPlayback.visibleVideoPlayerIndex

FLVPlayback.buffering

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.buffering = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("buffering", listenerObject);

Description

Event; dispatched when the FLVPlayback instance enters the buffering state. The
FLVPlayback instance typically enters this immediately after a call to the play() method or
when the Play control is clicked, before entering the playing state. The event object has the
properties state, playheadTime. and vp, which is the index number of the video player to
which the event applies. See FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

The FLVPlayback instance also dispatches the stateChange event when buffering begins.

Example

The following example creates a listener for the buffering event. When a buffering event
occurs, the event handler calls the trace() method to display the values of the state and vp
properties.
FLVPlayback class 565

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.buffering = function(eventObject:Object) {

trace("The state property has a value of " + eventObject.target.state);
trace("The video player number is: " + eventObject.vp);

};
my_FLVPlybk.addEventListener("buffering", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.addEventListener(), FLVPlayback.state,
FLVPlayback.removeEventListener()

FLVPlayback.BUFFERING

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.BUFFERING

Description

Property; a read-only FLVPlayback class property that contains the string constant,
"buffering". You can compare this property to the state property to determine whether
the component is in the buffering state.

Example

The following example displays the value of the FLVPlayback.BUFFERING property when the
component enters a buffering state.
566 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.BUFFERING)
trace(FLVPlayback.BUFFERING);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange

FLVPlayback.buffering

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.buffering

Description

Property; a Boolean value that is true if the video is in a buffering state. Read-only.

Example

The following example creates a listener for the buffering event and displays a message in
the Output panel when the event occurs.
FLVPlayback class 567

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(my_FLVPlybk.buffering){
trace("The video is buffering");

}
};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.buffering, FLVPlayback.BUFFERING, FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.bufferingBar

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.bufferingBar

Description

Property; a MovieClip object that is the buffering bar control. This control displays when the
FLV file is in a loading or buffering state. See “Skinning FLV Playback Custom UI
components individually” on page 525 for more information on using FLV Playback Custom
UI components for playback controls.
568 FLVPlayback Component (Flash Professional Only)

Example

The following example attaches individual FLV Playback Custom UI controls to an
FLVPlayback component by setting the following properties: playPauseButton,
stopButton, backButton, forwardButton, and bufferingBar. The buffering bar appears
only while the FLV file is buffering before it begins to play.

Drag an FLVPlayback component to the Stage, give it an instance name of my_FLVPlybk,
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Playback Custom UI components and give them the instance names shown in
parentheses: PlayPauseButton (my_bkbttn), StopButton (my_stopbttn), BackButton
(my_bkbttn), ForwardButton (my_fwdbttn), and BufferingBar (my_buffrgbar). Then add
the following lines of code to the Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Playback Custom UI PlayPauseButton, StopButton, BackButton,

ForwardButton, BufferingBar components in the Library
*/
import mx.video.*;
my_FLVPlybk.playPauseButton = my_plypausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.bufferingBar = my_buffrgbar;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.bufferingBarHidesAndDisablesOthers
FLVPlayback class 569

FLVPlayback.bufferingBarHidesAndDisablesOthers

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.bufferingBarHidesAndDisablesOthers

Description

Property; if set to true, hides the SeekBar control and disables the Play, Pause, PlayPause,
BackButton and ForwardButton controls while the FLV file is in the buffering state. This can
be useful to prevent a user from using these controls to try to speed up playing the FLV file
when it is downloading or streaming over a slow connection.

Example

The following example assumes playing a streaming FLV file from a FCS or FVSS. It sets the
bufferingBarHidesAndDisablesOthers property to disable the Play, Pause, PlayPause,
BackButton, and ForwardButton controls and to hide the SeekBar control while the FLV file
is buffering.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline. In the statement that loads the contentPath property, replace the italicized text
with the name and location of an FLV file on your FCS.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.bufferTime = 15;
my_FLVPlybk.bufferingBarHidesAndDisablesOthers = true;
my_FLVPlybk.contentPath = "rtmp://host_name/somefolder/vid_name.flv";

See also

FLVPlayback.bufferingBar
570 FLVPlayback Component (Flash Professional Only)

FLVPlayback.bufferTime

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.bufferTime

Description

Property; a number that specifies the number of seconds to buffer in memory before
beginning to play a video stream. For FLV files streaming over RTMP, which are not
downloaded and buffer only in memory, it can be important to increase this setting from the
default value of 0.1. For a progressively downloaded FLV file over HTTP, there is little benefit
to increasing this value although it could improve viewing a high-quality video on an older,
slower computer.

Example

The following example sets the buffer time to 8 seconds for an FLV file streaming from
a FCS.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to Frame 1 of the Timeline in the Actions panel.
In the statement that loads the contentPath property, replace the italicized text with the
name and location of an FLV file on your FCS.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.bufferTime = 8;
my_FLVPlybk.contentPath = "rtmp://host_name/somefolder/vid_name.flv";

N
O

T
E

This property does not specify the amount of the FLV file to download before starting
playback.
FLVPlayback class 571

FLVPlayback.bytesLoaded

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.bytesLoaded

Description

Property; a number that indicates the extent of downloading, in number of bytes, for an
HTTP download. Returns –1 when there is no stream, when the stream is from a FCS, or if
the information is not yet available. The returned value is useful only for an HTTP download.
Read-only.

Example

The following example shows the initial value of the bytesLoaded property and its value
when the ready event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

trace("State is " + eventObject.state + "; ready to play");
// display the no. of bytes loaded at this point
trace("Bytes loaded: " + my_FLVPlybk.bytesLoaded);

};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
trace("Bytes loaded: " + my_FLVPlybk.bytesLoaded); // -1 if loading not

begun
572 FLVPlayback Component (Flash Professional Only)

FLVPlayback.bytesTotal

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.bytesTotal

Description

Property; a number that specifies the total number of bytes downloaded for an HTTP
download. Returns -1 when there is no stream, when the stream is from a FCS, or if the
information is not yet available. The returned value is useful only for an HTTP download.
Read-only.

Example

The following example uses the bytesTotal property to display the number of bytes being
loaded for an HTTP download. When the metadataReceived event occurs, the event
handler displays this value in the text area my_ta.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance and
give it an instance name of my_ta. Then add the following code to Frame 1 of the Timeline in
the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_ta.visible = false;
var listenerObject:Object = new Object();
listenerObject.metadataReceived = function(eventObject:Object):Void {

my_ta.text = "Loading: " + my_FLVPlybk.bytesTotal + " bytes.";
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("metadataReceived", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
FLVPlayback class 573

FLVPlayback.close

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.close = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("close", listenerObject);

Description

Event; the FLVPlayback instance dispatches this event when it closes the NetConnection, by
timing out or through a call to the closeVideoPlayer() method, or when you call the
load() method or the play() method or set contentPath and cause the RTMP connection
to close as a result. The FLVPlayback instance dispatches this event only when streaming from
FCS or FVSS. The event object has the properties state and playheadTime.

Event has property vp, which is the index number of the video player to which this
event applies.

Example

The following example assumes playing a streaming FLV file from a FCS or FVSS. When the
FLV file completes, a listener for the complete event sets the contentPath property to the
location of a new FLV file, which triggers a close event on the RTMP connection for the first
FLV file. The listener for the close event displays the index number of the video player for
which the event occurred.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline. In the statement that loads the contentPath property, replace the italicized text
with the name and location of an FLV file on your FCS.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
// listen for close event on RTMP connection; display index of video player
listenerObject.close = function(eventObject:Object) {
574 FLVPlayback Component (Flash Professional Only)

trace("Closed connection for video player: " + eventObject.vp);
};
my_FLVPlybk.addEventListener("close", listenerObject);
// listen for complete event; play new FLV
listenerObject.complete = function(eventObject:Object) {

if (my_FLVPlybk.contentPath != "http://www.helpexamples.com/flash/video/
water.flv") {

my_FLVPlybk.play("http://www.helpexamples.com/flash/video/water.flv");
}

};
my_FLVPlybk.addEventListener("complete", listenerObject);
my_FLVPlybk.contentPath = "rtmp://my_servername/my_application/stream.flv";

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.closeVideoPlayer(),
FLVPlayback.contentPath, FLVPlayback.load(), FLVPlayback.play(),
FLVPlayback.visibleVideoPlayerIndex,

FLVPlayback.closeVideoPlayer()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.closeVideoPlayer(index:Number)

Parameters

index A number that is the index of the video player to close.

Returns

The VideoPlayer object that closed.

Description

Method; closes NetStream and deletes the video player specified by the index parameter. If
the closed video player is the active or visible video player, the FLVPlayback instance sets the
active and or visible video player to the default player (with index 0). You cannot close the
default player, and trying to do so causes the component to throw an error.
FLVPlayback class 575

Example

The following example creates two video players to play two FLV files consecutively in a single
FLVPlayback instance. When the second FLV file finishes, the event handler for the
complete event calls the closeVideoPlayer() method to close the second player. If you
click the Play button to play the FLV files a second time, you see that the video player for the
second player is gone, which causes the component to throw an error (VideoError) and show
a message that says the FLVPlayback instance cannot find the FLV file.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
// specify name and location of FLV for default player
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

// add a second video player and specify the name and loc of its FLV
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";
// reset to default video player, which plays its FLV automatically
my_FLVPlybk.activeVideoPlayerIndex = 0;

};
my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.complete = function(eventObject:Object):Void {

// if complete is for 2nd FLV, make default active and visible
if (eventObject.vp == 1) {

my_FLVPlybk.activeVideoPlayerIndex = 0;
my_FLVPlybk.visibleVideoPlayerIndex = 0;
my_FLVPlybk.closeVideoPlayer(1);// close 2nd video player

} else { // make 2nd player active & visible and play FLV
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.visibleVideoPlayerIndex = 1;
my_FLVPlybk.play();

}
};
// add listener for complete event
my_FLVPlybk.addEventListener("complete", listenerObject);

See also

FLVPlayback.close, FLVPlayback.activeVideoPlayerIndex,
FLVPlayback.visibleVideoPlayerIndex
576 FLVPlayback Component (Flash Professional Only)

FLVPlayback.complete

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("complete", listenerObject);

Description

Event; dispatched when playing completes because the player reached the end of the FLV file.
The component does not dispatch the event if you call the stop() or pause() methods or
click the corresponding controls. The event object has the properties state and
playheadTime.

When the application uses progressive download, does not set the totalTime property
explicitly, and downloads an FLV file that does not specify the duration in the metadata, the
video player sets totalTime to an approximate total value before it dispatches this event.

The video player also dispatches the stateChange and stopped events.

Example

The following example uses the playheadTime property to show the elapsed playing time of
the FLV file in the Output panel when the complete event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObject:Object):Void {

trace("Elapsed play time at completion is: " + my_FLVPlybk.playheadTime);
};
my_FLVPlybk.addEventListener("complete", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
FLVPlayback class 577

See also

FLVPlayback.playheadTime, FLVPlayback.state, FLVPlayback.stateChange,
FLVPlayback.stopped, FLVPlayback.totalTime

FLVPlayback.CONNECTION_ERROR

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.CONNECTION_ERROR

Description

A read-only FLVPlayback class property that contains the string constant
"connectionError". You can compare this property to the state property to determine if a
connection error state has occurred.

Example

The following example forces a connection error by specifying an invalid FLV filename
(nosuch.flv) in the contentPath property. The example uses the CONNECTION_ERROR
property to detect the error in a listener for the stateChange event.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

no_such.flv";
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(my_FLVPlybk.state == FLVPlayback.CONNECTION_ERROR)
trace("State: " + FLVPlayback.CONNECTION_ERROR);

}
my_FLVPlybk.addEventListener("stateChange", listenerObject);

See also

FLVPlayback.state, FLVPlayback.stateChange
578 FLVPlayback Component (Flash Professional Only)

FLVPlayback.contentPath

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.contentPath

Description

Property; a string that specifies the URL of the FLV file to stream and how to stream it. The
URL can be an HTTP URL to an FLV file, an RTMP URL to a stream, or an HTTP URL to
an XML file.

If you set this property through the Component inspector or the Property inspector, the FLV
file begins loading and playing at the next MovieClip.onEnterFrame event. The delay
provides time to set the isLive, autoPlay, and cuePoints properties, among others, which
affect loading. It also allows ActionScript that is placed on the first Frame to affect the
FLVPlayback component before it starts playing.

If you set this property through ActionScript, the FLVPlayback instance closes the current
FLV file and immediately begins loading the new FLV file. The autoPlay, totalTime, and
isLive properties affect how the new FLV file is loaded, so if you set these properties, you
must set them before setting contentPath property.

Set the autoPlay property to false to prevent the new FLV file from playing automatically.

Example

The following example sets the contentPath property in ActionScript to specify the location
of the FLV file to play.
FLVPlayback class 579

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Do not assign a value to the contentPath parameter in the Component
inspector. Add the following code to Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.metadataReceived = function(eventObject:Object):Void {

my_FLVPlybk.setSize(my_FLVPlybk.preferredWidth,
my_FLVPlybk.preferredHeight);

}
my_FLVPlybk.addEventListener("metadataReceived", listenerObject);

See also

FLVPlayback.autoPlay, FLVPlayback.isLive, FLVPlayback.play(),
FLVPlayback.totalTime

FLVPlayback.cuePoint

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("cuePoint", listenerObject);

Description

Event; dispatched when a cue point is reached. The event object has an info property that
contains the info object received by the NetStream.onCuePoint callback for FLV file cue
points. For ActionScript cue points, it contains the object that was passed into the
ActionScript cue point methods or properties.

This event has a vp property, which is the index number of the video player to which this
event applies.
580 FLVPlayback Component (Flash Professional Only)

Example

The following example adds two ActionScript cue points to an FLV file. The example adds
the first one using a cuePoint parameter and the second one using the time and name
parameters. When each cue point occurs, a listener for cuePoint events shows the value of the
playheadTime property in a text area.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance,
and give it an instance name of my_ta. Then add the following code to the Actions panel on
Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_ta.visible = false;
// create cue point object
var cuePt:Object = new Object(); //create cue point object
cuePt.time = 1.444;
cuePt.name = "elapsed_time";
cuePt.type = "actionscript";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
// add 2nd AS cue point using time and name parameters
my_FLVPlybk.addASCuePoint(5.3, "elapsed_time2");
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

my_ta.text = "Cue at: " + eventObject.info.time + " occurred";
my_ta.visible = true;

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.visibleVideoPlayerIndex
FLVPlayback class 581

FLVPlayback.cuePoints

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.cuePoints

Description

Property; an array that describes ActionScript cue points and disabled embedded FLV file cue
points. This property is created specifically for use by the Component inspector and does not
work if it is set any other way. Its value has an effect only on the first FLV file loaded and only
if it is loaded by setting the contentPath property in the Component inspector or the
Property inspector.

To add, remove, enable, or disable cue points with ActionScript, use addASCuePoint(),
removeASCuePoint(), or setFLVCuePointEnabled().

See also

FLVPlayback.contentPath, FLVPlayback.addASCuePoint(),
FLVPlayback.findCuePoint(), FLVPlayback.findNearestCuePoint(),
FLVPlayback.findNextCuePointWithName(), FLVPlayback.isFLVCuePointEnabled(),
FLVPlayback.metadata, FLVPlayback.metadataReceived,
FLVPlayback.removeASCuePoint(), FLVPlayback.seekToNavCuePoint(),
FLVPlayback.seekToNextNavCuePoint(), FLVPlayback.seekToPrevNavCuePoint(),
FLVPlayback.setFLVCuePointEnabled()

N
O

T
E

This property is not accessible in ActionScript. To access cue point information in
ActionScript, use the metadata property.
582 FLVPlayback Component (Flash Professional Only)

FLVPlayback.DISCONNECTED

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.DISCONNECTED

Description

A read-only FLVPlayback class property that contains the string constant "disconnected".
You can compare this property to the state property to determine if a disconnected
state exists.

The FLVPlayback instance is in a disconnected state until you set the contentPath property.

Example

The following example simply shows a message in the Output panel that confirms that the
FLVPlayback instance is in a disconnected state before setting the contentPath property.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;

if(my_FLVPlybk.state == FLVPlayback.DISCONNECTED)
trace("FLVPlayback instance is currently disconnected");

my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";

See also

FLVPlayback.contentPath, FLVPlayback.state
FLVPlayback class 583

FLVPlayback.EVENT

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.EVENT

Description

A read-only FLVPlayback class property that contains the String constant, "event". You can
use this property as the type parameter for the findCuePoint() and
findNearesstCuePoint() methods.

Example

The following example uses the FLVPlayback.EVENT property to specify that it wants to find
a cue point named myCue that is of the event type. It shows the returned cue point name,
time, and type properties, and the cuePoint listener displays “Hit it!” in the Output panel
when the cue point occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

plane_cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

if(rtn_cuePt = my_FLVPlybk.findCuePoint("myCue", FLVPlayback.EVENT)){
trace("Cue point name is: " + rtn_cuePt.name);
trace("Cue point time is: " + rtn_cuePt.time);
trace("Cue point type is: " + rtn_cuePt.type);

}
}

584 FLVPlayback Component (Flash Professional Only)

my_FLVPlybk.addEventListener("ready", listenerObject);
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

if(eventObject.info.name == "myCue")
trace("Hit it!");

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

See also

FLVPlayback.findCuePoint()

FLVPlayback.fastForward

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.fastForward = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("fastForward", listenerObject);

Event; dispatched when the location of the playhead moves forward by seeking, either
manually or through ActionScript, or by clicking the ForwardButton control. The event
object has the properties state, playheadTime, and vp. The playheadTime property reflects
the destination time, and the vp property is the index number of the video player to which the
event applies.

The FLVPlayback instance also dispatches the seek and playheadUpdate events.

Example

The following example catches occurrences of the fastForward event as it occurs and shows
the elapsed playhead time in the Output panel. When the ready event occurs, a call to the
seekPercent() method triggers the fastForward event.
FLVPlayback class 585

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.seekPercent(35);
};
my_FLVPlybk.addEventListener("ready", listenerObject);

listenerObject.fastForward = function(eventObject:Object):Void {
trace("fastforward event; playhead time is: " +
eventObject.playheadTime);

};
my_FLVPlybk.addEventListener("fastForward", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.forwardButton,
FLVPlayback.seek, FLVPlayback.seek(), FLVPlayback.seekBar,
FLVPlayback.seekPercent(), FLVPlayback.seekSeconds(),
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToNextNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint(), FLVPlayback.seekToPrevOffset,
FLVPlayback.state, FLVPlayback.playheadTime

FLVPlayback.findCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.findCuePoint(time:Number[, type:String]):Object
my_FLVplybk.findCuePoint(name:String[, type:String]):Object
my_FLVplybk.findCuePoint(cuePoint:Object[, type:String]):Object
586 FLVPlayback Component (Flash Professional Only)

Parameters

time A number that is the time, in seconds, of the cue point for which to search. The
method uses only the first three decimal places and rounds any additional decimal places that
you provide. The method returns the cue point that matches this time. If multiple
ActionScript cue points have the same time, the method returns only the name that is first in
alphabetical order. It returns null if it does not find a match.

name A string that is the name of the cue point for which to search. The method returns the
first cue point that matches this name, or it returns null if it does not find a match.

cuePoint An object that is a cue point object containing time and name properties for
which to search. If the name property has no value or is null, the search behaves as if the
parameter is a number representing the time for which to search. If the time property has no
value, is null, or is less than zero, then the search behaves as if the parameter is a string
containing a name for which to search. If you provide both the time and name properties and
a cue point exists that matches those values, the method returns it. Otherwise, the method
returns null.

type Optional. A string that specifies the type of cue point for which to search. The
possible values for this parameter are: "actionscript", "all", "event", "flv", or
"navigation". You can specify these values using the following class properties:
FLVPlayback.ACTIONSCRIPT, FLVPlayback.ALL, FLVPlayback.EVENT, FLVPlayback.FLV,
and FLVPlayback.NAVIGATION. If this parameter is not specified, the default is "all", which
means the method will search all cue point types.

Returns

An object that is a copy of the found cue point object, with the following additional
properties:

array The array of cue points that were searched. Treat this array as read-only because
adding, removing, or editing objects within it can cause cue points to malfunction.
index The index into the array for the returned cue point.

Returns null if no match is found.

Description

Method; finds the cue point of the type specified by the type parameter and having the time,
name, or combination of time and name that you specify through the parameters.

If you do not provide a value for either the time or name of the cue point, or if the time is
null, undefined, or less than zero and the name is null or undefined, the method throws
VideoError error 1002. For more information, see “VideoError class” on page 698.
FLVPlayback class 587

The method includes disabled cue points in the search. Use the isFLVCuePointEnabled()
method to determine if a cue point is disabled.

Example

The following example adds two ActionScript cue points to an FLV file, and then calls the
findCuePoint() method three times. The first call looks for a navigation cue point with a
time of 7.748. The second call looks for cue point "ASCue1", using only a name value. The
third call uses a cue point object that specifies both a time, 10, and a name, "ASCue2". After
the third call, the example shows the content of the returned cue point object, including the
array of cue points that were searched, which, in this example, were ActionScript cue points.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
// create cue point object
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var cuePt:Object = new Object();
var rtn_cuePt:Object = new Object(); // create object for return value
cuePt.time = 4.444;
cuePt.name = "AScue1";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
// add 2nd AS cue point using time and name parameters
my_FLVPlybk.addASCuePoint(10, "AScue2");
// find navigation cue point using time
rtn_cuePt = my_FLVPlybk.findCuePoint(7.748, FLVPlayback.NAVIGATION);
//find actionscript cue point using name only
rtn_cuePt = my_FLVPlybk.findCuePoint("AScue1");
//find actionscript cue point using cue point object
cuePt.time = 10;
cuePt.name = "AScue2";
rtn_cuePt = my_FLVPlybk.findCuePoint(cuePt, FLVPlayback.ACTIONSCRIPT);
// see what returned cue point object contains
for (i in rtn_cuePt) {

//if an array object, open it up and trace contents
if (typeof rtn_cuePt[i] == "object") {

tracer(rtn_cuePt[i]);
// else trace name (i) and value (rtn_cuePt[i]) pair
} else {

trace(i+ " " + rtn_cuePt[i]);
}

}

588 FLVPlayback Component (Flash Professional Only)

// trace array of cue points
function tracer(cuepts:Array) {

for (i in cuepts) {
 if (typeof cuepts[i] == "object") { //if object in object
 tracer(cuepts[i]); //trace object
 } else {

// trace the name : value pair
 trace(i + " " + cuepts[i]);
 }

}
}

See also

FLVPlayback.addASCuePoint(), FLVPlayback.cuePoints,
FLVPlayback.findNearestCuePoint(), FLVPlayback.findNextCuePointWithName(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.removeASCuePoint(),
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToNextNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint(), FLVPlayback.setFLVCuePointEnabled()

FLVPlayback.findNearestCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.findNearestCuePoint(time:Number[, type:String]):Object
my_FLVplybk.findNearestCuePoint(name:String[, type:String]):Object
my_FLVplybk.findNearestCuePoint(cuePoint:Object[, type:String]):Object

Parameters

time A number that is the time, in seconds, of the cue point for which to search. The
method uses only the first three decimal places and rounds any additional decimal places that
you provide. The method returns the cue point that matches this time or the nearest earlier
cue point of the specified type. If multiple cue points have the same time, which can only
occur with ActionScript cue points, the method returns only the name that is first in
alphabetical order. It returns null if it does not find a match.

name A string that is the name of the cue point for which to search. The method returns the
first cue point that matches this name or null, if it does not find a match.
FLVPlayback class 589

cuePoint An object that is a cue point object containing time and name properties for
which to search. If you provide a time and the name property has no value or is null, the
search behaves as if the parameter is a number representing the time for which to search. If
you provide a name and the time property has no value, is null, or is less than zero, the
search behaves as if the parameter is a string containing a name for which to search. If you
provide both the time and name properties and a cue point exists that matches those values,
the method returns it. If it does not find a match for both the time and name, it returns the
first cue point that matches the name and has an earlier time. If there is no earlier cue point
with that name, it returns the first cue point that matches that name. Otherwise, the method
returns null.

type Optional. A string that specifies the type of cuepoint for which to search. The possible
values for this parameter are: "actionscript", "all", "event", "flv", or "navigation".
You can specify these values using the following class properties:
FLVPlayback.ACTIONSCRIPT, FLVPlayback.ALL, FLVPlayback.EVENT, FLVPlayback.FLV,
and FLVPlayback.NAVIGATION.If this parameter is not specified, the default is "all", which
means the method will search all cue point types.

Returns

An object that is a copy of the found cue point object with the following additional
properties:

array The array of cue points searched. Treat this array as read-only as adding,
removing or editing objects within it can cause cue points to malfunction.
index The index into the array for the returned cue point.

Returns null if no match was found.

Description

Method; finds a cue point of the specified type that matches or is earlier than the time that
you specify, or that matches the name that you specify, if you specify both a time and a name
and no earlier cue point matches that name. Otherwise, it returns null.

The method includes disabled cue points in the search. Use the isFLVCuePointEnabled()
method to determine if a cue point is disabled.

If the time is null, undefined, or less than 0 and the name is null or undefined, the method
throws a VideoError error (1002).
590 FLVPlayback Component (Flash Professional Only)

Example

The following example creates an ActionScript cue point for the FLV file at 4.07 seconds.
When this cue point occurs, the cuePoint event handler calls the findNearestCuePoint()
method to find a cue point of any type that is nearest to 5 seconds later. The Output panel
shows the name, time, and type of the cue point that is returned.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var cuePt:Object = new Object(); //create cue point object
cuePt.time = 4.07;
cuePt.name = "ASpt1";
cuePt.type = "actionscript";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
function cuePoint(eventObject:Object):Void {

if (eventObject.info.name == "ASpt1") {
var rtn_obj:Object = new Object();
rtn_obj = my_FLVPlybk.findNearestCuePoint(eventObject.info.time + 5);
trace("Cue point name is: " + rtn_obj.name);
trace("Cue point time is: " + rtn_obj.time);
trace("Cue point type is: " + rtn_obj.type);

}
}
my_FLVPlybk.addEventListener("cuePoint", cuePoint);

See also

FLVPlayback.addASCuePoint(), FLVPlayback.cuePoints,
FLVPlayback.findCuePoint(), FLVPlayback.findNextCuePointWithName(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.removeASCuePoint(),
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToNextNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint(), FLVPlayback.setFLVCuePointEnabled()
FLVPlayback class 591

FLVPlayback.findNextCuePointWithName()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.findNextCuePointWithName(my_cuePoint:Object)

Parameters

my_cuePoint A cue point object that has been returned by either the findCuePoint()
method, the findNearestCuePoint() method, or a previous call to this method.

Returns

An object that is a copy of the found cue point object with the following additional
properties:

array The array of cue points searched. Treat this array as read-only because adding,
removing or editing objects within it can cause cue points to malfunction.
index The index into the array for the returned cue point.

Returns null if no match was found.

Description

Method; finds the next cue point in my_cuePoint.array that has the same name as
my_cuePoint.name. The my_cuePoint object must be a cue point object that has been
returned by the findCuePoint() method, the findNearestCuePoint() method, or a
previous call to this method. This method uses the array property that these methods add to
the cue point object.

The method includes disabled cue points in the search. Use the isFLVCuePointEnabled()
method to determine if a cue point is disabled.

Returns null if there are no more cue points in the array with a matching name.

Example

The following example creates three ActionScript cue points with the name "transition".
When the ready event occurs, the event handler calls the findCuePoint() method to find
the first cue point with this name. If it finds a match, it calls the findNextName() function,
which calls the findNextCuePointWithName() method, passing the returned cue point
object (rtn_obj), to find any additional cue points with the same name.
592 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var cuePt:Object = new Object(); //create cue point object
cuePt.time = 6.27;
cuePt.name = "transition";
cuePt.type = "actionscript";
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
cuePt.time = 7.06;
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
cuePt.time = 11.13;
my_FLVPlybk.addASCuePoint(cuePt); //add AS cue point
var listenerObject:Object = new Object();
listenerObject.ready = function():Void {

var rtn_obj:Object = new Object();
// Find cue point using name string

if (rtn_obj = my_FLVPlybk.findCuePoint("transition")) {
trace("Cue point name is: " + rtn_obj.name);
trace("Cue point time is: " + rtn_obj.time);
trace("Cue point type is: " + rtn_obj.type);
findNextName(rtn_obj);

}
}
my_FLVPlybk.addEventListener("ready", listenerObject);
// Find additional cue points with the same name
function findNextName(cuePt:Object):Void {

while(cuePt = my_FLVPlybk.findNextCuePointWithName(cuePt)) {
trace("Cue point name is: " + cuePt.name);
trace("Cue point time is: " + cuePt.time);
trace("Cue point type is: " + cuePt.type);

}
}

See also

FLVPlayback.addASCuePoint(), FLVPlayback.cuePoints,
FLVPlayback.findCuePoint(), FLVPlayback.findNearestCuePoint(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.removeASCuePoint(),
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToNextNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint(), FLVPlayback.setFLVCuePointEnabled()
FLVPlayback class 593

FLVPlayback.FLV

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.FLV

Description

A read-only FLVPlayback class property that contains the string constant, "flv". You can use
this property as the type parameter for the findCuePoint() and findNearestCuePoint()
methods.

Example

The following example looks for a cue point named point2 with a time of 7.748 among FLV
file cue points and displays the type and time found. FLV file cue points are navigation and
event cue points.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
// create cue point object
var listenerObject = new Object();
listenerObject.ready = function(eventObject:Object):Void {

var cuePt:Object = new Object(); // create cue point object
cuePt.name = "point3";
cuePt.time = 16.02;
if(cuePt = my_FLVPlybk.findCuePoint(cuePt, FLVPlayback.FLV)) //find cue
point

trace("found a " + cuePt.type + " cue point at " + cuePt.time);
else

trace("cue point not found");
}
my_FLVPlybk.addEventListener("ready", listenerObject);
594 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.findCuePoint(), FLVPlayback.findNearestCuePoint()

FLVPlayback.forwardButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.forwardButton

Description

Property; a MovieClip object that is the Forward button control. For more information on
using FLV Playback Custom UI components for playback controls, see “Skinning FLV
Playback Custom UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
and stopButton properties to attach individual FLV Playback Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, and give it an instance name of my_FLVPlybk
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Custom UI components and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayButton
(my_plybttn), PauseButton (my_pausbttn), and StopButton (my_stopbttn). Then add the
following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton, and

 StopButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
FLVPlayback class 595

See also

FLVPlayback.fastForward, FLVPlayback.seek, FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.getVideoPlayer()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVplybk.getVideoPlayer(index:Number)

Returns

A VideoPlayer object.

Description

Method; gets the video player specified by index. When possible, it is best to access
VideoPlayer methods and properties using FLVPlayback methods and properties. Each
VideoPlayer._name property is its index.

Example

The following example uses two video players to play two FLV files. When the second FLV
file triggers the ready event, the example calls the getVideoPlayer() method to obtain
video player number 1 and set its _alpha property to 50. This causes the FLV file
(plane_cuepoints) in that player to be transparent and makes both FLV files visible
simultaneously.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
my_FLVPlybk.load("http://www.helpexamples.com/flash/video/cuepoints.flv");
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {
 if (eventObject.target.contentPath == "http://www.helpexamples.com/

flash/video/cuepoints.flv") {
596 FLVPlayback Component (Flash Professional Only)

 //this fires after the first flv is ready
 my_FLVPlybk.activeVideoPlayerIndex = 1;
 my_FLVPlybk.load("http://www.helpexamples.com/flash/video/

plane_cuepoints.flv");
 } else {
 //this fires after the second flv is ready
 eventObject.target.activeVideoPlayerIndex = 0;
 eventObject.target.play();
 eventObject.target.activeVideoPlayerIndex = 1;
 eventObject.target.play();
 var layerOnTop:MovieClip = eventObject.target.getVideoPlayer(1);
 layerOnTop._alpha = 50;
 layerOnTop._visible = true;
 }
}
my_FLVPlybk.addEventListener("ready", listenerObject);

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.bringVideoPlayerToFront(),
FLVPlayback.visibleVideoPlayerIndex

FLVPlayback.height

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.height

Description

Property; a number that specifies the height of the FLVPlayback instance. This property
affects only the height of the FLVPlayback instance and does not include the height of a skin
SWF file that might be loaded. Use the FLVPlayback height property and not the
MovieClip._height property because the _height property might give a different value if a
skin SWF file is loaded.

Example

The following example sets the width and height properties to change the size of the video
player. It first sets the maintainAspectRatio property to false to prevent the video player
from resizing automatically when the dimensions change.
FLVPlayback class 597

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.maintainAspectRatio = false;
my_FLVPlybk.width = 300;
my_FLVPlybk.height = 350;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.preferredHeight, FLVPlayback.preferredWidth,
FLVPlayback.maintainAspectRatio, FLVPlayback.resize, FLVPlayback.setSize(),
FLVPlayback.width

FLVPlayback.idleTimeout

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.idleTimeout

Description

Property; the amount of time, in milliseconds, before Flash terminates an idle connection to a
FCS because playing paused or stopped. This property has no effect on an FLV file
downloading over HTTP.

If this property is set when a video stream is already idle, it restarts the timeout period with
the new value.

The default value is 300,000, or 5 minutes.
598 FLVPlayback Component (Flash Professional Only)

Example

The following example assumes playing a streaming FLV file from a FCS or FVSS. The
example sets the idleTimeout property to a low value of 10 milliseconds, which triggers a
timeout and, consequently, a close event on the RTMP connection. The listener for the
close event shows the index number of the video player for which the event occurred.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. In the Component inspector, assign the contentPath parameter a value that
specifies the location of a streaming FLV file from a FCS or FVSS. Then add the following
code to the Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.idleTimeout = 10;
var listenerObject:Object = new Object();
//listen for close event on RTMP connection; display index of video player
listenerObject.close = function(eventObject:Object) {

trace("Closed connection for video player: " + eventObject.vp);
};
my_FLVPlybk.addEventListener("close", listenerObject);

See also

FLVPlayback.close

FLVPlayback.isFLVCuePointEnabled()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.isFLVCuePointEnabled(time:Number)
my_FLVplybk.isFLVCuePointEnabled(name:String)
my_FLVplybk.isFLVCuePointEnabled(cuePoint:Object)

Parameters

time A number that is the time, in seconds, of the cue point for which to search.

name A string that is the name of the cue point for which to search.
FLVPlayback class 599

cuePoint A cue point object with time and name properties for the cue point. The method
does not check any other properties on the incoming cue point object. If time or name is
undefined, the method uses only the property that is defined.

Returns

A Boolean value that is false if the cue point or cue points are found and are disabled, and
true if the cue point is not disabled or does not exist. If the time given is undefined, null,
less than 0, or only a cue point name is provided, the method returns false only if all cue
points with this name are disabled.

Description

Method; returns false if the FLV file embedded cue point is disabled. You can disable cue
points either by setting the cuePoints property through the Flash Video Cue Points dialog
box or by calling the setFLVCuePointEnabled() method.

The return value from this function is meaningful only when the metadataLoaded property
is true, the metadata property is not null, or after a metadataReceived event. When
metadataLoaded is false, this function always returns true.

Example

The following example disables the point2 cue point when the ready event occurs. When
the first cuePoint event occurs, the event handler calls the isFLVCuePointEnabled()
method to see if the cue point is disabled and, if so, the event handler enables it. The FLV file
contains the following embedded cue points: point1, 00:00:00:418; point2, 00:00:07.748;
point3, 00:00:16:020.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
function ready(eventObject:Object) {

my_FLVPlybk.setFLVCuePointEnabled(false, "point2");
}

600 FLVPlayback Component (Flash Professional Only)

my_FLVPlybk.addEventListener("ready", ready);
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

trace("Elapsed time in seconds: " + my_FLVPlybk.playheadTime);
trace("Cue point name is: " + eventObject.info.name);
trace("Cue point type is: " + eventObject.info.type);
if (my_FLVPlybk.isFLVCuePointEnabled("point2") == false) {

my_FLVPlybk.setFLVCuePointEnabled(true, "point2");
}

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.cuePoint, FLVPlayback.findCuePoint(),
FLVPlayback.findNearestCuePoint(), FLVPlayback.findNextCuePointWithName(),
FLVPlayback.setFLVCuePointEnabled(), FLVPlayback.seekToNavCuePoint(),
FLVPlayback.seekToNextNavCuePoint(), FLVPlayback.seekToPrevNavCuePoint()

FLVPlayback.isLive

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.isLive

Description

Property; a Boolean value that is true if the video stream is live. This property is effective only
when streaming from a FCS or FVSS. The value of this property is ignored for an HTTP
download.

If you set this property between loading new FLV files, it has no effect until the contentPath
parameter is set for the new FLV file.

Example

The following example assumes playing a live stream from a FCS. When the playing event
occurs, the example shows the value of the isLive property.
FLVPlayback class 601

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline. In the statement that loads the contentPath property, replace the italicized text
with the name and location of an FLV file on your FCS.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.playing = function(eventObject:Object) {

trace("The isLive property is " + my_FLVPlybk.isLive);
};
my_FLVPlybk.addEventListener("playing", listenerObject);
my_FLVPlybk.contentPath = "rtmp://my_servername/my_application/stream.flv";

See also

FLVPlayback.contentPath, FLVPlayback.load()

FLVPlayback.isRTMP

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.isRTMP

Description

Property; a Boolean value that is true if the FLV file is streaming from a FCS or FVSS using
RTMP. Its value is false for any other FLV file source. Read-only.

Example

The following example assumes playing a streaming FLV file from a FCS or FVSS. When the
playing event occurs, the example shows the value of the isRTMP property to indicate
whether the FLV file is coming from an RTMP URL.
602 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline. In the statement that loads the contentPath property, replace the italicized text
with the name and location of an FLV file on your FCS.
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.bufferTime = 7;
var listenerObject:Object = new Object();
// listen for playing event on RTMP connection; display result of isRTMP
listenerObject.playing = function(eventObject:Object) {

trace("Value of isRTMP property is: " + my_FLVPlybk.isRTMP);
};
my_FLVPlybk.addEventListener("playing", listenerObject);
my_FLVPlybk.contentPath = "rtmp://my_servername/my_application/stream.flv";

See also

FLVPlayback.contentPath, FLVPlayback.load(), FLVPlayback.play()

FLVPlayback.load()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.load(contentPath:String[, totalTime:Number, isLive:Boolean])

Parameters

contentPath A string that specifies the URL of the FLV file to stream and how to stream it.
The URL can be a local path, an HTTP URL to an FLV file, an RTMP URL to an FLV file
stream, or an HTTP URL to an XML file.

totalTime A number that is the total playing time for the video. Optional.

isLive A Boolean value that is true if the video stream is live. This value is effective only
when streaming from FVSS or FCS. The value of this property is ignored for an HTTP
download. Optional.
FLVPlayback class 603

Returns

Nothing.

Description

Method; begins loading the FLV file and provides a shortcut for setting the autoPlay
property to false and setting the contentPath, totalTime, and isLive properties, if given.
If the totalTime and isLive properties are undefined, they are not set. If the contentPath
property is undefined, null, or an empty string, this method does nothing.

Example

The following example calls the load() method to load an FLV file that is specified by the
contentPath parameter. It shows the value of the autoPlay property before and after loading
the FLV file and calls the play() method to begin playing the FLV file.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
trace("Before load, autoPlay is: " + my_FLVPlybk.autoPlay);
my_FLVPlybk.load("http://www.helpexamples.com/flash/video/water.flv");
trace("After load, autoPlay is: " + my_FLVPlybk.autoPlay);
my_FLVPlybk.play();

See also

FLVPlayback.contentPath, FLVPlayback.isLive, FLVPlayback.totalTime

FLVPlayback.LOADING

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.LOADING
604 FLVPlayback Component (Flash Professional Only)

Description

A read-only FLVPlayback class property that contains the string constant, "loading". You
can compare this property to the state property to determine whether the component is in
the loading state.

Example

The following example displays the value of the FLVPlayback.LOADING property if the FLV
file is in the loading state.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;

var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(my_FLVPlybk.state == FLVPlayback.LOADING)
trace("State is " + FLVPlayback.LOADING);

}
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange

FLVPlayback.maintainAspectRatio

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.maintainAspectRatio
FLVPlayback class 605

Description

Property; a Boolean value that, if true, maintains the video aspect ratio. If this property is
changed from false to true and the autoSize property is false after an FLV file has been
loaded, an automatic resize of the video starts immediately. The default value is true.

Example

The following example calls the setSize() method to change the size of the FLVPlayback
instance, causing a resize event. The maintainAspectRatio property, which defaults to
true, forces a second resize event to maintain the aspect ratio. The resize event handler
displays the width and height of the resized FLVPlayback instance for both occurrences in the
Output panel. If you set maintainAspectRatio to false, the dimensions specified by the
setSize() method take effect.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// maintainAspectRatio defaults to true, causing resize when size changes.
// Remove the comment delimiters from the following line to disable resize.

// my_FLVPlybk.maintainAspectRatio = false;
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object) {

trace("resize event; Width is: " + eventObject.target.width + " Height
is: " + eventObject.target.height);

};
my_FLVPlybk.addEventListener("resize", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.setSize(300, 300);

See also

FLVPlayback.autoSize, FLVPlayback.height, FLVPlayback.preferredHeight,
FLVPlayback.preferredWidth, FLVPlayback.resize, FLVPlayback.setSize(),
FLVPlayback.width
606 FLVPlayback Component (Flash Professional Only)

FLVPlayback.metadata

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.metadata

Description

Property; an object that is a metadata information packet that is received from a call to the
NetSteam.onMetaData() callback function, if available. Read only.

If the FLV file is encoded with the Flash 8 encoder, the metadata property contains the
following information. Older FLV files contain only the height, width, and duration
values.

Parameter Description

canSeekToEnd A Boolean value that is true if the FLV file is encoded with a
keyframe on the last frame that allows seeking to the end of a
progressive download movie clip. It is false if the FLV file is not
encoded with a keyframe on the last frame.

cuePoints An array of objects, one for each cue point embedded in the FLV file.
Value is undefined if the FLV file does not contain any cue points.
Each object has the following properties:

• type a string that specifies the type of cue point as either
"navigation" or "event".

• name a string that is the name of the cue point.
• time a number that is the time of the cue point in seconds with

a precision of three decimal places (milliseconds).
• parameters an optional object that has name-value pairs that

are designated by the user when creating the cue points.

audiocodecid A number that indicates the audio codec (code/decode technique)
that was used.

audiodelay A number that indicates what time in the FLV file “time 0” of the
original FLV file exists. The video content needs to be delayed by a
small amount to properly synchronize the audio.

audiodatarate A number that is the kilobytes per second of audio.

videocodecid A number that is the codec version that was used to encode the
video.
FLVPlayback class 607

Example

The following example shows in the Output panel a sampling of metadata values from the
FLV file cuepoints.flv. It displays the data when the metadataReceived event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.metadataReceived = function(eventObject:Object):Void {

trace("canSeekToEnd is " + my_FLVPlybk.metadata.canSeekToEnd);
trace("Number of cue points is " +

my_FLVPlybk.metadata.cuePoints.length);
trace("Frame rate is " + my_FLVPlybk.metadata.framerate);
trace("Height is " + my_FLVPlybk.metadata.height);
trace("Width is " + my_FLVPlybk.metadata.width);
trace("Duration is " + my_FLVPlybk.metadata.duration + " seconds");

};
my_FLVPlybk.addEventListener("metadataReceived", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.metadataLoaded, FLVPlayback.metadataReceived

FLVPlayback.metadataLoaded

Availability

Flash Player 8.

framerate A number that is the frame rate of the FLV file.

videodatarate A number that is the video data rate of the FLV file.

height A number that is the height of the FLV file.

width A number that is the width of the FLV file.

duration A number that specifies the duration of the FLV file in seconds.

Parameter Description
608 FLVPlayback Component (Flash Professional Only)

Edition

Flash Professional 8.

Usage
my_FLVPlybk.metadataLoaded

Description

Property; a Boolean value that is true if a metadata packet has been encountered and
processed or if the FLV file was encoded without the metadata packet. In other words, the
value is true if the metadata is received, or if you are never going to get any metadata. So, you
know if you have the metadata; and if you don’t have the metadata, you know not to wait
around for it. If you just want to know whether or not you have metadata, you can check the
value with:
FLVPlayback.metadata != null

Use this property to check whether you can retrieve useful information with the methods for
finding and enabling or disabling cue points. Read-only.

Example

The following example creates a listener for the progress event. When the event occurs, the
example checks whether the metadataLoaded property is true and, if so, shows the metadata
values height, width, and duration in the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object):Void {

if(my_FLVPlybk.metadataLoaded){
trace("Height is " + my_FLVPlybk.metadata.height);
trace("Width is " + my_FLVPlybk.metadata.width);
trace("Duration is " + my_FLVPlybk.metadata.duration + " seconds");

}
};
my_FLVPlybk.addEventListener("progress", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.metadata, FLVPlayback.metadataReceived
FLVPlayback class 609

FLVPlayback.metadataReceived

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.metadataReceived = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("metadataReceived", listenerObject);

Description

Event; dispatched the first time the FLV file metadata is reached. The event object has an
info property that contains the info object received by the NetStream.onMetaData
callback.

The event also has the vp property, which is the index number of the video player to which
the event applies. For more information, see FLVPlayback.activeVideoPlayerIndex
on page 549 and FLVPlayback.visibleVideoPlayerIndex on page 688.

Example

The following example creates a listener for the metadataReceived event. When the event
occurs, the event handler sends the name, time, and type of each cue point that is described in
the metadata property to the Output panel.
610 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.metadataReceived = function(eventObject:Object):Void {

var i:Number = 0;
trace("This FLV contains the following cue points:");
while(i < my_FLVPlybk.metadata.cuePoints.length) {

trace("\nName: " + my_FLVPlybk.metadata.cuePoints[i].name);
trace(" Time: " + my_FLVPlybk.metadata.cuePoints[i].time);
trace(" Type is " + my_FLVPlybk.metadata.cuePoints[i].type);
++i;

}
};
my_FLVPlybk.addEventListener("metadataReceived", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.metadata, FLVPlayback.metadataLoaded

FLVPlayback.muteButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.muteButton

Description

Property; a MovieClip object that is the mute button control. For more information on using
FLV Playback Custom UI components for playback controls, see “Skinning FLV Playback
Custom UI components individually” on page 525.

Clicking the muteButton control dispatches a volumeUpdate event.
FLVPlayback class 611

Example

The following example uses the backButton, forwardButton, playPauseButton,
stopButton, and muteButton properties to attach individual FLV Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, and give it an instance name of my_FLVPlybk
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Custom UI components and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayPauseButton
(my_plypausbttn), StopButton (my_stopbttn), and MuteButton (my_mutebttn). Then add
the following lines of code to the Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayPauseButton, StopButton,

and MuteButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playPauseButton = my_plypausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.muteButton = my_mutebttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.skin, FLVPlayback.volume, FLVPlayback.volumeBar,
FLVPlayback.volumeUpdate

FLVPlayback.NAVIGATION

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.NAVIGATION
612 FLVPlayback Component (Flash Professional Only)

Description

A read-only FLVPlayback class property that contains the string constant, "navigation".
You can use this property for the type parameter of the findCuePoint() and
findNearestCuePoint() methods.

Example

The following example uses the FLVPlayback.NAVIGATION property to specify the type of
cue point to find.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// find navigation cue point using time
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

var rtn_cuePt:Object = new Object();
rtn_cuePt = my_FLVPlybk.findCuePoint(7.748, FLVPlayback.NAVIGATION);
trace("Found cue point at " + rtn_cuePt.time + " of type " +
rtn_cuePt.type);

}
my_FLVPlybk.addEventListener("ready", listenerObject)
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.findCuePoint(), FLVPlayback.findNearestCuePoint()

FLVPlayback.ncMgr

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.ncMgr
FLVPlayback class 613

Description

Property; an INCManager object that provides access to an instance of the class implementing
INCManager, which is an interface to the NCManager class.

You can use this property to implement a custom INCManager that requires custom
initialization. Read-only.

Example

The following example shows the value of the NetConnection DEFAULT_TIMEOUT property
when the ready event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// specify name and location of FLV
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

var NC:Object = new Object();
NC = my_FLVPlybk.ncMgr;
trace("Net connection timeout is " + NC.DEFAULT_TIMEOUT + "
milliseconds");

};
my_FLVPlybk.addEventListener("ready", listenerObject);

See also

VideoPlayer class

FLVPlayback.pause()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.pause()
614 FLVPlayback Component (Flash Professional Only)

Parameters

None.

Returns

Nothing.

Description

Method; pauses playing the video stream.

Example

The following example creates a listener for the playheadUpdate event. When it occurs, the
event handler checks to see whether the playhead time is between 5 and 5.05 seconds. If it is,
the event handler calls the pause() method to suspend playing the FLV file. The paused
event handler prompts you to push the Play button to continue.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance,
and give it an instance name of my_ta. Then add the following code to the Actions panel on
Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_ta.visible = false;
my_FLVPlybk.playheadUpdateInterval = 5;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.playheadUpdate = function(eventObject:Object):Void {

if ((eventObject.playheadTime >= 5) && (eventObject.playheadTime < 5.05))
{

my_FLVPlybk.pause();
}

};
my_FLVPlybk.addEventListener("playheadUpdate", listenerObject);
listenerObject.paused = function(eventObject:Object):Void {

my_ta.text = "Paused; push Play to continue";
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("paused", listenerObject);

See also

FLVPlayback.paused, FLVPlayback.play(), FLVPlayback.rewind
FLVPlayback class 615

FLVPlayback.pauseButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.pauseButton

Description

Property; a MovieClip that is the PauseButton control. For more information on using the
FLV Playback Custom UI components for playback control, see “Skinning FLV Playback
Custom UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
and stopButton properties to attach individual FLV Custom UI controls to an FLVPlayback
component.

Drag an FLVPlayback component to the Stage, and give it an instance name of my_FLVPlybk
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Custom UI components and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayButton
(my_plybttn), PauseButton (my_pausbttn), and StopButton (my_stopbttn). Then add the
following lines of code to the Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton, and

 StopButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playButton, FLVPlayback.playPauseButton, FLVPlayback.skin
616 FLVPlayback Component (Flash Professional Only)

FLVPlayback.PAUSED

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.PAUSED

Description

A read-only FLVPlayback class property that contains the string constant, "paused". You can
compare this property to the state property to see if the component is in the paused state.

Example

The following example uses the FLVPlayback.PAUSED property to show the state of the FLV
file when the user clicks the Pause button.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.PAUSED)
trace("FLV is " + FLVPlayback.PAUSED);

}
my_FLVPlybk.addEventListener("stateChange", listenerObject)
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange
FLVPlayback class 617

FLVPlayback.paused

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.paused = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("paused", listenerObject);

Description

Event; dispatched when the player enters the paused state. This happens when you call the
pause() method or click the corresponding control and it also happens in some cases when
the FLV file is loaded if autoPlay is false (the state may be stopped instead). The event
object has the properties state, playheadTime, and vp, which is the index number of the
video player to which this event applies. For more information on the vp property, see
FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

The stateChange event is also dispatched.

Example

The following example creates a listener for the playheadUpdate event. When the event
occurs, the event handler checks to see whether the playheadTime property is between 5 and
5.05 seconds. If so, the event handler calls the pause() method to suspend playing the FLV
file. This triggers a paused event for which the paused event handler shows, “The FLV
is paused!”
618 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.playheadUpdateInterval = 5;
var listenerObject:Object = new Object();
listenerObject.playheadUpdate = function(eventObject:Object):Void {

if ((eventObject.playheadTime >= 5) && (eventObject.playheadTime < 5.05))
{

my_FLVPlybk.pause();
}

}
my_FLVPlybk.addEventListener("playheadUpdate", listenerObject);
listenerObject.paused = function(eventObject:Object) {

trace("FLV is " + my_FLVPlybk.state + "!");
};
my_FLVPlybk.addEventListener("paused", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.pause(), FLVPlayback.paused, FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.paused

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.paused

Description

Property; a Boolean value that is true if the FLV file is in a paused state. Read-only.
FLVPlayback class 619

Example

The following example creates a listener for the stateChange event. When the event occurs,
it checks the paused property to determine whether the component is in the paused state. If
so, it shows a message to that effect in the Output panel. You must click the Pause button
while the FLV file is playing to cause the paused state to occur.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object) {

if(my_FLVPlybk.paused)
trace("FLV is in " + FLVPlayback.PAUSED + " state");

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.paused, FLVPlayback.PAUSED, FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.play()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.play ([contentPath:String, totalTime:Number, isLive:Boolean])

Parameters

contentPath A string that specifies the URL of the FLV file to stream and how to stream it.
The URL can be a local path, an HTTP URL to an FLV file, an RTMP URL to an FLV file
stream, or an HTTP URL to an XML file. It is optional, but the contentPath property must
be set either through the Component inspector or through ActionScript, or this method has
no effect.
620 FLVPlayback Component (Flash Professional Only)

totalTime A number that is the total playing time for the video. Optional.

isLive A Boolean value that is true if the video stream is live. This value is effective only
when streaming from a FCS or FVSS. The value of this property is ignored for an HTTP
download. Optional.

Returns

Nothing.

Description

Method; plays the video stream. With no parameters, the method simply takes the FLV file
from a paused or stopped state to the playing state.

If parameters are used, the method acts as a shortcut for setting the autoPlay property to
true and setting the isLive, totalTime and, contentPath properties. If the totalTime and
isLive properties are undefined, they are not set.

Example

The following example disables the FLV file from playing automatically, calls the
seekSeconds() method to set the playhead 20 seconds into the video, and calls the play()
method to begin playing the FLV file at that point.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoPlay = false;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.seekSeconds(4);
my_FLVPlybk.play();

};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.autoPlay, FLVPlayback.contentPath, FLVPlayback.load(),
FLVPlayback.pause(), FLVPlayback.stop()
FLVPlayback class 621

FLVPlayback.playButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.playButton

Description

Property; a MovieClip object that is the Play button. For more information on using FLV
Playback Custom UI components for playback controls, see “Skinning FLV Playback Custom
UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
and stopButton properties to attach individual FLV Custom UI controls to an FLVPlayback
component.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Next, add the following individual FLV Custom UI components, and give
them the instance names shown in parentheses: BackButton (my_bkbttn), ForwardButton
(my_fwdbttn), PlayButton (my_plybttn), PauseButton (my_pausbttn), and StopButton
(my_stopbttn). Then add the following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton, and

 StopButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;

See also

FLVPlayback.playing, FLVPlayback.skin
622 FLVPlayback Component (Flash Professional Only)

FLVPlayback.playheadPercentage

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.playheadPercentage

Description

Property; a number that specifies the current playheadTime as a percentage of the totalTime
property. If you access this property, it contains the percentage of playing time that has
elapsed. If you set this property, it causes a seek operation to the point representing that
percentage of the FLV file’s playing time.

The value of this property is relative to the value of the totalTime property.

The component throws a VideoError if you specify a percentage that is invalid or if the
totalTime property is undefined, null, or less than or equal to zero.

Example

The following example displays the percentage of the FLV file that has played when the
point2 cue point occurs. At the point3 cue point, it sets playheadPercentage to 10,
causing a seek operation to the point that is 10 percent from the beginning of the FLV file and
creating a playback loop.
FLVPlayback class 623

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

if(eventObject.info.name == "point2")
trace("point2 occurred at " + my_FLVPlybk.playheadPercentage + "

percent of FLV");
if(eventObject.info.name == "point3")

my_FLVPlybk.playheadPercentage = 10;
}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

See also

FLVPlayback.playheadTime, FLVPlayback.seekPercent(), FLVPlayback.totalTime

FLVPlayback.playheadTime

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.playheadTime

Description

Property; a number that is the current playhead time or position, measured in seconds, which
can be a fractional value. Setting this property triggers a seek and has all the restrictions of
a seek.

When the playhead time changes, which includes once every .25 seconds while the FLV file
plays, the component dispatches the playheadUpdate event.
624 FLVPlayback Component (Flash Professional Only)

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not fire until the playheadTime property has updated.

Example

The following example catches occurrences of the stateChange event as it occurs while the
FLV file plays and shows the elapsed playhead time in the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + ": playhead time is: " +
my_FLVPlybk.playheadTime);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playheadUpdate, FLVPlayback.playheadUpdateInterval,
FLVPlayback.seek(), FLVPlayback.stateChange

FLVPlayback.playheadUpdate

Availability

Flash Player 8.

Edition

Flash Professional 8.
FLVPlayback class 625

Usage
var listenerObject:Object = new Object();
listenerObject.playheadUpdate = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("playheadUpdate", listenerObject);

Description

Event; dispatched while the FLV file is playing at the frequency specified by the
playheadUpdateInterval property. The default is .25 seconds. The component does not
dispatch this event when the video player is paused or stopped unless a seek occurs. The event
object has the state, playheadTime, and vp properties.

Example

The following example catches occurrences of the playheadUpdate event as it occurs while
the FLV file plays and displays the elapsed playhead time in the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.playheadUpdate = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + ": playhead time is: " +
eventObject.playheadTime);

};
my_FLVPlybk.addEventListener("playheadUpdate", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playheadTime, FLVPlayback.playheadUpdateInterval

FLVPlayback.playheadUpdateInterval

Availability

Flash Player 8.

Edition

Flash Professional 8.
626 FLVPlayback Component (Flash Professional Only)

Usage
my_FLVPlybk.playheadUpdateInterval

Description

Property; a number that is the amount of time, in milliseconds, between each
playheadUpdate event. Setting this property while the FLV file is playing restarts the timer.
The default is 250.

Because ActionScript cue points start on playhead updates, lowering the value of the
playheadUpdateInterval property can increase the accuracy of ActionScript cue points.

Because the playhead update interval is set by a call to the global setInterval() function,
the update cannot fire more frequently than the SWF file frame rate, as with any interval that
is set this way. So, as an example, for the default frame rate of 12 frames per second, the lowest
effective interval that you can create is approximately 83 milliseconds, or one second (1000
milliseconds) divided by 12.

Example

The following example sets the playheadUpdateInterval property to 3000 and creates a
listener that catches occurrences of the playheadUpdate event as it occurs while the FLV file
plays. When the event occurs, the event handler shows the elapsed playhead time in the
Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.playheadUpdateInterval = 3000;
var listenerObject:Object = new Object();
listenerObject.playheadUpdate = function(eventObject:Object):Void {

trace("playhead time is: " + eventObject.playheadTime);
};
my_FLVPlybk.addEventListener("playheadUpdate", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playheadTime, FLVPlayback.playheadUpdate
FLVPlayback class 627

FLVPlayback.PLAYING

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.PLAYING

Description

A read-only FLVPlayback class property that contains the string constant, "playing". You
can compare this property to the state property to determine if the component is in the
playing state.

Example

The following example uses the FLVPlayback.PLAYING property to see if the state equals
"playing" when a stateChange event occurs. It also includes the constant as part of a
message in the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.PLAYING)
trace(my_FLVPlybk.contentPath + " is now " + FLVPlayback.PLAYING);

}
my_FLVPlybk.addEventListener("stateChange", listenerObject);

See also

FLVPlayback.state, FLVPlayback.stateChange
628 FLVPlayback Component (Flash Professional Only)

FLVPlayback.playing

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var :Object = new Object();
listenerObject.playing = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("playing", listenerObject);

Description

Event; dispatched when the playing state is entered. This may not occur immediately after the
play() method is called or the corresponding control is clicked; often the buffering state is
entered first, and then the playing state. The event object has the state, playheadTime, and
vp properties, which is the index number of the video player to which this event applies. For
more information on the vp property, see FLVPlayback.activeVideoPlayerIndex
on page 549 and FLVPlayback.visibleVideoPlayerIndex on page 688.

The FLVPlayback instance also dispatches the stateChange event.

Example

The following example shows the value of the contentPath property in a text area when the
playing event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Drag a TextArea component to the Stage below the FLVPlayback instance,
and give it an instance name of my_ta. Then add the following code to Frame 1 of the
Timeline in the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.playing = function(eventObject:Object):Void {

my_ta.text = "Now playing: " + my_FLVPlybk.contentPath;
}
my_FLVPlybk.addEventListener("playing", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
FLVPlayback class 629

See also

FLVPlayback.play(),FLVPlayback.playing, FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.playing

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.playing

Description

Property; a Boolean value that is true if the FLV file is in the playing state. Read-only.

Example

The following example listens for occurrences of the stateChange event as it occurs while the
FLV file plays. When the event occurs, the example shows the value of the playing property
in the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
trace(my_FLVPlybk.state + ": playing property is " + my_FLVPlybk.playing);
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + ": playing property is " +
my_FLVPlybk.playing);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playing, FLVPlayback.state, FLVPlayback.stateChange
630 FLVPlayback Component (Flash Professional Only)

FLVPlayback.playPauseButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.playPauseButton

Description

Property; a MovieClip object that is the PlayPauseButton. For more information on using
FLV Playback Custom UI components for playback controls, see “Skinning FLV Playback
Custom UI components individually” on page 525.

Example

The following example uses the playPauseButton, stopButton, backButton, and
forwardButton properties to attach individual FLV Custom UI controls to an FLVPlayback
component.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Next, add the following individual FLV Custom UI components, and give
them the instance names shown in parentheses: BackButton (my_bkbttn), ForwardButton
(my_fwdbttn), PlayPauseButton (my_plypausebttn), and StopButton (my_stopbttn). Then
add the following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI PlayPauseButton, StopButton, BackButton, and ForwardButton

components in the Library
*/
import mx.video.*;
my_FLVPlybk.playPauseButton = my_plypausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.playButton, FLVPlayback.playPauseButton, FLVPlayback.paused,
FLVPlayback.skin
FLVPlayback class 631

FLVPlayback.preferredHeight

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.preferredHeight

Description

Property; a number that specifies the height of the source FLV file. This information is not
valid immediately upon calling the play() or load() methods. It is valid when the ready
event starts. If the value of the autoSize property or maintainAspectRatio property is
true, it is best to read the value when the resize event starts. Read-only.

Example

The following example sets the size of the FLVPlayback instance when the ready event
occurs. When the cuePoint event occurs, it resets the size to the size specified by
preferredHeight and preferredWidth properties.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object):Void {

trace("width is: " + my_FLVPlybk.width);
trace("height is: " + my_FLVPlybk.height);

};
my_FLVPlybk.addEventListener("resize", listenerObject);
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.setSize(250, 350);
};
632 FLVPlayback Component (Flash Professional Only)

my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.cuePoint = function(eventObject:Object):Void {

my_FLVPlybk.setSize(my_FLVPlybk.preferredWidth,
my_FLVPlybk.preferredHeight);

};
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.addASCuePoint(1.5, "AScp1");

See also

FLVPlayback.autoSize, FLVPlayback.height, FLVPlayback.maintainAspectRatio,
FLVPlayback.preferredWidth, FLVPlayback.ready, FLVPlayback.setSize(),
FLVPlayback.setScale(), FLVPlayback.width

FLVPlayback.preferredWidth

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.preferredWidth

Description

Property; gives the width of the source FLV file. This information is not valid immediately
when the play() or load() methods are called; it is valid when the ready event starts. If the
value of the autoSize or maintainAspectRatio properties is true, it is best to read the
value when the resize event starts. Read-only.

Example

The following example sets the size of the FLVPlayback instance when the ready event
occurs. When the cuePoint event occurs, it resets the size to the size specified by
preferredHeight and preferredWidth properties.
FLVPlayback class 633

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object):Void {

trace("width is: " + my_FLVPlybk.width);
trace("height is: " + my_FLVPlybk.height);

};
my_FLVPlybk.addEventListener("resize", listenerObject);
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.setSize(250, 350);
};
my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.cuePoint = function(eventObject:Object):Void {

my_FLVPlybk.setSize(my_FLVPlybk.preferredWidth,
my_FLVPlybk.preferredHeight);

};
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.addASCuePoint(1.5, "AScp1");

See also

FLVPlayback.autoSize, FLVPlayback.height, FLVPlayback.maintainAspectRatio,
FLVPlayback.preferredHeight, FLVPlayback.ready, FLVPlayback.setSize(),
FLVPlayback.setScale(), FLVPlayback.width

FLVPlayback.progress

Availability

Flash Player 8.

Edition

Flash Professional 8.
634 FLVPlayback Component (Flash Professional Only)

Usage
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("progress", listenerObject);

Description

Event; dispatched at the frequency specified by the progressInterval property, starting
when the load begins and ending when all bytes are loaded or there is a network error. Default
is every .25 seconds.

Dispatched only for a progressive HTTP download. Indicates progress in number of
downloaded bytes. The event object has the bytesLoaded and bytesTotal properties, which
are the same as the FLVPlayback properties of the same names.

The event also has the property vp, which is the index number of the video player to which
this event applies. For more information on the vp property, see
FLVPlayback.activeVideoPlayerIndex and FLVPlayback.visibleVideoPlayerIndex.

Example

The following example sets the progressInterval property to 001 milliseconds because the
FLV file is short and then shows the number of bytes loaded for each occurrence of the
progress event.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.progressInterval = 001;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object):Void {

trace(eventObject.bytesLoaded);
}
my_FLVPlybk.addEventListener("progress", listenerObject);

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.addEventListener(),
FLVPlayback.bytesLoaded, FLVPlayback.bytesTotal,
FLVPlayback.progressInterval, FLVPlayback.visibleVideoPlayerIndex
FLVPlayback class 635

FLVPlayback.progressInterval

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.progressInterval

Description

Property; a number that is the amount of time, in milliseconds, between each progress
event. If you set this property while the video stream is playing, the timer restarts. Default
value is 250.

Example

The following example sets the progressInterval property to 001 millisecond because the
FLV file is small, and then shows the number of bytes loaded for each occurrence of the
progress event.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.progressInterval = 001;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object):Void {

trace(eventObject.bytesLoaded);
}
my_FLVPlybk.addEventListener("progress", listenerObject);

See also

FLVPlayback.progress
636 FLVPlayback Component (Flash Professional Only)

FLVPlayback.ready

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("ready", listenerObject);

Description

Event; dispatched when FLV file is loaded and ready to display. It starts the first time you
enter a responsive state after you load a new FLV file with the play() or load() method. It
starts only once for each FLV file that is loaded.

The event object has the state, playheadTime, and vp properties. The vp property is the
index number of the video player to which this event applies. For more information on the vp
property, see FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

Example
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - TextArea component on the Stage with an instance name of my_ta
*/
import mx.video.*;
my_ta.visible = false;
my_FLVPlybk.autoPlay = false;
my_ta.setSize(260, 30);
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_ta.text = "The FLV is ready. Push Play to start playing";
my_ta.visible = true;

};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
FLVPlayback class 637

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.addEventListener(),
FLVPlayback.state, FLVPlayback.visibleVideoPlayerIndex

FLVPlayback.removeASCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.removeASCuePoint(CuePoint:Object):Object
my_FLVplybk.removeASCuePoint(time:Number):Object
my_FLVplybk.removeASCuePoint(name:String):Object

Parameters

CuePoint A cue point object containing the time and name properties for the cue point to
remove. The method does not check any other properties on the incoming cue point object. If
time or name is null or undefined, the method uses only the available property. If only name
is given, the method removes the first cue point with this name.

time A number containing the time of the cue point to remove. The method removes the
first cue point with this time.

name A string that contains the name of the cue point to remove. The method removes the
first cue point with this name.

Returns

The cue point object that was removed. If there is no matching cue point, the method
returns null.

Description

Method; removes an ActionScript cue point from the currently loaded FLV file. Only the
name and time properties are used from CuePoint parameter to find the cue point to remove.

If multiple ActionScript cue points match the search criteria, only one is removed. To remove
all, call this function repeatedly in a loop with the same parameters until it returns null.

Cue point information is wiped out when the contentPath property is set, so to set cue point
information for the next FLV file to be loaded, set the contentPath property first.
638 FLVPlayback Component (Flash Professional Only)

Example

The following example adds an ActionScript cue point to the FLV file, and then calls the
removeASCuePoint() method to remove it. It shows the name of the removed cue point in
the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
// create cue point object
var cuePt:Object = new Object(); // create cue point object
var rtn_cuePt:Object = new Object(); // create object for return value
cuePt.time = 4.444;
cuePt.name = "ripples";
my_FLVPlybk.addASCuePoint(cuePt); // add AS cue point
if ((rtn_cuePt = my_FLVPlybk.removeASCuePoint(cuePt)) != null) {

trace("Removed cue point: " + rtn_cuePt.name);
}

See also

FLVPlayback.addASCuePoint(), FLVPlayback.findCuePoint(),
FLVPlayback.findNearestCuePoint(), FLVPlayback.findNextCuePointWithName()

FLVPlayback.removeEventListener()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.removeEventListener(event:String, listener:Object):Void
my_FLVPlybk.removeEventListener(event:String, listener:Function):Void

Parameters

event A string that specifies the name of the event for which you are removing a listener.

listener A reference to the listener object or function that you are removing.
FLVPlayback class 639

Returns

Nothing.

Description

Method; removes an event listener from a component instance.

Example

The following example removes the listener for a cuePoint event when the first cue point
occurs. This causes only the first of three cue points to be detected.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
Usage 1: listener object
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object(); // create listener object
listenerObject.cuePoint = function(eventObject:Object):Void {

trace("Hit cue point at " + eventObject.info.time);
my_FLVPlybk.removeEventListener("cuePoint", listenerObject);

};
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

Usage 2: listener function
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_ta.visible = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
function cuePoint(eventObject:Object):Void {

trace("Hit cue point at " + eventObject.info.time);
my_FLVPlybk.removeEventListener("cuePoint", cuePoint);

};
my_FLVPlybk.addEventListener("cuePoint", cuePoint);

See also

FLVPlayback.addEventListener()
640 FLVPlayback Component (Flash Professional Only)

FLVPlayback.resize

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("resize", listenerObject);

Description

Event; dispatched when video is resized. This occurs when you set the
visibleVideoPlayerIndex property and switch to a video player with different dimensions.
The event object has the properties auto, x, y, width, height and vp, which is the index
number of the video player to which the event applies. For more information on the vp
property, see FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

The auto property is true when the resizing is automatic because the autoSize or
maintainAspectRatio property is true. In this case, the event might be dispatched for a
video player other than the visible video player. The event might be dispatched even if the
dimensions do not actually change after an attempt to automatically resize the component
occurs.

When the auto property is false, the event always applies to the visible video player. The vp
property still appears but will always be equal to the visibleVideoPlayerIndex property.

The component dispatches the event (with auto set to false) when you set the
visibleVideoPlayerIndex property if you are switching to a video player with different
dimensions than the currently visible player.

Example

The following example plays two FLV files. It adds an ActionScript cue point to the first FLV
file and, when the cuePoint event occurs, it switches to a second, smaller video player to play
the second FLV file. When it sets the visibleVideoPlayerIndex property for the video
player, it triggers the resize event, which displays the size and location of the current
video player.
FLVPlayback class 641

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// turn off autoSize and maintainAspectRatio
my_FLVPlybk.autoSize = false;
my_FLVPlybk.maintainAspectRatio = false;
// play this FLV
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv";
// add a cue point
my_FLVPlybk.addASCuePoint(3, "switch_here");
var listenerObject:Object = new Object();// create listener
listenerObject.cuePoint = function(eventObject:Object):Void {

// add a second video player
my_FLVPlybk.activeVideoPlayerIndex = 1;
// play this FLV
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";
// change size of this video player
my_FLVPlybk.setSize(240, 180);
my_FLVPlybk.visibleVideoPlayerIndex = 1; // make it visible
my_FLVPlybk.play(); // play VLV

};
// add listener for cuePoint event
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
listenerObject.resize = function(eventObject:Object):Void {

// display location and dimensions
trace("Video player is #" + my_FLVPlybk.activeVideoPlayerIndex);
trace("X coordinate is: " + eventObject.x);
trace("Y coordinate is: " + eventObject.y);
trace("Width is: " + eventObject.width);
trace("Height is: " + eventObject.height);

};
// add listener for resize event
my_FLVPlybk.addEventListener("resize", listenerObject);

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.autoSize, FLVPlayback.height,
FLVPlayback.maintainAspectRatio, FLVPlayback.preferredHeight,
FLVPlayback.preferredWidth, FLVPlayback.setSize(), FLVPlayback.state,
FLVPlayback.width, FLVPlayback.x, FLVPlayback.y
642 FLVPlayback Component (Flash Professional Only)

FLVPlayback.rewind

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.rewind = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("rewind", listenerObject);

Description

Event; dispatched when the location of the playhead moves backward by a call to seek() or
when an automatic rewind completes.

The event object has the properties auto, state, and playheadTime. If the event results from
a seek backward, the auto property is false. If it results from an automatic rewind, the auto
property is true.

The playheadTime property is the destination time.

The stateChange event is dispatched with a state of "rewinding" when an automatic
rewind occurs. The stateChange event does not start until rewinding has completed. The
seek event is dispatched when rewinding occurs through seeking. The FLVPlayback instance
also dispatches the playheadUpdate event when rewinding occurs.

The rewind event has the property vp, the index number of the video player to which this
event applies. For more information on the vp property, see the
FLVPlayback.activeVideoPlayerIndex and FLVPlayback.visibleVideoPlayerIndex
properties.

Example

The following example sets the autoRewind property to true and listens for the rewind
event. When the event occurs, the event handler shows the values of the vp, state, and
playheadTime properties in the Output panel.
FLVPlayback class 643

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoRewind = true;
var listenerObject:Object = new Object();
listenerObject.rewind = function(eventObject:Object) {

trace("Video player is #" + eventObject.vp);
trace("State is: " + eventObject.state);
trace("Playhead time is: " + eventObject.playheadTime);

};
my_FLVPlybk.addEventListener("rewind", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.playheadTime,
FLVPlayback.playheadUpdateFLVPlayback.seek(), FLVPlayback.seekPercent(),
FLVPlayback.seekSeconds(), FLVPlayback.seekToNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint(), FLVPlayback.state,
FLVPlayback.stateChange

FLVPlayback.REWINDING

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.REWINDING

Description

A read-only FLVPlayback class property that contains the string constant, "rewinding". You
can compare this property to the state property to determine if the component is in the
rewinding state.
644 FLVPlayback Component (Flash Professional Only)

Example

The following example creates a listener for the stateChange event and uses the
FLVPlayback.REWINDING property to determine whether the component is in the
rewinding state.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;

var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.REWINDING)
trace("The current state is " + FLVPlayback.REWINDING);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange

FLVPlayback.scaleX

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.scaleX

Description

Property; a number that is the horizontal scale. The standard scale is 100.

Example

The following example sets the scaleX (horizontal) and scaleY (vertical) properties of the
FLVPlayback instance to 150 percent.
FLVPlayback class 645

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.scaleX = 150;
my_FLVPlybk.scaleY = 150;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.setScale(), FLVPlayback.scaleY

FLVPlayback.scaleY

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.scaleY

Description

Property; a number that is the vertical scale. The standard scale is 100.

Example

The following example sets the horizontal (scaleX) and vertical (scaleY) scale of the
FLVPlayback instance to 150 percent.
646 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.scaleX = 150;
my_FLVPlybk.scaleY = 150;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.scaleX, FLVPlayback.setScale()

FLVPlayback.scrubbing

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.scrubbing

Description

Property; a Boolean value that is true if the user is scrubbing with the SeekBar and false
otherwise. Read-only.

Scrubbing refers to grabbing the handle of the seek bar and dragging it in either direction to
locate a particular scene in the FLV file.

Example

The following example shows the value of the scrubbing property when a seek event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:

N
O

T
E

You must grab the handle of the SeekBar, drag it, and release it to cause the event.
FLVPlayback class 647

/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.seek = function(eventObject:Object):Void {

if(my_FLVPlybk.scrubbing)
trace("User is scrubbing at: " + eventObject.playheadTime);

};
my_FLVPlybk.addEventListener("seek", listenerObject);

See also

FLVPlayback.seek, FLVPlayback.seekBar, FLVPlayback.scrubFinish,
FLVPlayback.scrubStart

FLVPlayback.scrubFinish

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.scrubFinish = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("scrubFinish", listenerObject);

Description

Event; dispatched when the user stops scrubbing the FLV file with the SeekBar. Scrubbing
refers to grabbing the handle of the seek bar and dragging it in either direction to locate a
particular scene in the FLV file. Scrubbing stops when the user releases the handle of the
SeekBar.

The event object has the properties state and playheadTime. The state will be "seeking"
until after scrubbing stops.

The component also dispatches the stateChange event with the state property equal to the
new state, which should be "playing", "paused", "stopped", or "buffering".
648 FLVPlayback Component (Flash Professional Only)

Example

The following example listens for the scrubFinish event and shows the time at which
scrubbing stops.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:

/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.scrubFinish = function(eventObject:Object):Void {

trace("Scrubbing stopped at " + eventObject.playheadTime);
trace("Current state is " + eventObject.state);

};
my_FLVPlybk.addEventListener("scrubFinish", listenerObject);

See also

FLVPlayback.playheadTime, FLVPlayback.seek, FLVPlayback.seekBar,
FLVPlayback.scrubStart, FLVPlayback.state, FLVPlayback.stateChange

FLVPlayback.scrubStart

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.scrubStart = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("scrubStart", listenerObject);

N
O

T
E

You must grab the handle of the SeekBar, drag it, and release it to cause the event.
FLVPlayback class 649

Description

Event; dispatched when then user begins scrubbing the FLV file with the SeekBar. Scrubbing
refers to grabbing the handle of the SeekBar and dragging it in either direction to locate a
particular scene in the FLV file. Scrubbing begins when the user clicks on the SeekBar handle
and ends when the user releases it.

The event object has the properties state and playheadTime.

The component also dispatches the stateChange event with the state property equal to
“seeking”. The state remains “seeking” until the user stops scrubbing.

Example

The following example listens for the scrubStart event and shows the time when
scrubbing begins.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:

/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.scrubStart = function(eventObject:Object):Void {

trace("Scrubbing began at " + eventObject.playheadTime);
};
my_FLVPlybk.addEventListener("scrubStart", listenerObject);

See also

FLVPlayback.playheadTime, FLVPlayback.scrubbing, FLVPlayback.scrubFinish,
FLVPlayback.seekBar, FLVPlayback.state, FLVPlayback.stateChange

N
O

T
E

You must grab the handle of the SeekBar and drag it to cause the event.
650 FLVPlayback Component (Flash Professional Only)

FLVPlayback.seek

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.seek = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("seek", listenerObject);

Description

Event; dispatched when the location of playhead is changed by a call to seek(), by setting the
playheadTime property or by using the seekBar control. The playheadTime property is the
destination time. The event object has the properties state, playheadTime, and vp, which is
the index number of the video player to which the event applies.

The FLVPlayback instance dispatches the rewind event when the seek is backward and the
fastForward event when the seek is forward. It also dispatches the playheadUpdate event.

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example seeks 2 seconds into the FLV file when the ready event occurs. The
seek() function triggers a seek event, at which point the listener displays the playheadTime
and the name of the FLVPlayback instance.
FLVPlayback class 651

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.seek = function(eventObject:Object) {
 trace("A seek event occurred at " + eventObject.playheadTime);
};
my_FLVPlybk.addEventListener("seek", listenerObject);
listenerObject.ready = function(eventObject:Object) {

my_FLVPlybk.seek(2);
};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.fastForward,
FLVPlayback.playheadTime, FLVPlayback.playheadUpdate, FLVPlayback.rewind,
FLVPlayback.seek(), FLVPlayback.seekPercent(), FLVPlayback.seekSeconds(),
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToNextNavCuePoint(),
FLVPlayback.seekToPrevNavCuePoint()

FLVPlayback.seek()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.seek(time:Number)

Parameters

time A number that specifies the time, in seconds, at which to place the playhead.

Returns

Nothing.
652 FLVPlayback Component (Flash Professional Only)

Description

Method; seeks to a given time in the file, specified in seconds, with a precision of three
decimal places (milliseconds).

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example disables the FLV file from playing automatically, calls the seek()
method to set the playhead 3 seconds into the video, and begins playing the FLV file at
that point.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoPlay = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.seek(3);
my_FLVPlybk.play();

See also

FLVPlayback.playheadTime, FLVPlayback.seek, FLVPlayback.seekPercent(),
FLVPlayback.seekSeconds()
FLVPlayback class 653

FLVPlayback.seekBar

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.seekBar

Description

Property; a MovieClip object that is the seek bar control at playtime. For more information
on using FLV Playback Custom UI components for playback controls, see “Skinning FLV
Playback Custom UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
stopButton, and seekBar properties to attach individual FLV Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, give it an instance name of my_FLVPlybk,
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Custom UI components, and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayPauseButton
(my_plypausbttn), StopButton (my_stopbttn) and SeekBar (my_seekBar). Then add the
following lines of code to the Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayPauseButton, StopButton and

SeekBar
 components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playPauseButton = my_plypausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.seekBar = my_seekBar;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
654 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.scrubbing, FLVPlayback.scrubFinish, FLVPlayback.scrubStart,
FLVPlayback.seek

FLVPlayback.seekBarInterval

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.seekBarInterval

Description

Property; a number that specifies, in milliseconds, how often to check the seek bar handle
when scrubbing. The default value is 250.

Because this interval is set by a call to the global setInterval() function, the update cannot
start more frequently than the SWF file frame rate. So, for the default frame rate of 12 frames
per second, for example, the lowest effective interval that you can create is approximately 83
milliseconds, or 1 second (1000 milliseconds) divided by 12.

Example

The following example lowers the seekBarInterval setting to 50 milliseconds, and it shows
the value of the playheadTime property, if the user is scrubbing.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.seek = function(eventObject:Object):Void {

if(my_FLVPlybk.scrubbing) {
my_FLVPlybk.seekBarInterval = 50;
trace("User is scrubbing at: " + eventObject.playheadTime);

}
};
my_FLVPlybk.addEventListener("seek", listenerObject);
FLVPlayback class 655

See also

FLVPlayback.seekBar, FLVPlayback.seekBarScrubTolerance

FLVPlayback.seekBarScrubTolerance

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.seekBarScrubTolerance

Description

Property; a number that specifies how far a user can move the SeekBar handle before an
update occurs. The value is specified as a percentage, ranging from 1 to 100. The default value
is 5.

Example

The following example checks to see if the user is scrubbing when a seek event occurs and, if
so, lowers the value of the seekBarScrubTolerance property to 0 to increase updating the
SeekBar location and the frequency of the seek event.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:

/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.seek = function(eventObject:Object):Void {

if(my_FLVPlybk.scrubbing) {
my_FLVPlybk.seekBarScrubTolerance = 0;
trace("User is scrubbing at: " + eventObject.playheadTime);

}
};
my_FLVPlybk.addEventListener("seek", listenerObject);

N
O

T
E

You must grab the handle of the SeekBar, drag it, and release it to cause the event.
656 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.scrubbing, FLVPlayback.scrubFinish, FLVPlayback.scrubStart,
FLVPlayback.seekBar, FLVPlayback.seekBarInterval

FLVPlayback.SEEKING

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.SEEKING

Description

A read-only FLVPlayback class property that contains the string constant, "seeking". You can
compare this property to the state property to determine whether the component is in the
seeking state.

Example

The following example uses the FLVPlayback.SEEKING property to see if the state is
"seeking" when a stateChange event occurs and, if so, shows a message to that effect.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.SEEKING)
trace("The current state is " + FLVPlayback.SEEKING);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);

See also

FLVPlayback.state, FLVPlayback.stateChange
FLVPlayback class 657

FLVPlayback.seekPercent()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.seekPercent(percent:Number)

Parameters

percent A number that specifies a percentage of the length of the FLV file at which to place
the playhead.

Returns

Nothing.

Description

Method; seeks to a percentage of the file and places the playhead there. The percentage is a
number between 0 and 100.

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example disables the FLV file from playing automatically. When the FLV file is
ready, it sets the playhead 30 percent into the playing time and begins playing at that point.
658 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoPlay = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

my_FLVPlybk.seekPercent(30);
my_FLVPlybk.play();

}
my_FLVPlybk.addEventListener("ready", listenerObject);

See also

FLVPlayback.seek, FLVPlayback.seek(), FLVPlayback.seekSeconds()

FLVPlayback.seekSeconds()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.seekSeconds(time:Number)

Parameters

time A number that specifies the time, in seconds, of the total play time at which to place
the playhead.

Returns

Nothing.

Description

Method; seeks to a given time in the file, specified in seconds, with a precision up to three
decimal places (milliseconds). This method performs the same operation as the seek()
method; it is provided for symmetry with the seekPercent() method.
FLVPlayback class 659

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example disables the FLV file from playing automatically, calls the
seekSeconds() method to set the playhead 5 seconds into the video, and begins playing the
FLV file at that point.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoPlay = false;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

my_FLVPlybk.seekSeconds(4);
my_FLVPlybk.play();

}
my_FLVPlybk.addEventListener("ready", listenerObject);

See also

FLVPlayback.seek, FLVPlayback.seek(), FLVPlayback.seekPercent()

FLVPlayback.seekToNavCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.
660 FLVPlayback Component (Flash Professional Only)

Usage
my_FLVplybk.seekToNavCuePoint(time:Number):Void
my_FLVplybk.seekToNavCuePoint(name:String):Void
my_FLVplybk.seekToNavCuePoint(cuePoint:Object):Void

Parameters

time A number that is the time of the navigation cue point to seek. The method uses only
the first three decimal places and rounds any additional decimal places.

name A string that is the name of the cue point to seek.

cuePoint A cue point object in which you set the time and name properties to specify the
cue point to seek.

Returns

Nothing.

Description

Method; seeks to a navigation cue point that matches the specified time or is later. If time is
undefined, null, or less than 0, the method starts its search at time 0.

If you specify only a time, the method seeks to a cue point that matches that time or is later.

If you specify a name, the method seeks to the first enabled cue point that matches it (for
more information about enabling/disabling cue points see
“FLVPlayback.setFLVCuePointEnabled()” on page 665).

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example seeks to the cue point named point2 when the ready event occurs.
The cuePoint event handler shows the name, time, and type values for each cue point
that occurs.
FLVPlayback class 661

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

my_FLVPlybk.seekToNavCuePoint("point2");
}
my_FLVPlybk.addEventListener("ready", listenerObject);
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object):Void {

trace("Cue point name is: " + eventObject.info.name);
trace("Cue point time is: " + eventObject.info.time);
trace("Cue point type is: " + eventObject.info.type);

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.cuePoint, FLVPlayback.seek, FLVPlayback.seek(),
FLVPlayback.seekToNextNavCuePoint()

FLVPlayback.seekToNextNavCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.seekToNextNavCuePoint([time:Number])

Parameters

time A number that is the starting time, in seconds, from which to look for the next
navigation cue point. The default is the current playheadTime property. Optional.

Returns

Nothing.
662 FLVPlayback Component (Flash Professional Only)

Description

Method; seeks to next navigation cue point, based on the current value of the playheadTime
property. The method skips navigation cue points that have been disabled and goes to the end
of the FLV file if there is no other cue point.

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example seeks to the next navigation cue point when the cue point named
point2 occurs. This has the effect of skipping that portion of the FLV file between the cue
points named point2 and point3.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

if(eventObject.info.name == "point2")
my_FLVPlybk.seekToNextNavCuePoint(eventObject.info.time);

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.cuePoint, FLVPlayback.findCuePoint(), FLVPlayback.playheadTime,
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToPrevNavCuePoint(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.setFLVCuePointEnabled()
FLVPlayback class 663

FLVPlayback.seekToPrevNavCuePoint()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.seekToPrevCueNavPoint([time:Number])

Parameters

time A number that is the starting time in seconds from which to look for the previous
navigation cue point. The default is the current value of the playheadTime property.
Optional.

Returns

Nothing.

Description

Method; seeks to the previous navigation cue point, based on the current value of the
playheadTime property. It goes to the beginning if there is no previous cue point. The
method skips navigation cue points that have been disabled.

For several reasons, the playheadTime property might not have the expected value
immediately after calling one of the seek methods or setting playheadTime to cause seeking.
First, for a progressive download, you can seek only to a keyframe, so a seek takes you to the
time of the first keyframe after the specified time. (When streaming, a seek always goes to the
precise specified time even if the source FLV file doesn’t have a keyframe there.) Second,
seeking is asynchronous, so if you call a seek method or set the playheadTime property,
playheadTime does not update immediately. To obtain the time after the seek is complete,
listen for the seek event, which does not start until the playheadTime property has updated.

Example

The following example seeks to the previous navigation cue point when the point2 cue point
occurs, creating a loop to play the FLV file.
664 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

if(eventObject.info.name == "point2")
my_FLVPlybk.seekToPrevNavCuePoint(eventObject.info.time);

}
my_FLVPlybk.addEventListener("cuePoint", listenerObject);

See also

FLVPlayback.cuePoint, FLVPlayback.findCuePoint(), FLVPlayback.playheadTime,
FLVPlayback.seekToNavCuePoint(), FLVPlayback.seekToPrevNavCuePoint(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.setFLVCuePointEnabled()

FLVPlayback.seekToPrevOffset

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.seekToPrevOffset

Description

Property; the number of seconds that the seekToPrevNavCuePoint() method uses when it
compares its time against the previous cue point. The method uses this value to ensure that, if
you are just ahead of a cue point, you can hop over it to the previous one and avoid going to
the same cue point that just occurred. Defaults to one second.
FLVPlayback class 665

Example

The following example initially sets the seekToPrevOffset property to 10, causing the first
call to the seekToPrevNavCuePoint() method to hit cue point point1. When the initial
cuePoint event for point3 occurs, however, the example lowers the seekToPrevOffset
property to 1 second, causing subsequent calls to the seekToPrevNavCuePoint() method to
reach cue point point2.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object) {

my_FLVPlybk.seekToPrevOffset = 10;
my_FLVPlybk.seekToNavCuePoint("point3");

}
my_FLVPlybk.addEventListener("ready", listenerObject)
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObject:Object) {

trace("hit cue point at " + eventObject.info.time);
if(eventObject.info.name == "point3"){

my_FLVPlybk.seekToPrevNavCuePoint(eventObject.info.time);
my_FLVPlybk.seekToPrevOffset = 1;

}
}
my_FLVPlybk.addEventListener("cuePoint", listenerObject)

See also

FLVPlayback.seekToPrevNavCuePoint()

FLVPlayback.setFLVCuePointEnabled()

Availability

Flash Player 8.

Edition

Flash Professional 8.
666 FLVPlayback Component (Flash Professional Only)

Usage
my_FLVplybk.setFLVCuePointEnabled(enabled:Boolean, time:Number)
my_FLVplybk.setFLVCuePointEnabled(enabled:Boolean, name:String)
my_FLVplybk.setFLVCuePointEnabled(enabled:Boolean, cuePoint:Object)

Parameters

enabled A Boolean value that specifies whether to enable (true) or disable (false) an FLV
file cue point.

time A number that is the time, in seconds, of the cue point to set.

name The name of the cue point to set.

cuePoint A cue point object with name and time properties that matches the cue point to
set. The method does not check any other properties on the incoming cue point object. If
time or name is undefined, the method tries to match a cue point using only the
available value.

Returns

A number. If metadataLoaded is true, the method returns the number of cue points whose
enabled state was changed. If metadataLoaded is false, the method returns –1 because the
component cannot yet determine which, if any, cue points to set. When the metadata arrives,
however, the component sets the specified cue points appropriately

Description

Method; enables or disables one or more FLV file cue points. Disabled cue points are disabled
for purposes of being dispatched as events and for navigating to them with the
seekToPrevNavCuePoint(), seekToNextNavCuePoint(), and seekToNavCuePoint()
methods.

Cue point information is deleted when you set the contentPath property to a different FLV
file, so set the contentPath property before setting cue point information for the next FLV
file to be loaded.

Changes caused by this function are not reflected by calls to the isFLVCuePointEnabled()
method until metadata is loaded.

Example

The following example disables the point2 and point3 cue points when the ready event
occurs. The cuePoint event handler shows in the Output panel the name and time of each
cue point that occurs. The FLV file contains the following embedded cue points: point1 at
00:00:00:418; point2 at 00:00:07.748; point3 at 00:00:16:020.
FLVPlayback class 667

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
function ready(eventObject:Object) {

my_FLVPlybk.setFLVCuePointEnabled(false, "point2");
my_FLVPlybk.setFLVCuePointEnabled(false, 16.02);

}
my_FLVPlybk.addEventListener("ready", ready);
function cuePoint(eventObject:Object) {

trace("Cue point name is: " + eventObject.info.name);
trace("Cue point time is: " + eventObject.info.time);

}
my_FLVPlybk.addEventListener("cuePoint", cuePoint);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.cuePoint, FLVPlayback.findCuePoint(),
FLVPlayback.findNearestCuePoint(), FLVPlayback.findNextCuePointWithName(),
FLVPlayback.isFLVCuePointEnabled(), FLVPlayback.seekToNavCuePoint(),
FLVPlayback.seekToNextNavCuePoint(), FLVPlayback.seekToPrevNavCuePoint()

FLVPlayback.setScale()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.setScale(xs:Number, ys:Number)

Parameters

xs A number representing the horizontal scale.

ys A number representing the vertical scale.

Returns

Nothing.
668 FLVPlayback Component (Flash Professional Only)

Description

Method; sets the scaleX and scaleY properties simultaneously. Because setting either one,
individually, can cause automatic resizing, setting them simultaneously can be more efficient
than setting the scaleX and scaleY properties, individually.

If autoSize is true, this method has no effect because the player sets its own dimensions. If
the maintainAspectRatio property is true and autoSize is false, then changing scaleX
or scaleY causes automatic resizing.

Example

The following example calls the setScale() method to scale the horizontal (x) and vertical
(y) dimensions of the FLVPlayback instance. The example sets the maintainAspectRatio
property to false to prevent automatic resizing and allow the scaling to appear as specified.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;

my_FLVPlybk.maintainAspectRatio = false;
my_FLVPlybk.setScale(200, 175);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.scaleX, FLVPlayback.scaleY, FLVPlayback.setSize()

FLVPlayback.setSize()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVplybk.setSize(w:Number, h:Number)
FLVPlayback class 669

Parameters

w A number that specifies the width of the video player.

h A number that specifies the height of the video player.

Returns

Nothing.

Description

Method; sets the width and height simultaneously. Because setting either one, individually,
can cause automatic resizing, setting them simultaneously can be more efficient than setting
the width and height properties individually.

If autoSize is true, this method has no effect because the player sets its own dimensions. If
the maintainAspectRatio is true and the autoSize property is false, changing the width
or height causes automatic resizing.

Example

The following example calls the setSize() method to set the size of the FLVPlayback
instance to a width of 150 pixels and a height of 150 pixels. The resize event handler shows
the actual width and height because the maintainAspectRatio property is true by default,
so an automatic resizing maintains the aspect ratio.

Drag the FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybkh
*/
import mx.video.*;
// maintainAspectRatio is true by default so dimensions will reflect that
my_FLVPlybk.setSize(150, 150);
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object):Void {

trace("Player's width is: " + my_FLVPlybk.width)
trace("Player's height is: " + my_FLVPlybk.height)

};
my_FLVPlybk.addEventListener("resize", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.height, FLVPlayback.width, FLVPlayback.setScale()
670 FLVPlayback Component (Flash Professional Only)

FLVPlayback.skin

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.skin

Description

Property; a string that specifies the URL to a skin SWF file. This string could contain a file
name, a relative path such as Skins/my_Skin.swf, or an absolute URL such as http://
www.myskins.org/MySkin.swf.

Example

The following example applies the skin ArcticExternal.swf to an instance of the FLVPlayback
component.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Copy the ArcticExternalAll.swf file from the Flash Configuration/Skins folder
to your working folder. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybkh
*/
import mx.video.*;
my_FLVPlybk.skin = "ArcticExternalAll.swf";
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.bufferingBarHidesAndDisablesOthers, FLVPlayback.skinAutoHide,
FLVPlayback.skinError, FLVPlayback.skinLoaded
FLVPlayback class 671

FLVPlayback.skinAutoHide

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVplybk.skinAutoHide

Description

Property; a Boolean value that, if true, hides the component skin when the mouse is not over
the video. This property affects only skins that are loaded by setting the skin property and
not a skin that you create from the FLV Playback Custom UI components. Defaults to false.

Example

The following example sets the skinAutoHide property to true so the component skin,
which includes the playback controls, does not appear unless the mouse is over the video.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Select a skin in the Component inspector. Then add the following code to the
Actions panel on Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybkh
*/
import mx.video.*;
my_FLVPlybk.skinAutoHide = true;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.bufferingBarHidesAndDisablesOthers, FLVPlayback.skin
672 FLVPlayback Component (Flash Professional Only)

FLVPlayback.skinError

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.skinError = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("skinError", listenerObject);

Description

Event; dispatched when an error occurs loading a skin SWF file. The event has a message
property that contains the error message.

Example

The following example attempts to load the skin property with the name of a fictitious skin
file and shows the content of the event message property when the skinError event occurs.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybkh
*/
import mx.video.*;

var listenerObject:Object = new Object();
listenerObject.skinError = function(eventObject:Object):Void {

trace(eventObject.message);
}
my_FLVPlybk.addEventListener("skinError", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
my_FLVPlybk.skin = "NoSuchSkin.swf";

See also

FLVPlayback.skin, FLVPlayback.skinLoaded
FLVPlayback class 673

FLVPlayback.skinLoaded

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.skinLoaded = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("skinLoaded", listenerObject);

Description

Event; dispatched when a skin SWF file is loaded. The component does not begin playing an
FLV file until the ready and skinLoaded (or skinError) events have both started.

Example

The following example shows the name of the component’s skin when the skinLoaded
event starts.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to Frame 1 of the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybkh
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.skinLoaded = function(eventObject:Object):Void {

trace("Skin: " + eventObject.target.skin + " has loaded");
};
my_FLVPlybk.addEventListener("skinLoaded", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.addEventListener(), FLVPlayback.skin, FLVPlayback.skinError
674 FLVPlayback Component (Flash Professional Only)

FLVPlayback.state

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.state

Description

Property; a string that specifies the state of the component. This property is set by the load(),
play(), stop(), pause(), and seek() methods. Read-only.

The possible values for the state property are: "buffering", "connectionError",
"disconnected", "loading", "paused", "playing", "rewinding", "seeking", and
"stopped". You can use the FLVPlayback class properties to test for these states. For more
information, see “FLVPlayback Class properties” on page 541.

Example

The following example shows the state property in the Output panel each time the
stateChange event occurs while the FLV file plays.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state);
};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.addEventListener(), FLVPlayback.buffering, FLVPlayback.paused,
FLVPlayback.playing, FLVPlayback.stateChange, FLVPlayback.stopped
FLVPlayback class 675

FLVPlayback.stateChange

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("stateChange", listenerObject);

Description

Event; dispatched when playback state changes. The event object has properties state and
playheadTime.

This event can be used to track when playback enters or leaves unresponsive states (such as in
the middle of connecting, resizing, or rewinding) during which times the play(), pause(),
stop(), and seek() methods queue the requests to be executed when the player enters a
responsive state.

The event has the property vp, which is the index number of the video player to which this
event applies. For more information on the vp property, see
FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

Example

The following example shows the state property in the Output panel each time the
stateChange event occurs while the FLV file plays.
676 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state);
};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.addEventListener(), FLVPlayback.state

FLVPlayback.stateResponsive

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage

my_FLVPlybk.stateResponsive

Description

Property; a Boolean value that is true if the state is responsive. If the state is unresponsive,
calls to the play(), load(), stop(), pause() and seek() methods are queued and executed
later, when the state changes to a responsive one. Because these calls are queued and executed
later, it is usually not necessary to track the value of the stateResponsive property. The
responsive states are: disconnected, stopped, playing, paused, and buffering. Read only.

Example

The following example displays the values of the state and stateResponsive properties as
the state changes while the FLV file plays.
FLVPlayback class 677

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + "; responsive: " +
my_FLVPlybk.stateResponsive);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange

FLVPlayback.stop()

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.stop()

Parameters

None.

Returns

Nothing.

Description

Method; stops the video from playing. If the autoRewind property is true, the FLV file
rewinds to the beginning.
678 FLVPlayback Component (Flash Professional Only)

Example

The following example listens for the playheadUpdate event, and when the elapsed
playheadTime is greater than or equal to 5 seconds, the listener calls the stop() method to
stop playing the FLV file. A second listener listens for the stopped event and displays the
values of the playheadTime and state properties.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.autoRewind = false;
var listenerObject:Object = new Object();
listenerObject.stopped = function(eventObject:Object):Void {

trace("playhead time is: " + eventObject.playheadTime);
trace("The video player state is: " + eventObject.state);

};
my_FLVPlybk.addEventListener("stopped", listenerObject);
listenerObject.playheadUpdate = function(eventObject:Object):Void {

if (eventObject.playheadTime >= 5) {
my_FLVPlybk.stop();

}
};
my_FLVPlybk.addEventListener("playheadUpdate", listenerObject);
my_FLVPlybk.contentPath ="http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.pause(), FLVPlayback.play()

FLVPlayback.stopButton

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.stopButton
FLVPlayback class 679

Description

Property; a MovieClip object that is the Stop button control. For more information on using
FLV Playback Custom UI components for playback controls, see “Skinning FLV Playback
Custom UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
and stopButton properties to attach individual FLV Playback Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, give it an instance name of my_FLVPlybk,
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Playback Custom UI components, and give them the instance names shown
in parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayButton
(my_plybttn), PauseButton (my_pausbttn), and StopButton (my_stopbttn). Then add the
following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton, and

 StopButton components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.pauseButton, FLVPlayback.playButton, FLVPlayback.playPauseButton,
FLVPlayback.skin, FLVPlayback.stopped
680 FLVPlayback Component (Flash Professional Only)

FLVPlayback.STOPPED

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.STOPPED

Description

A read-only FLVPlayback class property that contains the string constant, "stopped". You
can compare this property to the state property to determine whether the component is in
the stopped state.

Example

The following example displays the value of the FLVPlayback.STOPPED property when the
component enters a stopped state.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

if(eventObject.state == FLVPlayback.STOPPED)
trace("State is " + FLVPlayback.STOPPED);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange
FLVPlayback class 681

FLVPlayback.stopped

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.stopped = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("stopped", listenerObject);

Description

Event; dispatched when entering the stopped state. This happens when you call the stop()
method or click the stopButton control. It also happens, in some cases, if the autoPlay
property is false (the state might become paused instead) when the FLV file is loaded. The
FLVPlayback instance also dispatches this event when the playhead stops at the end of the
FLV file. The event object has the properties state, playheadTime, and vp, which is the
index number of the video player to which the event applies. For more information on the vp
property, see FLVPlayback.activeVideoPlayerIndex on page 549 and
FLVPlayback.visibleVideoPlayerIndex on page 688.

The FLVPlayback instance also dispatches the stateChange event.

Example

The following example listens for occurrences of the stopped event as it occurs while the FLV
file plays. When the event occurs the example shows the elapsed playhead time in the
Output panel.
682 FLVPlayback Component (Flash Professional Only)

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stopped = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + ": playhead time is: " +
eventObject.playheadTime);

};
my_FLVPlybk.addEventListener("stopped", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.addEventListener(), FLVPlayback.playheadTime, FLVPlayback.state,
FLVPlayback.stateChange, FLVPlayback.stop()

FLVPlayback.stopped

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.stopped

Description

Property; a Boolean value that is true if the state of the FLVPlayback instance is stopped.
Read-only.

Example

The following example listens for occurrences of the stateChange event as it occurs while the
FLV file plays. When the event occurs, the example shows the value of the stopped property
in the Output panel.
FLVPlayback class 683

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object):Void {

trace(my_FLVPlybk.state + ": stopped property is: " +
my_FLVPlybk.stopped);

};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.state, FLVPlayback.stateChange, FLVPlayback.stop(),
FLVPlayback.stopped

FLVPlayback.totalTime

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.totalTime

Description

Property; a number that is the total playing time for the video in seconds. When streaming
from a FCS and using the default NCManager, this value is determined automatically by
server-side APIs, and that value overrides anything set through this property or gathered from
metadata. This is also true if you set this value in a SMIL file. The property is ready for
reading when the stopped or playing state is reached after setting the contentPath property.
This property is meaningless for live streams from a FCS.

For an HTTP download, the value is determined automatically if the FLV file has metadata
embedded; otherwise, set it explicitly or it will be 0. If you set it explicitly, the metadata value
in the stream is ignored.
684 FLVPlayback Component (Flash Professional Only)

When you set this property, the value takes effect for the next FLV file that is loaded by setting
contentPath. It has no effect on an FLV file that has already loaded. Also, this property does
not return the new value passed in until an FLV file is loaded.

Playback still works if this property is never set (either explicitly or automatically), but it can
cause problems with seek controls.

Example

The following example shows the total time for the FLV file in seconds when the ready event
occurs, after loading is complete.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

trace("Total play time for this video is: " + my_FLVPlybk.totalTime);
};
my_FLVPlybk.addEventListener("ready", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.contentPath, FLVPlayback.playheadTime, FLVPlayback.playing,
FLVPlayback.stopped

FLVPlayback.transform

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.transform
FLVPlayback class 685

Description

Property; an object that provides direct access to the Sound.setTransform() and
Sound.getTransform() methods to provide sound control. You must set this property to an
object to initialize it and for changes to take effect. Reading the property provides you with a
copy of the current settings, which you can change. The default value is undefined.

Example

The following example sets the transform property to play the sound for the FLV file from
the left speaker only.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
/* Play all the audio from the left speaker only */
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.stateChange = function(eventObject:Object) {

if (eventObject.target.state == "loading") { // if loading
myTransform = new Object();
myTransform.ll = 100;
myTransform.lr = 100;
myTransform.rr = 0;
myTransform.rl = 0;
my_FLVPlybk.transform = myTransform;

}
};
my_FLVPlybk.addEventListener("stateChange", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.volume
686 FLVPlayback Component (Flash Professional Only)

FLVPlayback.version

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.FLVPlayback.version

Description

A read-only FLVPlayback class property that contains the component’s version number.

Example

The following example shows the component’s version number in the Output panel. Then
add the following code to the Actions panel on Frame 1 of the Timeline:
import mx.video.*;
trace(FLVPlayback.version);

FLVPlayback.visible

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.visible

Description

Property; a Boolean value that, if true, makes the FLVPlayback component visible. If false,
it makes the component invisible. The default value is true.

Example

The following example sets the visible property to false to make the FLVPlayback
instance invisible when the FLV file finishes playing.
FLVPlayback class 687

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObject:Object):Void {

my_FLVPlybk.visible = false;
};
my_FLVPlybk.addEventListener("complete", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.closeVideoPlayer(),
FLVPlayback.visibleVideoPlayerIndex
688 FLVPlayback Component (Flash Professional Only)

FLVPlayback.visibleVideoPlayerIndex

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.visibleVideoPlayerIndex

Description

Property; a number that you can use to manage multiple FLV file streams. Sets which video
player instance is visible, audible, and controlled by the skin or playback controls, while the
the rest of the video players are hidden and muted. The default is 0. It does not make the
video player the target for most APIs; use the activeVideoPlayerIndex property instead.

Methods and properties that control dimensions interact with this property. The methods and
properties that set the dimensions of the video player (setScale(), setSize(), width,
height, scaleX, scaleY) can be used for all video players. However, depending on whether
autoSize or maintaintAspectRatio are set on those video players, they might have
different dimensions. Reading the dimensions using the width, height, scaleX, and scaleY
properties gives you the dimensions only of the visible video player. Other video players might
have the same dimensions or might not.

To get the dimensions of various video players when they are not visible, listen for the resize
event, and store the size value.

This property does not have any implications for visibility of the component as a whole, only
which video player is visible when the component is visible. To set visibility for the entire
component, use the visible property.

Example

The following example creates two video players to play two FLV files consecutively in a single
FLVPlayback instance. It sets the visibleVideoPlayerIndex property to make the video
players and the FLV files visible.
FLVPlayback class 689

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// specify name and location of FLV for default player
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

clouds.flv"
var listenerObject:Object = new Object();
listenerObject.ready = function(eventObject:Object):Void {

// add a second video player and specify the name and loc of its FLV
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/
water.flv";
// reset to default video player, which plays its FLV automatically
my_FLVPlybk.activeVideoPlayerIndex = 0;

};
my_FLVPlybk.addEventListener("ready", listenerObject);
listenerObject.complete = function(eventObject:Object):Void {

// if complete is for 2nd FLV, make default active and visible
if (eventObject.vp == 1) {

my_FLVPlybk.activeVideoPlayerIndex = 0;
my_FLVPlybk.visibleVideoPlayerIndex = 0;

} else { // make 2nd player active & visible and play FLV
my_FLVPlybk.activeVideoPlayerIndex = 1;
my_FLVPlybk.visibleVideoPlayerIndex = 1;
my_FLVPlybk.play();

}
};
// add listener for complete event
my_FLVPlybk.addEventListener("complete", listenerObject);

See also

FLVPlayback.activeVideoPlayerIndex, FLVPlayback.setScale(),
FLVPlayback.setSize(), FLVPlayback.height, FLVPlayback.width,
FLVPlayback.scaleX, FLVPlayback.scaleY, FLVPlayback.visible
690 FLVPlayback Component (Flash Professional Only)

FLVPlayback.volume

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.volume

Description

Property; a number in the range of 0 to 100 that indicates the volume control setting. The
default value is 100.

Example

The following example sets the initial volume to 10, a relatively low setting.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// You can change this value from 0 to 100
my_FLVPlybk.volume = 10;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.transform, FLVPlayback.volumeBar, FLVPlayback.volumeBarInterval,
FLVPlayback.volumeUpdate
FLVPlayback class 691

FLVPlayback.volumeBar

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.volumeBarInterval

Description

Property; a MovieClip object that is the volume bar control. For more information on using
FLV Playback Custom UI components for playback controls, see “Skinning FLV Playback
Custom UI components individually” on page 525.

Example

The following example uses the backButton, forwardButton, playButton, pauseButton,
stopButton, and volumeBar properties to attach individual FLV Custom UI controls to an
FLVPlayback component.

Drag an FLVPlayback component to the Stage, give it an instance name of my_FLVPlybk,
and set the skin parameter to None in the Component inspector. Next, add the following
individual FLV Custom UI components, and give them the instance names shown in
parentheses: BackButton (my_bkbttn), ForwardButton (my_fwdbttn), PlayButton
(my_plybttn), PauseButton (my_pausbttn), StopButton (my_stopbttn), and VolumeBar
(my_vBar). Then add the following lines of code to the Actions panel:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
 - FLV Custom UI BackButton, ForwardButton, PlayButton, PauseButton,

StopButton and VolumeBar components in the Library
*/
import mx.video.*;
my_FLVPlybk.backButton = my_bkbttn;
my_FLVPlybk.forwardButton = my_fwdbttn;
my_FLVPlybk.playButton = my_plybttn;
my_FLVPlybk.pauseButton = my_pausbttn;
my_FLVPlybk.stopButton = my_stopbttn;
my_FLVPlybk.volumeBar = my_vBar;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
692 FLVPlayback Component (Flash Professional Only)

See also

FLVPlayback.volume, FLVPlayback.volumeBarInterval,
FLVPlayback.volumeBarScrubTolerance, FLVPlayback.volumeUpdate

FLVPlayback.volumeBarInterval

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.volumeBarInterval

Description

Property; a number that specifies, in milliseconds, how often to check the volume bar handle
location when scrubbing. The default is 250.

Example

The following example sets the volumeBarInterval property to 1 second (1000
milliseconds) and creates a volumeUpdate event that shows the playhead time and the volume
as the user drags the handle on the volume bar. The volumeUpdate events occur at
approximately 1 second intervals because of the volumeBarInterval setting.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.volumeBarInterval = 1000;
var listenerObject:Object = new Object();
listenerObject.volumeUpdate = function(eventObject:Object) {

trace("Playhead time is: " + my_FLVPlybk.playheadTime);
trace("Volume is: " + my_FLVPlybk.volume);

};
my_FLVPlybk.addEventListener("volumeUpdate", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";
FLVPlayback class 693

See also

FLVPlayback.volume, FLVPlayback.volumeBar,
FLVPlayback.volumeBarScrubTolerance, FLVPlayback.volumeUpdate

FLVPlayback.volumeBarScrubTolerance

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.volumeBarScrubTolerance

Description

Property; a number that specifies how far a user can move the volume bar handle before an
update occurs. The value is expressed as a percentage. The default value is 5.

Example

The following example sets the volumeBarScrubTolerance property to 20 and creates a
volumeUpdate event that shows the volume setting as the user drags the handle on the
volume bar.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.volumeBarScrubTolerance = 20;
var listenerObject:Object = new Object();
listenerObject.volumeUpdate = function(eventObject:Object) {

trace("Playhead time is: " + my_FLVPlybk.playheadTime);
trace("Volume is: " + my_FLVPlybk.volume);

};
my_FLVPlybk.addEventListener("volumeUpdate", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.volumeBar, FLVPlayback.volumeBarInterval
694 FLVPlayback Component (Flash Professional Only)

FLVPlayback.volumeUpdate

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
var listenerObject:Object = new Object();
listenerObject.volumeUpdate = function(eventObject:Object):Void {

// insert event-handling code here
};
my_FLVplybk.addEventListener("volumeUpdate", listenerObject);

Description

Event; dispatched when the volume changes either by the user moving the handle of the
volumeBar control or by setting the volume property in ActionScript. The event object has a
volume property.

Example

The following example shows the value of the volume property in the Output panel for any
adjustments that the user makes to the volume.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
var listenerObject:Object = new Object();
listenerObject.volumeUpdate = function(eventObject:Object):Void {

trace("Volume setting is: " + eventObject.volume);
};
my_FLVPlybk.addEventListener("volumeUpdate", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

cuepoints.flv";

See also

FLVPlayback.addEventListener()FLVPlayback.volume, FLVPlayback.volumeBar
FLVPlayback class 695

FLVPlayback.width

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.width

Description

Property; a number that specifies the width of the FLVPlayback instance on the Stage. This
property affects only the width of the FLVPlayback instance and does not include the width
of a skin SWF file that might be loaded. Use the FLVPlayback width property and not the
MovieClip._width property because the _width property might give a different value if a
skin SWF file is loaded.

Example

The following example sets the width and height properties, which causes a resize event
because the default value of the maintainAspectRatio property is true. When the event
occurs, the event handler shows the width and height of the resized FLVPlayback instance in
the Output panel.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
// maintainAspectRatio (true by default) affects the actual dimensions
my_FLVPlybk.width = 400;
my_FLVPlybk.height = 350;
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object) {

trace("Width is: " + eventObject.target.width + " Height is: " +
eventObject.target.height);

};
my_FLVPlybk.addEventListener("resize", listenerObject);
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
696 FLVPlayback Component (Flash Professional Only)

See also
FLVPlayback.height, FLVPlayback.setSize(), FLVPlayback.preferredHeight,

FLVPlayback.preferredWidth

FLVPlayback.x

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.x

Description

Property; a number that specifies the horizontal coordinate (location) of the video player. This
property affects only the horizontal location of the FLVPlayback instance and does not
include the location of a skin SWF file that, when applied, may alter the location. Use the
FLVPlayback x property, not the MovieClip._x property because the _x property might give
a different value if a skin SWF file is loaded.

Example

The following example places the FLVPlayback instance 50 pixels from the left and 25 pixels
from the top.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of the
Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.x = 50;
my_FLVPlybk.y = 25;

See also

FLVPlayback.y
FLVPlayback class 697

FLVPlayback.y

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
my_FLVPlybk.y

Description

Property; a number that specifies the vertical coordinate (location) of the video player. This
property affects only the vertical location of the FLVPlayback instance and does not include
the location of a skin SWF file that, when applied, may alter the location. Use the
FLVPlayback y property, not the MovieClip._y property because the _y property might give
a different value if a skin SWF file is loaded.

Example

The following example places the FLVPlayback instance 25 pixels from the left and 50 pixels
from the top.

Drag an FLVPlayback component to the Stage, and give it an instance name of
my_FLVPlybk. Then add the following code to the Actions panel on Frame 1 of
the Timeline:
/**
 Requires:
 - FLVPlayback component on the Stage with an instance name of my_FLVPlybk
*/
import mx.video.*;
my_FLVPlybk.contentPath = "http://www.helpexamples.com/flash/video/

water.flv";
my_FLVPlybk.x = 25;
my_FLVPlybk.y = 50;

See also

FLVPlayback.x
698 FLVPlayback Component (Flash Professional Only)

VideoError class
Inheritance Error > VideoError

ActionScript class name mx.video.VideoError

The properties of the VideoError class allow you to diagnose error conditions that occur when
working with the FLVPlayback component.

The mx.video.VideoError class extends the Error class.

Property summary for the VideoError class
The following table lists the properties of the VideoError class:

Property Description

VideoError.code A numeric error code.

VideoError.DELETE_DEFAULT_PLAYER A number indicating an attempt to delete the default
video player.

VideoError.DELETE_DEFAULT_PLAYER A number indicating an illegal cue point.

VideoError.INVALID_CONTENT_PATH A number indicating an invalid contentPath value.

VideoError.INVALID_SEEK A number indicating an invalid seek.

VideoError.INVALID_XML A number indicating that invalid XML was encountered
in an XML file.

VideoError.NO_BITRATE_MATCH A number indicating that a default FLV file that matches
any bit rate could not be found.

VideoError.NO_CONNECTION A number indicating that the method cannot connect to
the server or find the FLV file on the server.

VideoError.NO_CUE_POINT_MATCH A number indicating that no matching cue point was
found.
VideoError class 699

VideoError.code

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.code

Description

The numeric code that identifies the error condition.

Example

The following example displays the error condition in the Output panel:
import mx.video.*;

try {
...

} catch (err:VideoError) {
trace ("Error code is: " + err.code)
...

}

VideoError.DELETE_DEFAULT_PLAYER

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.DELETE_DEFAULT_PLAYER

Description

A value of 1007, which occurs if you call the FLVPlayback.closeVideoPlayer() method to
attempt to close the default video player (number 0). You cannot delete the default
video player.
700 FLVPlayback Component (Flash Professional Only)

Example

The following code checks for the DELETE_DEFAULT_PLAYER error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == DELETE_DEFAULT_PLAYER) {
...

}
}

See also

FLVPlayback.activeVideoPlayerIndex

VideoError.ILLEGAL_CUE_POINT

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.ILLEGAL_CUE_POINT

Description

A value of 1002, indicating an invalid cue point was found.

Example

The following code checks for the ILLEGAL_CUE_POINT error code:
try {

...
} catch (err:VideoError) {

if (err.code == ILLEGAL_CUE_POINT) {
...

}
}

See also

FLVPlayback.cuePoint
VideoError class 701

VideoError.INVALID_CONTENT_PATH

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.INVALID_CONTENT_PATH

Description

A value of 1004, indicating an invalid contentPath value was found.

Example

The following code checks for the INVALID_CONTENT_PATH error code:

import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == INVALID_CONTENT_PATH) {
...

}
}

See also

FLVPlayback.contentPath

VideoError.INVALID_SEEK

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.INVALID_SEEK
702 FLVPlayback Component (Flash Professional Only)

Description

A value of 1003, indicating an invalid seek was attempted.

Example

The following code checks for the INVALID_SEEK error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == INVALID_SEEK) {
...

}

}

See also

FLVPlayback.seek()

VideoError.INVALID_XML

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.INVALID_XML

Description

A value of 1005, indicating invalid XML was encountered. An invalid XML error can occur
when downloading and parsing a SMIL file. The VideoError.message property contains
text that describes the precise problem. For more information, see “Using a SMIL file”
on page 712.
VideoError class 703

Example

The following code checks for the INVALID_XML error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == INVALID_XML) {
...

}

}

See also

FLVPlayback.contentPath

VideoError.NO_BITRATE_MATCH

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.NO_BITRATE_MATCH

Description

A value of 1006, which indicates that there is no default FLV file listed that matches any bit
rate. Occurs only when downloading and parsing a SMIL file. For more information, see
“Using a SMIL file” on page 712.
704 FLVPlayback Component (Flash Professional Only)

Example

The following code checks for the NO_BITRATE_MATCH error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == NO_BITRATE_MATCH) {
...

}

}

See also

FLVPlayback.bitrate

VideoError.NO_CONNECTION

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.NO_CONNECTION

Description

A value of 1000, indicating the method cannot connect to the server or find the FLV file on
the server.

Example

The following code checks for the NO_CONNECTION error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == NO_CONNECTION) {
...

}

}

VideoError class 705

VideoError.NO_CUE_POINT_MATCH

Availability

Flash Player 8.

Edition

Flash Professional 8.

Usage
mx.video.VideoError.NO_CUE_POINT_MATCH

Description

A value of 1001, indicating that no matching cue point was found.

Example

The following code checks for the NO_CUE_POINT_MATCH error code:
import mx.video.*;

try {
...

} catch (err:VideoError) {

if (err.code == NO_CUE_POINT_MATCH) {
...

}

}

See also

FLVPlayback.findCuePoint()
706 FLVPlayback Component (Flash Professional Only)

VideoPlayer class
Inheritance MovieClip > VideoPlayer class

ActionScript Class Name mx.video.VideoPlayer

VideoPlayer extends the MovieClip class and wraps a Video object.

The FLVPlayback class wraps the VideoPlayer class and Macromedia strongly encourages you
to use the FLVPlayback class in almost all cases. There is no functionality in the VideoPlayer
class that cannot be accessed using the FLVPlayback class.

The VideoPlayer class is included here because it allows you to create a video player with a
smaller SWF file. The VideoPlayer class does not allow you to include a skin or playback
controls, and it has a smaller API. You cannot find or seek to cue points, for example,
although cuePoint events will occur.

In addition, the FLVPlayback class automatically interfaces with the NCManager class to
access streaming FLV files on a FCS, for example. You interact with the NCManager class
when you set the contentPath property and when you pass a URL to the play() and
load() methods. If you use the VideoPlayer class by itself, however, you must include the
following statement in your ActionScript code to make sure the NCManager class is included:
_forceNCManager:mx.video.NCManager;

The NCManager class also has an interface class, INCManager, which allows you to replace
the NCManager class with a custom class for managing network communications. If you do
that, you also need to include the following statement, replacing NCManager with the name of
the class you have provided:
mx.video.VideoPlayer.DEFAULT_INCMANAGER = "mx.video.NCManager";

You do not need to add this statement if you are using the default NCManager class.

To handle multiple streams for multiple bandwidths, NCManager supports a subset of SMIL.
For more information, see “Using a SMIL file” on page 712.

This section provides a summary of the VideoPlayer class. You can find detailed
documentation of the methods, properties, and events of the VideoPlayer class at
www.macromedia.com/go/videoplayer.

N
O

T
E

You also can set DEFAULT_INCMANAGER to replace the default
mx.video.NCManager with the FLVPlayback component.
VideoPlayer class 707

http://www.macromedia.com/support/documentation/en/flash/

Method summary for the VideoPlayer class
The following table lists the methods of the VideoPlayer class:

Property summary for the VideoPlayer class
The VideoPlayer class has class and instance properties.

Class properties
The following properties occur only for the VideoPlayer class. They are read-only constants
that apply to all instances of the VideoPlayer class.

Method Description

VideoPlayer.addEventListener() Creates a listener for a specified event.

VideoPlayer.close() Closes the video stream and FCS connection.

VideoPlayer.load() Loads the FLV file but does not begin playing.
After resizing (if needed) the FLV file is paused.

VideoPlayer.pause() Pauses playing the video stream.

VideoPlayer.play() Begins playing the video stream.

VideoPlayer.removeEventListener() Removes an event listener.

VideoPlayer.seek() Seeks to a specified time in the file, given in
seconds, with decimal precision up to
milliseconds.

VideoPlayer.setScale() Sets scaleX and scaleY simultaneously.

VideoPlayer.setSize() Sets width and height simultaneously.

VideoPlayer.stop() Stops playing the video stream.

Property Value Description

VideoPlayer.BUFFERING "buffering" Possible value for the state
property. Indicates state
entered immediately after
play() or load() is called.

VideoPlayer.CONNECTION_ERROR "connectionError" Possible value for the state
property. Indicates that a
connection error occurred.
708 FLVPlayback Component (Flash Professional Only)

VideoPlayer.DEFAULT_INCMANAGER “mx.video.NCManager” Name of the default
(mx.video.NCManager) or
custom implementation of
the INCManager interface.

VideoPlayer.DISCONNECTED "disconnected" Possible value for the state
property. Indicates that the
FLV file stream is
disconnected.

VideoPlayer.LOADING "loading" Possible value for the state
property. Indicates that the
FLV file is loading.

VideoPlayer.PAUSED "paused" Possible value for the state
property. Indicates that the
FLV file is paused.

VideoPlayer.PLAYING "playing" Possible value for the state
property. Indicates that the
FLV file is playing.

VideoPlayer.RESIZING “resizing” Possible value for the state
property. Indicates that the
FLV file is resizing.

VideoPlayer.REWINDING "rewinding" Possible value for the state
property. Indicates that the
FLV file is rewinding.

VideoPlayer.SEEKING "seeking" Possible value for the state
property. Indicates that the
FLV file is seeking.

VideoPlayer.STOPPED "stopped" Possible value for the state
property. Indicates that the
FLV file is stopped.

VideoPlayer.version x.x.x.xx A number that is the
component’s version
number.

Property Value Description
VideoPlayer class 709

Instance Properties
The following table lists the instance properties of the VideoPlayer class. This set of properties
applies to each instance of a VideoPlayer class.

Property Description

VideoPlayer.autoRewind A Boolean value that, if true, causes the FLV file to
rewind to the first frame when play stops.

VideoPlayer.autoSize A Boolean value that, if true, causes the video to
automatically size to the source dimensions.

VideoPlayer.bufferTime A number that specifies the number of seconds
to buffer in memory before beginning to play a
video stream.

VideoPlayer.bytesLoaded A number that indicates the extent of downloading in
number of bytes for an HTTP download. Read-only.

VideoPlayer.bytesTotal A number that specifies the total number of bytes
downloaded for an HTTP download. Read-only.

VideoPlayer.connected A Boolean value that indicates whether the FLV file
stream is connected. Read-only.

VideoPlayer.height A number that specifies the height of the video
in pixels.

VideoPlayer.idleTimeout The amount of time, in milliseconds, before an idle
FCS connection (because playing is paused or
stopped) is terminated.

VideoPlayer.isLive A Boolean value that is true if the video stream is
live. Not applicable to HTTP download.

VideoPlayer.isRTMP A Boolean value that is true if the FLV file is
streaming from FCS. Read-only.

VideoPlayer.maintainAspectRatio A Boolean value that, if true, maintains the video
aspect ratio.

VideoPlayer.metadata An object that is a metadata information packet that
is received from a call to the onMetaData() callback
function, if available. Read-only.

VideoPlayer.ncMgr An INCManager object that provides access to an
instance of the class implementing INCManager.

VideoPlayer.playheadTime A number that is the current playhead time or
position, measured in seconds, which can be a
fractional value.
710 FLVPlayback Component (Flash Professional Only)

VideoPlayer.playheadUpdateInterval A number that is the amount of time, in milliseconds,
between each playheadUpdate event.

VideoPlayer.progressInterval A number that is the amount of time, in milliseconds,
between each progress event.

VideoPlayer.scaleX A number that specifies the horizontal scale.

VideoPlayer.scaleY A number that specifies the vertical scale.

VideoPlayer.state A string that specifies the state of the component.
Set with the load(), play(), stop(), pause() and
seek() methods. Read-only.

VideoPlayer.stateResponsive A Boolean value that is true if the state is responsive
(that is, if controls can be enabled in the current
state). Read-only.

VideoPlayer.totalTime A number that is the total playing time for the video.

VideoPlayer.transform An object that provides direct access to the
Sound.setTransform() and Sound.getTransform()
methods to provide more sound control.

VideoPlayer.url A string that specifies the URL of the loaded (or
loading) stream.

VideoPlayer.videoHeight A number that specifies the height of the FLV file.

VideoPlayer.videoWidth A number that specifies the width of the FLV file.

VideoPlayer.visible A Boolean value that, if true, makes the FLV
file visible.

VideoPlayer.volume A number in the range of 0 to 100 that indicates the
volume control setting.

VideoPlayer.width A number (percentage) that specifies how far a
user can move the volume bar handle before an
update occurs.

VideoPlayer.x A number that specifies the horizontal dimension in
pixels of the video player.

VideoPlayer.y A number that specifies the vertical dimension in
pixels of the video player.

Property Description
VideoPlayer class 711

Event summary for the VideoPlayer class
The following table lists the events of the VideoPlayer class:

Event Description

VideoPlayer.close Dispatched when the video stream is closed, whether
through timeout or a call to the close() method.

VideoPlayer.complete Dispatched when playing completes by reaching the end of
the FLV file.

VideoPlayer.cuePoint Dispatched when a cue point is reached.

VideoPlayer.metadataReceived Dispatched the first time the FLV file metadata is reached.

VideoPlayer.playheadUpdate Dispatched every .25 seconds while the FLV file is playing.

VideoPlayer.progress Dispatched every .25 seconds, starting when the load()
method is called and ending when all bytes are loaded or
there is a network error.

VideoPlayer.ready Dispatched when the FLV file is loaded and ready to display.

VideoPlayer.resize Dispatched when the video is resized.

VideoPlayer.rewind Dispatched when the location of the playhead is moved
backward by a call to seek() or when the automatic rewind
operation completes.

VideoPlayer.stateChange Dispatched when the playback state changes.
712 FLVPlayback Component (Flash Professional Only)

Using a SMIL file
To handle multiple streams for multiple bandwidths, the VideoPlayer class uses a helper class
(NCManager) that supports a subset of SMIL. SMIL is used identify the location of the video
stream, the layout (width and height) of the FLV file, and the source FLV files that correspond
to the different bandwidths. It can also be used to specify the bit rate and duration of the
FLV file.

The following example shows a SMIL file that streams multiple bandwidth FLV files from a
FCS using RTMP:
<smil>
 <head>
 <meta base="rtmp://myserver/mypgm/" >
 <layout>
 <root-layout width="240" height="180" >
 </layout>
 </head>
 <body>
 <switch>
 <video src="myvideo_mdm.flv" system-bitrate="56000"

dur="3:00.1">
 <video src="myvideo_isdn.flv" system-bitrate="128000"

dur="3:00.1">
 <ref src="myvideo_cable.flv" dur="3:00.1"/>
 </switch>
 </body>
</smil>

The <head> tag may contain the <meta> and <layout> tags. The <meta> tag supports only
the base attribute, which is used to specify the URL of the streaming video (RTMP from
a FCS).

The <layout> tag supports only the root-layout element, which is used to set the height
and width attributes, and, therefore, determines the size of the window in which the FLV file
is rendered. These attributes accept only pixel values, not percentages.

Within the body of the SMIL file, you can either include a single link to a FLV source file or,
if you’re streaming multiple files for multiple bandwidths from a FCS (as in the previous
example), you can use the <switch> tag to list the source files.

The video and ref tags within the <switch> tag are synonymous—they both can use the
src attribute to specify FLV files. Further, each can use the region, system-bitrate, and
dur attributes to specify the region, the minimum bandwidth required, and the duration of
the FLV file.

Within the <body> tag, only one occurrence of either the <video>, <src>, or <switch> tags
is allowed.
Using a SMIL file 713

The following example shows a progressive download for a single FLV file that does not use
bandwidth detection:
<smil>

<head>
<layout>

<root-layout width="240" height="180" />
</layout>

</head>
<body>

<video src=""myvideo.flv" />
</body>

</smil>

<smil>

Availability

Flash Professional 8.

Usage

<smil>

...
child tags

...

</smil>

Attributes

None.

Child tags

<head>, <body>

Parent tag

None.

Description

Top level tag, which identifies a SMIL file.
714 FLVPlayback Component (Flash Professional Only)

Example

The following example shows a SMIL file specifying three FLV files:
<smil>
 <head>
 <meta base="rtmp://myserver/mypgm/" >
 <layout>
 <root-layout width="240" height="180" >
 </layout>
 </head>
 <body>
 <switch>
 <video src="myvideo_mdm.flv" system-bitrate="56000"

dur="3:00.1">
 <video src="myvideo_isdn.flv" system-bitrate="128000"

dur="3:00.1">
 <ref src="myvideo_cable.flv" dur="3:00.1"/>
 </switch>
 </body>
</smil>

<head>

Availability

Flash Professional 8.

Usage

<head>

...
child tags

...

</head>

Attributes

None.

Child tags

<meta>, <layout>

Parent tag

<smil>
Using a SMIL file 715

Description

Supporting the <meta> and <layout> tags, specifies the location and default layout (height
and width) of the source FLV files.

Example
The following example sets the root layout to 240 pixels by 180 pixels:
<head>

<meta base="rtmp://myserver/mypgm/" >
<layout>

<root-layout width="240" height="180" >
</layout>

</head>

<meta>

Availability

Flash Professional 8.

Usage

<meta/>

Attributes

base

Child tags

<layout>

Parent tag

None.

Description

Contains the base attribute which specifies the location (RTMP URL) of the source
FLV files.

Example

The following example shows a meta tag for a base location on myserver:
<meta base="rtmp://myserver/mypgm/" >
716 FLVPlayback Component (Flash Professional Only)

<layout>

Availability

Flash Professional 8.

Usage
<layout>
...
child tags
...
</layout>

Attributes

None.

Child tags
<root-layout>

Parent tag
<meta>

Description

Specifies the width and height of the FLV file.

Example

The following example specified the layout of 240 pixels by 180 pixels:
<layout>

<root-layout width="240" height="180" >
</layout>

<root-layout>

Availability

Flash Professional 8.

Usage
<root-layout...attributes.../>

Attributes

Width, height

Child tags
None.
Using a SMIL file 717

Parent tag
<layout>

Description

Specifies the width and height of the FLV file.

Example

The following example specified the layout of 240 pixels by 180 pixels:
<root-layout width="240" height="180" >

<body>

Availability

Flash Professional 8.

Usage
<body>
...
child tags
...
</body>

Attributes

None.

Child tags
<video>, <ref>, <switch>

Parent tag
<smil>

Description

Contains the <video>, <ref>, and <switch> tags, which specify the name of the source FLV
file, the minimum bandwidth, and the duration of the FLV file. The system-bitrate
attribute is supported only when using the <switch> tag. Within the <body> tag, only one
instance of either <switch>, <video>, or <ref> tags is allowed.
718 FLVPlayback Component (Flash Professional Only)

Example

The following example specified three FLV files, two using the video tag, and one using the
ref tag:
<body>

<switch>
<video src="myvideo_mdm.flv" system-bitrate="56000" dur="3:00.1">
<video src="myvideo_isdn.flv" system-bitrate="128000" dur="3:00.1">
<ref src="myvideo_cable.flv" dur="3:00.1"/>

</switch>
</body>

<video>

Availability

Flash Professional 8.

Usage
<video...attributes.../>

Attributes

src, system-bitrate, dur

Child tags
None

Parent tag
<body>

Description

Synonymous with the <ref> tag. Supports the src and dur attributes, which specify the
name of the source FLV file and its duration. The dur attribute supports the full
(00:03:00:01) and partial (03:00:01) time formats.

Example

The following example sets the source and duration for a video:
<video src="myvideo_mdm.flv" dur="3:00.1">
Using a SMIL file 719

<ref>

Availability

Flash Professional 8.

Usage
<ref...attributes.../>

Attributes

src, system-bitrate, dur

Child tags
None

Parent tag
<body>

Description

Synonymous with <video> tag. Supports the src and dur attributes, which specify the name
of the source FLV file and its duration. The dur attribute supports the full (00:03:00:01) and
partial (03:00:01) time formats.

Example

The following example sets the source and duration for a video:
<ref src="myvideo_cable.flv" dur="3:00.1"/>
720 FLVPlayback Component (Flash Professional Only)

<switch>

Availability

Flash Professional 8.

Usage
<switch>
...
child tags
...
<switch/>

Attributes

None

Child tags
<video>, <ref>

Parent tag
<body>

Description

Used with either the <video> or <ref> child tags to list the FLV files for multiple bandwidth
video streaming. The <switch> tag supports the system-bitrate attribute, which specifies
the minimum bandwidth as well as the src and dur attributes.

Example

The following example specified three FLV files, two using the video tag, and one using the
ref tag:
<switch>

<video src="myvideo_mdm.flv" system-bitrate="56000" dur="3:00.1">
<video src="myvideo_isdn.flv" system-bitrate="128000" dur="3:00.1">
<ref src="myvideo_cable.flv" dur="3:00.1"/>

</switch>
Using a SMIL file 721

722 FLVPlayback Component (Flash Professional Only)

23

CHAPTER 23

FocusManager class
You can use the Focus Manager class to specify the order in which components receive focus
when a user presses the Tab key to navigate in an application. You can also use the Focus
Manager to set a button in your document that receives keyboard input when a user presses
Enter (Windows) or Return (Macintosh). For example, when users fill out a form, they
should be able to tab between fields and press Enter (Windows) or Return (Macintosh) to
submit the form.

All components implement Focus Manager support; you don’t need to write code to invoke
the FocusManager class.

The Focus Manager interacts with the System Manager, which activates and deactivates
FocusManager instances as pop-up windows are activated or deactivated. Each modal window
has an instance of FocusManager so the components in that window become their own tab
set, preventing the user from tabbing into components in other windows.

The Focus Manager recognizes groups of radio buttons (those with a defined
RadioButton.groupName property) and sets focus to the instance in the group that has a
selected property that is set to true. When the Tab key is pressed, the Focus Manager
checks to see if the next object has the same group name as the current object. If it does, it
automatically moves focus to the next object with a different group name. Other sets of
components that support a groupName property can also use this feature.

N
O

T
E

Focus Manager support overrides the use of the on(keyPress) global handler. Because
all components implement Focus Manager, an application that includes components
and uses the on(keyPress) global handler needs to have a tabIndex for every control
(including components and movie clips) set, explicitly (see “Using Focus Manager”
on page 722). Or, preferably, you can add an event listener for a specific Key and the
Focus Manager will not override the corresponding event handler. For more information
about creating an event listener for a Key, see “Capturing keypresses” in Learning
ActionScript 2.0 in Flash.
721

The Focus Manager handles focus changes caused by mouse clicks. If the user clicks a
component, that component is given focus.

Using Focus Manager
The Focus Manager does not automatically assign focus to a component. You must write a
script that calls FocusManager.setFocus() on a component if you want a component to
have focus when an application loads.

To create focus navigation in an application, set the tabIndex property on any objects
(including buttons) that should receive focus. When a user presses the Tab key, the Focus
Manager looks for an enabled object with a tabIndex property that is higher than the current
value of tabIndex. Once the Focus Manager reaches the highest tabIndex property, it
returns to zero. So, in the following example, the comment object (probably a TextArea
component) receives focus first, and then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.

If nothing on the Stage has a tab index value, the Focus Manager uses the depth (stacking
order, or z-order). The depth is set up primarily by the order in which components are
dragged to the Stage; however, you can also use the Modify > Arrange > Bring to Front/Send
to Back commands to determine the final depth.

N
O

T
E

When testing a script using Focus Manager (Control > Test Movie), select Control >
Disable Keyboard Shortcuts in test mode; otherwise, Focus Manager does not appear to
work. Also, tabbing and keyboard shortcuts are used by the authoring environment by
default. So, if you use test mode, the tab navigation, Enter key, and other key
combinations may perform in unexpected ways or appear to fail. Those features should
be tested in the Player outside the authoring environment.

N
O

T
E

If you call FocusManager.setFocus() to set focus to a component when an application
loads, the focus ring does not appear around that component. The component has
focus, but the indicator is not present.
722 FocusManager class

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of
the desired button, as shown here:
focusManager.defaultPushButton = okButton;

Using Focus Manager to allow tabbing
You can use the Focus Manager to create a scheme that allows users to press the Tab key to
cycle through objects in a Flash application. (Objects in the tab scheme are called tab targets.)
The Focus Manager examines the tabEnabled and tabChildren properties of the objects’
parents in order to locate the objects.

A movie clip can be either a container of tab targets, a tab target itself, or neither:

Consider the following scenario. On the Stage of the main timeline are two text fields (txt1
and txt2) and a movie clip (mc) that contains a DataGrid component (grid1) and another
text field (txt3). You would use the following code to allow users to press Tab and cycle
through the objects in the following order: txt1, txt2, grid1, txt3.

N
O

T
E

The Focus Manager is sensitive to when objects are placed on the Stage (the depth
order of objects) and not their relative positions on the Stage. This is different from the
way Flash Player handles tabbing.

Movie clip type tabEnabled tabChildren

Container of tab targets false true

Tab target true false

Neither false false

N
O

T
E

This is different from the default Flash Player behavior, in which a container’s
tabChildren property can be undefined.

N
O

T
E

The FocusManager and TextField instances are enabled by default.
Using Focus Manager 723

// Let Focus Manager know mc has children;
// this overrides mc.focusEnabled=true;
mc.tabChildren=true;
mc.tabEnabled=false;
// Set the tabbing sequence.
txt1.tabIndex = 1;
txt2.tabIndex = 2;
mc.grid1.tabIndex = 3;
mc.txt3.tabIndex = 4;

// Set initial focus to txt1.
txt1.text = "focus";
focusManager.setFocus(txt1);

If your movie clip doesn’t have an onPress or onRelease method or a tabEnabled property,
it won’t be seen by the Focus Manager unless you set focusEnabled to true. Input text fields
are always in the tab scheme unless they are disabled.

If a Flash application is playing in a web browser, the application doesn’t have focus until a
user clicks somewhere in the application. Also, once a user clicks in the Flash application,
pressing Tab can cause focus to jump outside the Flash application. To keep tabbing limited
to objects inside the Flash application in Flash Player 7 ActiveX control, add the following
parameter to the HTML <object> tag:
<param name="SeamlessTabbing" value="false"/>

Creating an application with Focus Manager
The following procedure creates a focus scheme in a Flash application.

To create a focus scheme:

1. Drag the TextInput component from the Components panel to the Stage.

2. In the Property inspector, assign it the instance name comment.

3. Drag the Button component from the Components panel to the Stage.

4. In the Property inspector, assign it the instance name okButton and set the label parameter
to OK.

5. In Frame 1 of the Actions panel, enter the following:
comment.tabIndex = 1;
okButton.tabIndex = 2;
focusManager.setFocus(comment);
function click(evt){

trace(evt.type);
}
okButton.addEventListener("click", this);
724 FocusManager class

6. Select Control > Test Movie.

7. Select Control > Disable Keyboard Shortcuts.

The code sets the tab ordering. Although the comment field doesn’t have an initial focus
ring, it has initial focus, so you can start typing in the comment field without clicking in
it. Also, you have to select the Disable Keyboard Shortcuts menu option for focus to work
properly in test mode.

Customizing Focus Manager
You can change the color of the focus ring in the Halo theme by changing the value of the
themeColor style, as in this example:
_global.style.setStyle("themeColor", "haloBlue");

The Focus Manager uses a FocusRect skin for drawing focus. This skin can be replaced or
modified and subclasses can override UIComponent.drawFocus to draw custom focus
indicators.

FocusManager class (API)
Inheritance MovieClip > UIObject class > UIComponent class > FocusManager

ActionScript Class Name mx.managers.FocusManager

You can use the Focus Manager to specify the order in which components receive focus when
a user presses the Tab key to navigate in an application. You can also use the FocusManager
class to set a button in your document that receives keyboard input when a user presses Enter
(Windows) or Return (Macintosh).

T
IP In a class file that inherits from UIComponent, it is not good practice to refer to

_root.focusManager. Every UIComponent instance inherits a getFocusManager() method,
which returns a reference to the FocusManager instance responsible for controlling that
component’s focus scheme.
FocusManager class (API) 725

Method summary for the FocusManager class
The following table lists the methods of the FocusManager class.

Methods inherited from the UIObject class
The following table lists the methods the FocusManager class inherits from the
UIObject class.

Method Description

FocusManager.getFocus() Returns a reference to the object that has
focus.

FocusManager.sendDefaultPushButtonEvent() Sends a click event to listener objects
registered to the default push button.

FocusManager.setFocus() Sets focus to the specified object.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
726 FocusManager class

Methods inherited from the UIComponent class
The following table lists the methods the FocusManager class inherits from the
UIComponent class.

Property summary for the FocusManager class
The following table lists the properties of the FocusManager class.

Properties inherited from the UIObject class
The following table lists the properties the FocusManager class inherits from the
UIObject class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

FocusManager.defaultPushButton The object that receives a click event when a user
presses the Return or Enter key.

FocusManager.defaultPushButtonEnabled Indicates whether keyboard handling for the
default push button is turned on (true) or off
(false). The default value is true.

FocusManager.enabled Indicates whether tab handling is turned on (true)
or off (false). The default value is true.

FocusManager.nextTabIndex The next value of the tabIndex property.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.
FocusManager class (API) 727

Properties inherited from the UIComponent class
The following table lists the properties the FocusManager class inherits from the
UIComponent class.

Event summary for the FocusManager class
There are no events exclusive to the FocusManager class.

Events inherited from the UIObject class
The following table lists the events the FocusManager class inherits from the UIObject class.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
728 FocusManager class

Events inherited from the UIComponent class
The following table lists the events the FocusManager class inherits from the
UIComponent class.

FocusManager.defaultPushButton
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
focusManager.defaultPushButton

Description

Property; specifies the default push button for an application. When the user presses Enter
(Windows) or Return (Macintosh), the listeners of the default push button receive a click
event. The default value is undefined and the data type of this property is object.

The Focus Manager uses the emphasized style declaration of the SimpleButton class to
visually indicate the current default push button.

The value of the defaultPushButton property is always the button that has focus. Setting
the defaultPushButton property does not give initial focus to the default push button. If
there are several buttons in an application, the button that currently has focus receives the
click event when Enter or Return is pressed. If some other component has focus when Enter
or Return is pressed, the defaultPushButton property is reset to its original value.

Example

The following code sets the default push button to the OKButton instance:
focusManager.defaultPushButton = OKButton;

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
FocusManager.defaultPushButton 729

See also

FocusManager.defaultPushButtonEnabled,
FocusManager.sendDefaultPushButtonEvent()

FocusManager.defaultPushButtonEnabled
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
focusManager.defaultPushButtonEnabled

Description

Property; a Boolean value that determines if keyboard handling of the default push button is
turned on (true) or not (false). Setting defaultPushButtonEnabled to false allows a
component to receive the Return or Enter key and handle it internally. You must re-enable
default push button handling by watching the component’s onKillFocus() method (see
onKillFocus (MovieClip.onKillFocus handler) in ActionScript 2.0 Language Reference)
or focusOut event. The default value is true.

This property is for use by advanced component developers.

Example

The following code disables default push button handling:
focusManager.defaultPushButtonEnabled = false;

FocusManager.enabled
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
focusManager.enabled
730 FocusManager class

Description

Property; a Boolean value that determines if tab handling is turned on (true) or not (false)
for a particular group of focus objects. (For example, another pop-up window could have its
own Focus Manager.) Setting enabled to false allows a component to receive the tab
handling keys and handle them internally. You must re-enable the Focus Manager handling by
watching the component’s onKillFocus() method (see onKillFocus
(MovieClip.onKillFocus handler) in ActionScript 2.0 Language Reference) or focusOut
event. The default value is true.

Example

The following code disables tabbing:
focusManager.enabled = false;

FocusManager.getFocus()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
focusManager.getFocus()

Parameters

None.

Returns

A reference to the object that has focus.

Description

Method; returns a reference to the object that currently has focus.

Example

The following code sets the focus to myOKButton if the object that currently has focus is
myInputText:
if (focusManager.getFocus() == myInputText)
{

focusManager.setFocus(myOKButton);
}

FocusManager.getFocus() 731

See also

FocusManager.setFocus()

FocusManager.nextTabIndex
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
FocusManager.nextTabIndex

Description

Property; the next available tab index number. Use this property to dynamically set an object’s
tabIndex property.

Example

The following code gives the mycheckbox instance the next highest tabIndex value:
mycheckbox.tabIndex = focusManager.nextTabIndex;

See also

UIComponent.tabIndex

FocusManager.sendDefaultPushButtonEvent()

Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
focusManager.sendDefaultPushButtonEvent()

Parameters

None.
732 FocusManager class

Returns

Nothing.

Description

Method; sends a click event to listener objects registered to the default push button. Use this
method to programmatically send a click event.

Example

The following code triggers the default push button click event and fills in the user name
and password fields when a user selects the CheckBox instance chb (the check box would be
labeled “Automatic Login”):
name_txt.tabIndex = 1;
password_txt.tabIndex = 2;
chb.tabIndex = 3;
submit_ib.tabIndex = 4;

focusManager.defaultPushButton = submit_ib;

chbObj = new Object();
chbObj.click = function(o){

if (chb.selected == true){
name_txt.text = "Jody";
password_txt.text = "foobar";
focusManager.sendDefaultPushButtonEvent();

} else {
name_txt.text = "";
password_txt.text = "";

}
}
chb.addEventListener("click", chbObj);

submitObj = new Object();
submitObj.click = function(o){

if (password_txt.text != "foobar"){
trace("error on submit");

} else {
trace("Yeah! sendDefaultPushButtonEvent worked!");

}
}
submit_ib.addEventListener("click", submitObj);

See also

FocusManager.defaultPushButton
FocusManager.sendDefaultPushButtonEvent() 733

FocusManager.setFocus()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
focusManager.setFocus(object)

Parameters

object A reference to the object to receive focus.

Returns

Nothing.

Description

Method; sets focus to the specified object. If the object to which you want to set focus is not
on the main timeline, use the following code:
_root.focusManager.setFocus(object);

Example

The following code sets focus to myOKButton:
focusManager.setFocus(myOKButton);

See also

FocusManager.getFocus()
734 FocusManager class

24

CHAPTER 24

Form class (Flash
Professional only)
The Form class provides the runtime behavior of forms that you create in the Screen Outline
pane in Flash. For an overview of working with screens, see “Working with Screens (Flash
Professional Only)” in Using Flash.

Using the Form class (Flash Professional
only)
Forms function as containers for graphic objects—user interface elements in an application,
for example—as well as application states. You can use the Screen Outline pane to visualize
the different states of an application that you’re creating, where each form is a different
application state. For example, the following illustration shows the Screen Outline pane for an
example application designed using forms.

Screen Outline view of sample form application
735

This illustration shows the outline for a sample application called Employee Directory, which
consists of several forms. The form named entryForm (selected in the above illustration)
contains several user interface objects, including input text fields, labels, and a push button.
The developer can easily present this form to the user by toggling its visibility (using the
Form.visible property), while simultaneously toggling the visibility of other forms, as well.

Using the Behaviors panel you can also attach behaviors and controls to forms. For more
information about adding transitions and controls to screens, see “Creating controls and
transitions for screens with behaviors (Flash Professional only)” in Using Flash.

Because the Form class extends the Loader class, you can easily load external content (a SWF
or JPEG file) into a form. For example, the contents of a form could be a separate SWF file,
which itself might contain forms. In this way, you can make your form applications modular,
which makes maintaining the applications easier, and also reduces initial download time. For
more information, see “Loading external content into screens (Flash Professional only)”
on page 1072.

Form parameters
You can set the following authoring parameters for each Form instance in the Property
inspector or in the Component inspector:

autoload indicates whether the content specified by the contentPath parameter should load
automatically (true), or wait to load until the Loader.load() method is called (false). The
default value is true.

contentPath specifies the contents of the form. This can be the linkage identifier of a movie
clip or an absolute or relative URL for a SWF or JPEG file to load into the slide. By default,
loaded content is clipped to fit the slide.

visible specifies whether the form is visible (true) or not (false) when it first loads.

Form class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > Loader
component > Screen class (Flash Professional only) > Form

ActionScript Class Name mx.screens.Form

The Form class provides the runtime behavior of forms that you create in the Screen Outline
pane in Flash.
736 Form class (Flash Professional only)

Method summary for the Form class
The following table lists methods of the Form class.

Methods inherited from the UIObject class
The following table lists the methods the Form class inherits from the UIObject class. When
calling these methods from the Form object, use the syntax formInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the Form class inherits from the UIComponent class.
When calling these methods from the Form object, use the syntax
formInstance.methodName.

Method Description

Form.getChildForm() Returns the child form at a specified index.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
Form class (Flash Professional only) 737

Methods inherited from the Loader class
The following table lists the methods the Form class inherits from the Loader class. When
calling these methods from the Form object, use the syntax formInstance.methodName.

Methods inherited from the Screen class
The following table lists the methods the Form class inherits from the Screen class. When
calling these methods from the Form object, use the syntax formInstance.methodName.

Property summary for the Form class
The following table lists the properties that are exclusive to the Form class.

Method Description

Loader.load() Loads the content specified by the contentPath property.

Method Description

Screen.getChildScreen() Returns the child screen of this screen at a particular index.

Property Description

Form.currentFocusedForm Read-only; returns the form that contains the global
current focus.

Form.indexInParentForm Read-only; returns the index (zero-based) of this form in its
parent’s list of subforms.

Form.numChildForms Read-only; returns the number of child forms that this form
contains.

Form.parentIsForm Read-only; specifies whether the parent object of this form is
also a form.

Form.parentForm Read-only; reference to the form’s parent form.

Form.rootForm Read-only; returns the root of the form tree, or subtree, that
contains the form.

Form.visible Specifies whether the form is visible when its parent form,
slide, movie clip, or SWF file is visible.
738 Form class (Flash Professional only)

Properties inherited from the UIObject class
The following table lists the properties the Form class inherits from the UIObject class. When
accessing these properties from the Form object, use the syntax
formInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the Form class inherits from the UIComponent class.
When accessing these properties from the Form object, use the syntax
formInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
Form class (Flash Professional only) 739

Properties inherited from the Loader class
The following table lists the properties the Form class inherits from the Loader class. When
accessing these properties from the Form object, use the syntax
formInstance.propertyName.

Properties inherited from the Screen class
The following table lists the properties that the Form class inherits from the Screen class.
When accessing these properties from the Form object, use the syntax
formInstance.propertyName.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads
automatically (true) or you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that
have been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes
in the content.

Loader.content A reference to the content of the loader. This property is
read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content.
This property is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to
fit the loader (true), or the loader scales to fit the content
(false).

Property Description

Screen.currentFocusedScreen Read-only; returns the screen that contains the global current
focus.

Screen.indexInParent Read-only; returns the screen’s index (zero-based) in its
parent screen’s list of child screens.

Screen.numChildScreens Read-only; returns the number of child screens contained by
the screen.

Screen.parentIsScreen Read-only; returns a Boolean (true or false) value that
indicates whether the screen’s parent object is itself a screen.

Screen.rootScreen Read-only; returns the root screen of the tree or subtree that
contains the screen.
740 Form class (Flash Professional only)

Event summary for the Form class
There are no events exclusive to the Form class.

Events inherited from the UIObject class
The following table lists the events the Form class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Form class inherits from the UIComponent class.

Events inherited from the Loader class
The following table lists the events the Form class inherits from the Loader class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.
Form class (Flash Professional only) 741

Events inherited from the Screen class
The following table lists the events the Form class inherits from the Screen class.

Form.currentFocusedForm
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mx.screens.Form.currentFocusedForm

Event Description

Screen.allTransitionsInDone Broadcast when all “in” transitions applied to a screen
have finished.

Screen.allTransitionsOutDone Broadcast when all “out” transitions applied to a screen
have finished.

Screen.mouseDown Broadcast when the mouse button was pressed over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseDownSomewhere Broadcast when the mouse button was pressed somewhere
on the Stage, but not necessarily on an object owned by this
screen.

Screen.mouseMove Broadcast when the mouse is moved while over a screen.

Screen.mouseOut Broadcast when the mouse is moved from inside the screen
to outside it.

Screen.mouseOver Broadcast when the mouse is moved from outside this
screen to inside it.

Screen.mouseUp Broadcast when the mouse button was released over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseUpSomewhere Broadcast when the mouse button was released somewhere
on the Stage, but not necessarily over an object owned by
this screen.
742 Form class (Flash Professional only)

Description

Property (read-only); returns the Form object that contains the global current focus. The
actual focus may be on the form itself, or on a movie clip, text object, or component inside
that form. May be null if there is no current focus.

Example

The following code, attached to a button (not shown), displays the name of the form with the
current focus.
trace("The form with the current focus is: " +

mx.screens.Form.currentFocusedForm);

Form.getChildForm()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.getChildForm(childIndex)

Parameters

childIndex A number that indicates the zero-based index of the child form to return.

Returns

A Form object.

Description

Method; returns the child form of myForm whose index is childIndex.

Example

The following example is displayed in the Output panel the names of all the child Form
objects belonging to the root Form object named application.
for (var i:Number = 0; i < _root.application.numChildForms; i++) {
 var childForm:mx.screens.Form = _root.application.getChildForm(i);
 trace(childForm._name);
}

See also

Form.numChildForms
Form.getChildForm() 743

Form.indexInParentForm
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.indexInParentForm

Description

Property (read-only); contains the zero-based index of myForm in its parent’s list of child
forms. If the parent object of myForm is a screen but not a form (for example, if it is a slide),
indexInParentForm is always 0.

Example
var myIndex:Number = myForm.indexInParent;
if (myForm == myForm._parent.getChildForm(myIndex)) {

trace("I'm where I should be");
}

See also

Form.getChildForm()

Form.numChildForms
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.numChildForms
744 Form class (Flash Professional only)

Description

Property (read-only); the number of child forms contained by myForm that are derived directly
from the class mx.screens.Form. This property does not include any slides that are contained
by myForm; it contains only forms.

Example

The following code iterates over all the child forms contained in myForm and displays their
names in the Output panel.
var howManyKids:Number = myForm.numChildForms;
for(i=0; i<howManyKids; i++) {

var childForm = myForm.getChildForm(i);
trace(childForm._name);

}

See also

Form.getChildForm()

Form.parentIsForm
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.parentIsForm

Description

Property (read-only): returns a Boolean value indicating whether the specified form’s parent
object is also a form (true) or not (false). If this property is false, myForm is at the root of
its form hierarchy.

Example
if (myForm.parentIsForm) {

trace("I have "+myForm._parent.numChildScreens+" sibling screens");
} else {

trace("I am the root form and have no siblings");
}

N
O

T
E

When using a custom ActionScript 2.0 class that extends mx.screens.Form, the form
isn't counted in the numChildForms property.
Form.parentIsForm 745

Form.parentForm
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.parentForm

Description

Property (read-only): a reference to the form’s parent form.

Example

The following example code resides on a screen named myForm that is a child of the default
form1 screen created when you select Flash Form Application from the New Document
dialog box.
onClipEvent(keyDown){

var parentForm:mx.screens.Form = this.parentForm;
trace(parentForm);

}
// output: _level0.application.form1

Form.rootForm
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.rootForm

Description

Property (read-only); returns the form at the top of the form hierarchy that contains myForm.
If myForm is contained by an object that is not a form (that is, a slide), this property returns
myForm.
746 Form class (Flash Professional only)

Example

In the following example, a reference to the root form of myForm is placed in a variable named
root. If the value assigned to root refers to myForm, then myForm is at the top of its form tree.
var root:mx.screens.Form = myForm.rootForm;
if(root == myForm) {

trace("myForm is the top form in its tree");
}

Form.visible
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myForm.visible

Description

Property; determines whether myForm is visible when its parent form, slide, movie clip, or
SWF file is visible. You can also set this property using the Property inspector in the Flash
authoring environment.

When this property is set to true, myForm receives a reveal event; when set to false,
myForm receives a hide event. You can attach transitions to forms that execute when a form
receives one of these events. For more information on adding transitions to screens, see
“Creating controls and transitions for screens with behaviors (Flash Professional only)” in
Using Flash.

Example

The following code, on a timeline frame, sets the visible property of the form that contains
the button to false.
btnOk.addEventListener("click", btnOkClick);
function btnOkClick(eventObj:Object):Void {

eventObj.target._parent.visible = false;
}

Form.visible 747

748 Form class (Flash Professional only)

25

CHAPTER 25

Iterator interface (Flash
Professional only)
ActionScript Class Name mx.utils.Iterator

The Iterator interface lets you step through the objects that a collection contains.

Method summary for the Iterator interface
The following table lists the methods of the Iterator interface.

Iterator.hasNext()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
iterator.hasNext()

Returns

A Boolean value that indicates whether there are (true) or are not (false) more instances in
the iterator.

Description

Method; indicates whether there are more instances in the iterator. You typically use this
method in a while statement when looping through an iterator.

Method Description

Iterator.hasNext() Indicates whether the iterator has more items.

Iterator.next() Returns the next item in the iteration.
749

Example

The following example uses the hasNext() method to control looping through the iterator of
items in a collection:
on (click) {

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDisks;
var itr:mx.utils.Iterator = myColl.getIterator();
while (itr.hasNext()) {

var cd:CompactDisk = CompactDisk(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;
trace("Title: "+title+" Artist: "+artist);

}
}

Iterator.next()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
iterator.next()

Returns

An object that is the next item in the iterator.

Description

Method; returns an instance of the next item in the iterator. You must cast this instance to the
correct type.

Example

The following example uses the next() method to access the next item in a collection:
on (click) {

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDisks;
var itr:mx.utils.Iterator = myColl.getIterator();
while (itr.hasNext()) {

var cd:CompactDisk = CompactDisk(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;
trace("Title: "+title+" Artist: "+artist);

}
}

750 Iterator interface (Flash Professional only)

26

CHAPTER 26

Label component
A Label component is a single line of text. You can specify that a label be formatted with
HTML. You can also control the alignment and size of a label. Label components don’t have
borders, cannot be focused, and don’t broadcast any events.

A live preview of each Label instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. The label doesn’t have a border, so the
only way to see its live preview is to set its text parameter. The autoSize parameter is not
supported in live preview.

When you add the Label component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.LabelAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances the
component has. For more information, see Chapter 19, “Creating Accessible Content,” in
Using Flash.

Using the Label component
Use a Label component to create a text label for another component in a form, such as a
“Name:” label to the left of a TextInput field that accepts a user’s name. If you’re building an
application using components based on version 2 of the Macromedia Component
Architecture, it’s a good idea to use a Label component instead of a plain text field because
you can use styles to maintain a consistent look and feel.

If you want to rotate a Label component, you must embed the fonts. See “Using styles with
the Label component” on page 753.
751

Label parameters
You can set the following authoring parameters for each Label component instance in the
Property inspector or in the Component inspector (Window > Component Inspector
menu option):

autoSize indicates how the label is sized and aligned to fit the text. The default value is none.
The parameter can have any of the following four values:

■ none, which specifies that the label is not resized or aligned to fit the text.
■ left, which specifies that the right and bottom sides of the label are resized to fit the text.

The left and top sides are not resized.
■ center, which specifies that the left and right sides of the label resize to fit the text. The

horizontal center of the label stays anchored at its original horizontal center position.
■ right, which specifies that the left and bottom sides of the label are resized to fit the text.

The top and right side are not resized.

html indicates whether the label is formatted with HTML (true) or not (false). If this
parameter is set to true, a label cannot be formatted with styles, but you can format the text
as HTML using the font tag. The default value is false.

text indicates the text of the label; the default value is Label.

You can set the following additional parameters for each Label component instance in the
Component inspector (Window > Component Inspector):

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to set additional options for Label instances using its methods,
properties, and events. For more information, see “Label class” on page 755.

N
O

T
E

The autoSize property of the Label component is different from the autoSize
property of the built-in ActionScript TextField object.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
752 Label component

Creating an application with the Label component
The following procedure explains how to add a Label component to an application while
authoring. In this example, the label is beside a combo box with dates in a shopping
cart application.

To create an application with the Label component:

1. Drag a Label component from the Components panel to the Stage.

2. In the Component inspector, enter Expiration Date for the label parameter.

To create a Label component instance using ActionScript:

1. Drag the Label component from the Components panel to the current document’s library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Select the first frame in the main Timeline, open the Actions panel, and enter the

following code:
this.createClassObject(mx.controls.Label, "my_label", 1);
my_label.text = "Hello World";

This script uses the method UIObject.createClassObject() to create the
Label instance.

3. Select Control > Test Movie.

Customizing the Label component
You can transform a Label component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. You can also set the autoSize authoring
parameter; setting this parameter doesn’t change the bounding box in the live preview, but the
label is resized. For more information, see “Label parameters” on page 752. At runtime, use
the setSize() method (see UIObject.setSize()) or Label.autoSize).

Using styles with the Label component
You can set style properties to change the appearance of a label instance. All text in a Label
component instance must share the same style. For example, you can’t set the color style to
"blue" for one word in a label and to "red" for the second word in the same label.

If the name of a style property ends in “Color”, it is a color style property and behaves
differently than noncolor style properties. For more information about styles, see “Using styles
to customize component color and text” in Using Components.
Customizing the Label component 753

A Label component supports the following styles:

Using skins with the Label component
The Label component does not have any visual elements to skin.

Style Theme Description

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".
754 Label component

Label class
Inheritance MovieClip > UIObject class > Label

ActionScript Class Name mx.controls.Label

The properties of the Label class allow you at runtime to specify text for the label, indicate
whether the text can be formatted with HTML, and indicate whether the label auto-sizes to
fit the text.

Setting a property of the Label class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

When you access the values of label properties, make sure the component has finished loading
before you try to access the desired property. Consider the following example:
var listenerObject:Object = new Object();
listenerObject.load = function(){
 trace(label.width);
};
label.addEventListener("load", listenerObject);

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.Label.version);

Method summary for the Label class
There are no methods exclusive to the Label class.

Methods inherited from the UIObject class
The following table lists the methods the Label class inherits from the UIObject class. When
calling these methods from the Label object, use the form labelInstance.methodName.

N
O

T
E

The code trace(myLabelInstance.version); returns undefined.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.
Label class 755

Property summary for the Label class
The following table lists properties of the Label class.

Properties inherited from the UIObject class
The following table lists the properties the Label class inherits from the UIObject class. When
you access these properties, use the form labelInstance.propertyName.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

Label.autoSize A string that indicates how a label sizes and aligns to fit the
value of its text property. There are four possible values:
"none", "left", "center", and "right". The default value is
"none".

Label.html A Boolean value that indicates whether a label can be
formatted with HTML (true) or not (false).

Label.text The text on the label.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

Method Description
756 Label component

Event summary for the Label class
There are no events exclusive to the Label class.

Events inherited from the UIObject class
The following table lists the events the Label class inherits from the UIObject class.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
Label class 757

Label.autoSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
labelInstance.autoSize

Description

Property; a string that indicates how a label is sized and aligned to fit the value of its text
property. There are four possible values: "none", "left", "center", and "right". The
default value is "none".

■ none The label is not resized or aligned to fit the text.
■ left The right and bottom sides of the label are resized to fit the text. The left and top

sides are not resized.
■ center The left and right sides of the label resize to fit the text. The horizontal center of

the label stays anchored at its original horizontal center position.
■ right The left and bottom sides of the label are resized to fit the text. The top and right

sides are not resized.

Example

In following example, the label instance my_label resizes the left and bottom sides of the label
to fit all the text:
my_label.text = "A really long label with Label.autoSize set";
my_label.autoSize = "right";

Label.html
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

N
O

T
E

The autoSize property of the Label component is different from the autoSize
property of the built-in ActionScript TextField object.
758 Label component

Usage
labelInstance.html

Description

Property; a Boolean value that indicates whether the label can be formatted with HTML
(true) or not (false). The default value is false. Label components with the html property
set to true cannot be formatted with styles.

To retrieve plain text from HTML-formatted text, set the HTML property to false and then
access the text property. This removes the HTML formatting, so you may want to copy the
label text to an offscreen Label or TextArea component before you retrieve the plain text.

Example

The following example sets the html property to true so the label can be formatted with
HTML. The text property is then set to a string that includes HTML formatting.
my_label.html = true;
my_label.text = "The Royal Nonesuch";
my_label.autoSize = "right";

The word “Royal” is displayed in bold.

Label.text
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
labelInstance.text

Description

Property; the text of a label. The default value is "Label".

Example

The following code sets the text property of the Label instance my_label and sends the value
to the Output panel:
my_label.text = "The Royal Nonesuch";
trace(my_label.text);
Label.text 759

760 Label component

27

CHAPTER 27

List component
The List component is a scrollable single- or multiple-selection list box. A list can also display
graphics, including other components. You add the items displayed in the list by using the
Values dialog box that appears when you click in the labels or data parameter fields. You can
also use the List.addItem() and List.addItemAt() methods to add items to the list.

The List component uses a zero-based index, where the item with index 0 is the top item
displayed. When adding, removing, or replacing list items using the List class methods and
properties, you may need to specify the index of the list item.

The list receives focus when you click it or tab to it, and you can then use the following keys
to control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

Key Description

Alphanumeric keys Jump to the next item that has Key.getAscii() as the first character
in its label.

Control Toggle key that allows multiple noncontiguous selections and
deselections.

Down Arrow Selection moves down one item.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift Allows for contiguous selection.

Up Arrow Selection moves up one item.

N
O

T
E

The page size used by the Page Up and Page Down keys is one less than the number of
items that fit in the display. For example, paging down through a ten-line drop-down list
shows items 0-9, 9-18, 18-27, and so on, with one item overlapping per page.
761

A live preview of each List instance on the Stage reflects changes made to parameters in the
Property inspector or Component inspector during authoring.

When you add the List component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ListAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances the
component has. For more information, see Chapter 19, “Creating Accessible Content,” in
Using Flash.

Using the List component
You can set up a list so that users can make either single or multiple selections. For example, a
user visiting an e-commerce website needs to select which item to buy. There are 30 items,
and the user scrolls through a list and selects one by clicking it.

You can also design a list that uses custom movie clips as rows so you can display more
information to the user. For example, in an e-mail application, each mailbox could be a List
component and each row could have icons to indicate priority and status.

Understanding the design of the List component
When you design an application with the List component, or any component that extends the
List class, it is helpful to understand how the list was designed. The following are some
fundamental assumptions and requirements that Macromedia used when developing the
List class:

■ Keep it small, fast, and simple.
Don’t make something more complicated than absolutely necessary. This was the prime
design directive. Most of the requirements listed below are based on this directive.

■ Lists have uniform row heights.
Every row must be the same height; the height can be set during authoring or at runtime.

■ Lists must scale to thousands of records.
762 List component

■ Lists don’t measure text.
This restriction has the most potential ramifications. Because a list must scale to
thousands of records, any one of which could contain an unusually long string, it
shouldn’t grow to fit the largest string of text within it, or add a horizontal scroll bar in
“auto” mode. Also, measuring thousands of strings would be too intensive. The
compromise is the maxHPosition property, which, when vScrollPolicy is set to "on",
gives the list extra buffer space for scrolling.
If you know you’re likely to deal with long strings, turn hScrollPolicy to "on", and add
a 200-pixel maxHPosition value to your List or Tree component. A user is more or less
guaranteed to be able to scroll to see everything. The DataGrid component, however, does
support "auto" as an hScrollPolicy value, because it measures columns (which are the
same width per item), not text.
The fact that lists don’t measure text also explains why lists have uniform row heights.
Sizing individual rows to fit text would require intensive measuring. For example, if you
wanted to accurately show the scroll bars on a list with nonuniform row height, you’d
need to premeasure every row.

■ Lists perform worse as a function of their visible rows.
Although lists can display 5000 records, they can’t render 5000 records at once. The more
visible rows (specified by the rowCount property) you have on the Stage, the more work
the list must to do to render. Limiting the number of visible rows, if at all possible, is the
best solution.

■ Lists aren’t tables.
For example, DataGrid components, which extend the List class, are intended to provide
an interface for many records. They’re not designed to display complete information;
they’re designed to display enough information so that users can drill down to see more.
The message view in Microsoft Outlook is a prime example. You don't read the entire e-
mail in the grid; the mail would be difficult to read and the client would perform terribly.
Outlook displays enough information so that a user can drill into the post to see
the details.
Using the List component 763

List parameters
You can set the following authoring parameters for each List component instance in the
Property inspector or in the Component inspector:

data is an array of values that populate the data of the list. The default value is [] (an empty
array). There is no equivalent runtime property.

labels is an array of text values that populate the label values of the list. The default value is []
(an empty array). There is no equivalent runtime property.

multipleSelection is a Boolean value that indicates whether you can select multiple values
(true) or not (false). The default value is false.

rowHeight indicates the height, in pixels, of each row. The default value is 20. Setting a font
does not change the height of a row.

You can write ActionScript to set additional options for List instances using its methods,
properties, and events. For more information, see “List class” on page 770.

Creating an application with the List component
The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.

To add a simple List component to an application:

1. Drag a List component from the Components panel to the Stage.

2. Select the Free Transform tool and resize the component to fit your application.

3. In the Property inspector, do the following:

■ Enter the instance name my_list.
■ Enter Item1, Item2, and Item3 for the labels parameter.
■ Enter item1.html, item2.html, item3.html for the data parameter.

4. Select Control > Test Movie to see the list with its items.

5. Return to the authoring environment, insert a new layer, and name it actions.

6. Add the following ActionScript to Frame 1 of the actions layer.
my_list.change = function(evt:Object) {

getURL(evt.target.selectedItem.data, "_blank");
};
my_list.addEventListener("change", my_list);
764 List component

To populate a List instance with a data provider:

1. Drag a List component from the Components panel to the Stage.

2. Select the Free Transform tool and resize the component to fit your application.

3. In the Property inspector, enter the instance name my_list.

4. Select Frame 1 of the Timeline and, in the Actions panel, enter the following:
my_list.dataProvider = myDP;

If you have defined a data provider named myDP, the list fills with data. (For more
information about data providers, see List.dataProvider.)

5. Select Control > Test Movie to see the list with its items.

To use a List component to control a movie clip instance

1. Drag a List component from the Components panel to the Stage.

2. Select the Free Transform tool and resize the component to fit your application.

3. In the Property inspector, enter the instance name my_list.

4. Create a movie clip on the Stage and give it the instance name my_mc.

5. Open the movie clip in symbol-editing mode and add some animation.

6. Insert a new layer and name it actions.

7. Add the following ActionScript to Frame 1 of the actions layer.
my_list.addItem({label:"play", data:"play"});
my_list.addItem({label:"stop", data:"stop"});
var listHandler:Object = new Object();
listHandler.change = function(evt:Object) {

switch (evt.target.selectedItem.data) {
case "play" :

my_mc.play();
break;

case "stop" :
my_mc.stop();
break;

default :
trace("unhandled event: "+evt.target.selectedItem.data);
break;

}
};
my_list.addEventListener("change", listHandler);

8. Select Control > Test Movie to use the list to stop and play the my_mc movie clip instance.
Using the List component 765

To create a List component instance using ActionScript:

1. Drag the List component from the Components panel to the library.

This adds the component to the library, but doesn’t make it visible in the application.
2. Select the first frame in the main Timeline, open the Actions panel, and enter the

following code:
this.createClassObject(mx.controls.List, "my_list", 1);
my_list.addItem({label:"One", data:dt1});
my_list.addItem({label:"Two", data:dt2});

This script uses the method UIObject.createClassObject() to create the List instance.
3. Select Control > Test Movie.

Customizing the List component
You can transform a List component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the List.setSize() method
(see UIObject.setSize()).

When a list is resized, the rows of the list shrink horizontally, clipping any text within them.
Vertically, the list adds or removes rows as needed. Scroll bars position themselves
automatically. For more information about scroll bars, see “ScrollPane component”
on page 1093.

Using styles with the List component
You can set style properties to change the appearance of a List component.
766 List component

A List component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

alternatingRowColors Both Specifies colors for rows in an alternating pattern.
The value can be an array of two or more colors, for
example, 0xFF00FF, 0xCC6699, and 0x996699.
Unlike single-value color styles,
alternatingRowColors does not accept color names;
the values must be numeric color codes. By default,
this style is not set and backgroundColor is used in its
place for all rows.

backgroundColor Both The background color of the list. The default color is
white and is defined on the class style declaration.
This style is ignored if alternatingRowColors is
specified.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is
0xDDDDDD (medium gray).

borderStyle Both The List component uses a RectBorder instance as
its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.
The default border style is "inset".

color Both The text color.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. Otherwise, the embedded font is not
used. If this style is set to true and fontFamily does
not refer to an embedded font, no text is displayed.
The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The
default value is "normal".
Customizing the List component 767

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or
"center". The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value
is 0.

defaultIcon Both The name of the default icon to display on each row.
The default value is undefined, which means no icon is
displayed.

repeatDelay Both The number of milliseconds of delay between when a
user first presses a button in the scrollbar and when
the action begins to repeat. The default value is 500,
half a second.

repeatInterval Both The number of milliseconds between automatic clicks
when a user holds the mouse button down on a
button in the scrollbar. The default value is 35.

rollOverColor Both The background color of a rolled-over row. The
default value is 0xE3FFD6 (bright green) with the
Halo theme and 0xAAAAAA (light gray) with the
Sample theme.
When themeColor is changed through a setStyle()
call, the framework sets rollOverColor to a value
related to the themeColor chosen.

selectionColor Both The background color of a selected row. The default
value is a 0xCDFFC1 (light green) with the Halo
theme and 0xEEEEEE (very light gray) with the
Sample theme.
When themeColor is changed through a setStyle()
call, the framework sets selectionColor to a value
related to the themeColor chosen.

selectionDuration Both The length of the transition from a normal to selected
state or back from selected to normal, in milliseconds.
The default value is 200.

Style Theme Description
768 List component

Setting styles for all List components in a document
The List class inherits from the ScrollSelectList class. The default class-level style properties
are defined on the ScrollSelectList class, which the Menu component and all List-based
components extend. You can set new default style values on this class directly, and the new
settings are reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the List and List-based components only, you can create a new
CSSStyleDeclaration instance and store it in _global.styles.List.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.List == undefined) {

_global.styles.List = new CSSStyleDeclaration();
}
_global.styles.List.setStyle("backgroundColor", 0xFF00AA);

selectionDisabledColor Both The background color of a selected row. The default
value is a 0xDDDDDD (medium gray). Because the
default value for this property is the same as the
default for backgroundDisabledColor, the selection is
not visible when the component is disabled unless
one of these style properties is changed.

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. This applies only
for the transition from a normal to a selected state.
The default equation uses a sine in/out formula. For
more information, see “Customizing component
animations” in Using Components.

textRollOverColor Both The color of text when the pointer rolls over it. The
default value is 0x2B333C (dark gray). This style is
important when you set rollOverColor, because the
two settings must complement each other so that text
is easily viewable during a rollover.

textSelectedColor Both The color of text in the selected row. The default value
is 0x005F33 (dark gray). This style is important
when you set selectionColor, because the two
settings must complement each other so that text is
easily viewable while selected.

useRollOver Both Determines whether rolling over a row activates
highlighting. The default value is true.

Style Theme Description
Customizing the List component 769

When creating a new class-level style declaration, you lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.List;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

To provide styles for the List component but not for components that extend List (DataGrid
and Tree), you must provide class-level style declarations for these subclasses.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.DataGrid == undefined) {

_global.styles.DataGrid = new CSSStyleDeclaration();
}
_global.styles.DataGrid.setStyle("backgroundColor", 0xFFFFFF);
if (_global.styles.Tree == undefined) {

_global.styles.Tree = new CSSStyleDeclaration();
}
_global.styles.Tree.setStyle("backgroundColor", 0xFFFFFF);

For more information about class-level styles, see “Setting styles for a component class” in
Using Components.

Using skins with the List component
The List component uses an instance of RectBorder for its border and scroll bars for scrolling
images. For more information about skinning these visual elements, see “RectBorder class”
on page 1063 and see “Using skins with the UIScrollBar component” on page 1394.

List class
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List

ActionScript Class Name mx.controls.List

The List component is composed of three parts: items, rows, and a data provider.

An item is an ActionScript object used for storing the units of information in the list. A list
can be thought of as an array; each indexed space of the array is an item. An item is an object
that typically has a label property that is displayed and a data property that is used for
storing data.
770 List component

A row is a component that is used to display an item. Rows are either supplied by default by
the list (the SelectableRow class is used), or you can supply them, usually as a subclass of the
SelectableRow class. The SelectableRow class implements the CellRenderer API, which is the
set of properties and methods that allow the list to manipulate each row and send data and
state information (for example, size, selected, and so on) to the row for display.

A data provider is a data model of the list of items in a list. Any array in the same frame as a
list is automatically given methods that let you manipulate data and broadcast changes to
multiple views. You can build an Array instance or get one from a server and use it as a data
model for multiple lists, combo boxes, data grids, and so on. The List component has
methods that proxy to its data provider (for example, addItem() and removeItem()). If no
external data provider is provided to the list, these methods create a data provider instance
automatically, which is exposed through List.dataProvider.

To add a List component to the tab order of an application, set its tabIndex property (see
UIComponent.tabIndex). The List component uses the Focus Manager to override the
default Flash Player focus rectangle and draw a custom focus rectangle with rounded corners.
For more information, see “Creating custom focus navigation” in Using Components.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.List.version);

Method summary for the List class
The following table lists methods of the List class.

N
O

T
E

The code trace(myListInstance.version); returns undefined.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.
List class 771

Methods inherited from the UIObject class
The following table lists the methods the List class inherits from the UIObject class. When
calling these methods, use the form listInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the List class inherits from the UIComponent class.
When calling these methods, use the form listInstance.methodName.

List.sortItems() Sorts the items in the list according to the specified
compare function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description
772 List component

Property summary for the List class
The following table lists properties of the List class.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of
the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on")
or not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use
for the label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list
(true) or not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is
read-only.

List.selectedItems The selected item objects in a multiple-selection list. This
property is read-only.

List.vPosition The topmost visible item of the list.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"),
not displayed ("off"), or displayed when needed ("auto").
List class 773

Properties inherited from the UIObject class
The following table lists the properties the List class inherits from the UIObject class. When
accessing these properties, use the form listInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the List class inherits from the UIComponent class.
When accessing these properties, use the form listInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.
774 List component

Event summary for the List class
The following table lists events that of the List class.

Events inherited from the UIObject class
The following table lists the events the List class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the List class inherits from the UIComponent class.

Event Description

List.change Broadcast whenever user interaction causes the selection
to change.

List.itemRollOut Broadcast when the pointer rolls over and then off of
list items.

List.itemRollOver Broadcast when the pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible
to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible
to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
List class 775

List.addItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.addItem(label[, data])

listInstance.addItem(itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

In the first usage example, an item object is always created with the specified label property,
and, if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components are updated as well.

Example

Both of the following lines of code add an item to the my_list instance. To try this code, drag
a List component to the Stage and give it the instance name my_list. Add the following code
to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.addItem("this is an Item");
my_list.addItem({label:"Gordon", age:"very old", data:123});
776 List component

List.addItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.addItemAt(index, label[, data])

listInstance.addItemAt(index, itemObject)

Parameters

index A number greater than or equal to 0 that indicates the position of the item.

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the position specified by the index parameter.

In the first usage example, an item object is always created with the specified label property,
and, if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components are updated as well.

Example

The following example adds an item to the first index position, which is the second item in
the list. To try this code, drag a List component to the Stage and give it the instance name
my_list. Add the following code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.addItem("this is an Item");
my_list.addItem({label:"Gordon", age:"very old", data:123});
my_list.addItemAt(1, {label:"Red", data:0xFF0000});
List.addItemAt() 777

List.cellRenderer
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.cellRenderer

Description

Property; assigns the cell renderer to use for each row of the list. This property must be a class
object reference or a symbol linkage identifier. Any class used for this property must
implement the CellRenderer API.

Example

The following example uses a linkage identifier to set a new cell renderer:
my_list.cellRenderer = "ComboBoxCell";

List.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// Your code here.
};
listInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// Your code here.
}

778 List component

Description

Event; broadcast to all registered listeners when the selected index of the list changes as a result
of user interaction.

The first usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. For more information, see “EventDispatcher class (API)” on page 500.

Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.

The second usage example uses an on() handler and must be attached directly to a List
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the List instance
my_list, sends “_level0.my_list” to the Output panel:
on (change) {

trace(this);
}

Example

The following example adds three items to the List component. Changing the selected value
of the list causes the value of the newly selected item to be displayed in the Output panel. To
try this code, drag a List component to the Stage and give it the instance name my_list. Add
the following code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.addItem({data:'flash', label:'Flash'});
my_list.addItem({data:'dreamweaver', label:'Dreanweaver'});
my_list.addItem({data:'coldfusion', label:'ColdFusion'});

// Create listener object.
var listListener:Object = new Object();
listListener.change = function(evt_obj:Object) {
 trace("Value changed to: " + evt_obj.target.value);
}
// Add listener.
my_list.addEventListener("change", listListener);
List.change 779

See also

EventDispatcher.addEventListener()

List.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider API. The default value is []. For more
information, see “DataProvider API” on page 317.

The List component, like other data-aware components, adds methods to the Array object’s
prototype so that they conform to the DataProvider API. Therefore, any array that exists at
the same time as a list automatically has all the methods (addItem(), getItemAt(), and so
on) it needs to be the data model for the list, and can be used to broadcast model changes to
multiple components.

If the array contains objects, the List.labelField or List.labelFunction properties are
accessed to determine what parts of the item to display. The default value is "label", so if a
label field exists, it is chosen for display; if it doesn’t exist, a comma-separated list of all fields
is displayed.

Any instance that implements the DataProvider API can be a data provider for a List
component. This includes Flash Remoting recordsets, Firefly data sets, and so on.

Example

The following example uses an array of strings to populate the list:
my_list.dataProvider = ["Ground Shipping", "2nd Day Air", "Next Day Air"];

N
O

T
E

If the array contains strings at each index, and not objects, the list is not able to sort the
items and maintain the selection state. Any sorting causes the selection to be lost.
780 List component

This example creates a data provider array and assigns it to the dataProvider property, as in
the following:
var myDP_array:Array = new Array();
my_list.dataProvider = myDP_array;

var accounts_array:Array = new Array();
accounts_array.push({name:"checkings", accountID:12345});
accounts_array.push({name:"savings", accountID:67890});

for (var i:Number = 0; i < accounts_array.length; i++) {
 // These changes to the data provider will be broadcast to the list.
 myDP_array.addItem({label:accounts_array[i].name,

data:accounts_array[i].accountID});
}

List.getItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than List.length. It specifies the
index of the item to retrieve.

Returns

The indexed item object; undefined if the index is out of range.

Description

Method; retrieves the item at the specified index. This method gets the data item either from
an array, DataProvider, or from a data object created with CellRenderer.setValue().
List.getItemAt() 781

Example

The following code displays the label of the item at index position 2. To try this code, drag a
List component to the Stage and give it the instance name my_list. Add the following code to
Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.addItem({data:'flash', label:'Flash'});
my_list.addItem({data:'dreamweaver', label:'Dreanweaver'});
my_list.addItem({data:'coldfusion', label:'ColdFusion'});

trace(my_list.getItemAt(2).label);

List.hPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.hPosition

Description

Property; scrolls the list horizontally to the number of pixels specified. You can’t set
hPosition unless the value of hScrollPolicy is "on" and the list has a maxHPosition that
is greater than 0.

Example

The following code displays the current value of hPosition whenever the list instance is
scrolled horizontally. To try this code, drag a List component to the Stage and give it the
instance name my_list. Add the following code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.setSize(150, 100);
my_list.hScrollPolicy = "on";
my_list.maxHPosition = 50;

my_list.addItem({data:'flash', label:'Flash'});
my_list.addItem({data:'dreamweaver', label:'Dreanweaver'});
my_list.addItem({data:'coldfusion', label:'ColdFusion'});
782 List component

var listListener:Object = new Object();
listListener.scroll = function (evt_obj:Object) {
 trace("my_list.hPosition = " + my_list.hPosition);
}
my_list.addEventListener("scroll", listListener);

List.hScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.hScrollPolicy

Description

Property; a string that determines whether the horizontal scroll bar is displayed; the value can
be "on" or "off". The default value is "off". The horizontal scroll bar does not measure text;
you must set a maximum horizontal scroll position (see List.maxHPosition).

Example

The following code enables the list to scroll horizontally up to 200 pixels. To try this code,
drag a List component to the Stage and give it the instance name my_list. Add the following
code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.setSize(150, 100);
my_list.hScrollPolicy = "on";
my_list.maxHPosition = 200;

my_list.addItem({data:'flash', label:'Flash'});
my_list.addItem({data:'dreamweaver', label:'Dreanweaver'});
my_list.addItem({data:'coldfusion', label:'ColdFusion'});

See also

List.hPosition, List.maxHPosition

N
O

T
E

List.hScrollPolicy does not support the value "auto".
List.hScrollPolicy 783

List.iconField
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.iconField

Description

Property; specifies the name of a field to be used as an icon identifier. If the field has a value of
undefined, the default icon specified by the defaultIcon style is used. If the defaultIcon
style is undefined, no icon is used.

Example

The following example sets the iconField property to the icon property of each item. To try
this code, drag a List component to the Stage, give it the instance name my_list, and create
three symbols with the instance names flash, dreamweaver, and cf respectively. Add the
following code to Frame 1 in the timeline:
/**
 Requires:
 - List component on Stage (instance name: my_list)
 - MovieClip/Graphic symbol in the Library with Linkage ID of "flash"
 - MovieClip/Graphic symbol in the Library with Linkage ID of "dreamweaver"
 - MovieClip/Graphic symbol in the Library with Linkage ID of "cf"
*/

var my_list:mx.controls.List;

my_list.setSize(200, 100);

my_list.addItem({data:"flash", label:"Flash", icon:"flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver",

icon:"dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion", icon:"cf"});

my_list.iconField = "icon";

See also

List.iconFunction
784 List component

List.iconFunction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.iconFunction

Description

Property; specifies a function that determines which icon each row uses to display its item.
This function receives a parameter, item, which is the item being rendered, and must return a
string representing the icon’s symbol identifier.

Example

The following example adds icons that indicate whether a file is an image or a text document.
If the data.fileExtension field contains a value of "jpg" or "gif", the icon used is
"pictureIcon", and so on.
my_list.iconFunction = function(item:Object):String {

var type:String = item.data.fileExtension;
if (type == "jpg" || type == "gif") {

return "pictureIcon";
} else if (type == "doc" || type == "txt") {

return "docIcon";
}

}

The following example sets the iconField property to the icon property of each item. To try
this code, drag a List component to the Stage, give it the instance name my_list, and create
three symbols with the instance names flash, dreamweaver, and cf respectively. Add the
following code to Frame 1 in the timeline:
/**
 Requires:
 - List component on Stage (instance name: my_list)
 - MovieClip/Graphic symbol in the Library with Linkage ID of "flashIcon"
*/

var my_list:mx.controls.List;

my_list.setSize(200, 100);

my_list.addItem({data:"flash", label:"Flash"});
List.iconFunction 785

my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.iconFunction = function(item:Object):String {
if (item.data == "flash") {

// Put icon next to list item with the data "flash".
return "flashIcon";

}
};
my_list.iconField = "icon";

List.itemRollOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.itemRollOut = function(eventObject:Object) {

// Your code here.
};
listInstance.addEventListener("itemRollOut", listenerObject);

Usage 2:
on (itemRollOut) {

// Your code here.
}

Event object

In addition to the standard properties of the event object, the itemRollOut event has an
index property, which specifies the number of the item that was rolled out.

Description

Event; broadcast to all registered listeners when the pointer rolls over and then off of
list items.
786 List component

The first usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOut) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class (API)” on page 500.

The second usage example uses an on() handler and must be attached directly to a List
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the List instance
my_list, sends “_level0.my_list” to the Output panel:
on (itemRollOut) {

trace(this);
}

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
var my_list:mx.controls.List;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

// Create listener object.
var listListener:Object = new Object();
listListener.itemRollOut = function(evt_obj:Object) {
 trace("Item #" + evt_obj.index + " has been rolled out.");
};

// Add listener.
my_list.addEventListener("itemRollOut", listListener);

See also

List.itemRollOver
List.itemRollOut 787

List.itemRollOver
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.itemRollOver = function(eventObject:Object) {

// Your code here.
};
listInstance.addEventListener("itemRollOver", listenerObject);

Usage 2:
on (itemRollOver) {

// Your code here.
}

Event object

In addition to the standard properties of the event object, the itemRollOver event has an
index property that specifies the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the list items are rolled over.

The first usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOver) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class (API)” on page 500.
788 List component

The second usage example uses an on() handler and must be attached directly to a List
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the List instance
my_list, sends “_level0.my_list” to the Output panel:
on (itemRollOver) {

trace(this);
}

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
var my_list:mx.controls.List;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

//Create listener object.
var listListener:Object = new Object();
listListener.itemRollOver = function (evt_obj:Object) {
 trace("Item #" + evt_obj.index + " has been rolled over.");
};

//Add listener.
my_list.addEventListener("itemRollOver", listListener);

See also

List.itemRollOut

List.labelField
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.labelField

Description

Property; specifies a field in each item to be used as display text. This property takes the value
of the field and uses it as the label. The default value is "label".
List.labelField 789

Example

The following example sets the labelField property to be the "name" field of each item.
“Nina” would display as the label for the item added in the second line of code:
var my_list:mx.controls.List;

my_list.labelField = "name";
my_list.addItem({name: "Nina", age: 25});

See also

List.labelFunction

List.labelFunction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.labelFunction

Description

Property; specifies a function that determines which field (or field combination) of each item
to display. This function receives one parameter, item, which is the item being rendered, and
must return a string representing the text to display.

Example

The following example makes the label display some formatted details of the items:
var my_list:mx.controls.List;

my_list.setSize(300, 100);

// Define how list data will be displayed.
my_list.labelFunction = function(item_obj:Object):String {
 var label_str:String = item_obj.label + " - Code is: " + item_obj.data;
 return label_str;
}

// Add data to list.
my_list.addItem({data:"f", label:"Flash"});
my_list.addItem({data:"d", label:"Dreamweaver"});
my_list.addItem({data:"c", label:"ColdFusion"});
790 List component

See also

List.labelField

List.length
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.length

Description

Property (read-only); the number of items in the list.

Example

The following example displays the number of items currently in the list’s data provider:
var my_list:mx.controls.List;

// Add data to list.
my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

var listLength_num:Number = my_list.length;
trace("Length of List: " + listLength_num);

List.maxHPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.maxHPosition
List.maxHPosition 791

Description

Property; specifies the number of pixels the list can scroll when List.hScrollPolicy is set to
"on". The list doesn’t precisely measure the width of text that it contains. You must set
maxHPosition to indicate the amount of scrolling that the list requires. The list does not
scroll horizontally if this property is not set.

Example

The following example creates a list with 200 pixels of horizontal scrolling:
var my_list:mx.controls.List;

my_list.setSize(150, 100);
my_list.hScrollPolicy = "on";
my_list.maxHPosition = 200;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

See also

List.hScrollPolicy

List.multipleSelection
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.multipleSelection

Description

Property; indicates whether multiple selections are allowed (true) or only single selections are
allowed (false). The default value is false.
792 List component

Example

The following example tests to determine whether multiple items can be selected, and if so,
displays instructions in a label component. To try this code, drag a List component to the
Stage and give it the instance name my_list. Next, drag a Label component on to the Stage
and give it the instance name my_label. Add the following code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.multipleSelection = true;

if (my_list.multipleSelection) {
my_label.text = "Hold down Control or Shift to select multiple items";
my_label.autoSize = "left";

}

List.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.removeAll()

Returns

Nothing.

Description

Method; removes all items in the list.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components are updated as well.
List.removeAll() 793

Example

The following code clears all items in a List component when a button is clicked. To try this
code, drag a List component to the Stage and give it the instance name my_list. Next, drag a
Button component to the Stage and give it the instance name remove_button. Add the
following code to Frame 1 in the timeline:
var my_list:mx.controls.List;
var remove_button:mx.controls.Button;

remove_button.label = "Remove";

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {

my_list.removeAll();
evt_obj.target.enabled = false;

}
remove_button.addEventListener("click", buttonListener);

List.removeItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.removeItemAt(index)

Parameters

index A number that indicates the position of the item. The value must be greater than 0
and less than List.length.

Returns

An object; the removed item (undefined if no item exists).
794 List component

Description

Method; removes the item at the specified index position. The list indices after the specified
index collapse by one.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components are updated as well.

Example

The following code clears the selected item in a List component when a button is clicked. To
try this code, drag a List component to the Stage and give it the instance name my_list. Next,
drag a Button component to the Stage and give it the instance name remove_button. Add the
following code to Frame 1 in the timeline:
var my_list:mx.controls.List;
var remove_button:mx.controls.Button;

remove_button.label = "Remove";

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {

if (my_list.selectedIndex != undefined) {
my_list.removeItemAt(my_list.selectedIndex);

}
}
remove_button.addEventListener("click", buttonListener);

List.replaceItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.replaceItemAt(index, label[, data])

listInstance.replaceItemAt(index, itemObject)
List.replaceItemAt() 795

Parameters

index A number greater than 0 and less than List.length that indicates the position at
which to insert the item (the index of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any type.

itemObject An object to use as the item, usually containing label and data properties.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components are updated as well.

Example

The following example replaces the item at the currently selected position. To try this code,
drag a List component to the Stage and give it the instance name my_list. Next, drag a Button
component to the Stage and give it the instance name replace_button. Add the following
code to Frame 1 in the timeline:
var my_list:mx.controls.List;
var replace_button:mx.controls.Button;

replace_button.label = "Replace";

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {

if (my_list.selectedIndex != undefined) {
my_list.replaceItemAt(my_list.selectedIndex, {data:"flex",

label:"Flex"});
}

}
replace_button.addEventListener("click", buttonListener);
796 List component

List.rowCount
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.rowCount

Description

Property; the number of rows that are at least partially visible in the list. This is useful if you’ve
scaled a list by pixel and need to count its rows. Conversely, setting the number of rows
guarantees that an exact number of rows is displayed, without a partial row at the bottom.

The code my_list.rowCount = num is equivalent to the code
my_list.setSize(my_list.width, h) (where h is the height required to display num
items).

The default value is based on the height of the list as set during authoring, or as set by the
List.setSize() method (see UIObject.setSize()).

Example

The following example discovers the number of visible items in a list:
var rowCount = my_list.rowCount;

The following example makes the list display four items:
my_list.rowCount = 4;

The following example removes a partial row at the bottom of a list, if there is one:
my_list.rowCount = my_list.rowCount;

The following example sets a list to the smallest number of rows it can fully display:
my_list.rowCount = 1;
trace("my_list has " + my_list.rowCount + " rows");
List.rowCount 797

The following example resizes the list using the setSize() method and then sets a row count
of 8 items:
my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.setSize(200, 30);
my_list.rowCount = 8;
trace("my_list has " + my_list.rowCount + " rows.");

List.rowHeight
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.rowHeight

Description

Property; the height, in pixels, of every row in the list. The font settings do not make the rows
grow to fit, so setting the rowHeight property is the best way to make sure items are fully
displayed. The default value is 20.

Example

The following example sets each row to 30 pixels:
my_list.rowHeight = 30;

The following example sets the row height for each row to 30 pixels and then resizes the list to
match the total number of items it contains:
my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.rowHeight = 30;
my_list.rowCount = my_list.length;
798 List component

List.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

// Your code here.
};
listInstance.addEventListener("scroll", listenerObject);

Usage 2:
on (scroll) {

// Your code here.
}

Event object

Along with the standard event object properties, the scroll event has one additional
property, direction. It is a string with two possible values, "horizontal" or "vertical".
For a ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when a list is scrolled.

The first usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class (API)” on page 500.
List.scroll 799

The second usage example uses an on() handler and must be attached directly to a List
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the List instance
my_list, sends “_level0.my_list” to the Output panel:
on (scroll) {

trace(this);
}

Example

The following example sends the direction and position of the list every time the list items
are scrolled:
var my_list:mx.controls.List;

my_list.rowCount = 2;
for (var i:Number = 0; i < 10; i++) {

my_list.addItem({data:i, label:"Item #" + i});
}

var listListener:Object = new Object();
listListener.scroll = function(evt_obj:Object) {

trace("list scrolled (direction:" + evt_obj.direction + ", position:" +
evt_obj.position + ")");

};
my_list.addEventListener("scroll", listListener);

List.selectable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.selectable
800 List component

Description

Property; a Boolean value that indicates whether the list is selectable (true) or not (false).
The default value is true.

Example

The following example prevents users from selecting items in the list by setting the selectable
property to false:
var my_list:mx.controls.List;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.selectable = false;

List.selectedIndex
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.selectedIndex

Description

Property; the selected index of a single-selection list. The value is undefined if nothing is
selected; the value is equal to the last item selected if there are multiple selections. If you assign
a value to selectedIndex, any current selection is cleared and the indicated item is selected.

Using the selectedIndex property to change selection doesn’t dispatch a change event. To
dispatch the change event, use the following code:
my_list.dispatchEvent({type:"change", target:my_list});
List.selectedIndex 801

Example

The following example selects the first item in a list by default and displays the index of the
currently selected whenever the user selects a new item:
var my_list:mx.controls.List;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

// Select first item by default.
my_list.selectedIndex = 0;

var listListener:Object = new Object();
listListener.change = function(evt_obj:Object) {

trace("selectedIndex = " + evt_obj.target.selectedIndex);
}
my_list.addEventListener("change", listListener);

See also

List.selectedIndices, List.selectedItem, List.selectedItems

List.selectedIndices
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.selectedIndices

Description

Property; an array of indices of the selected items. Assigning this property replaces the current
selection. Setting selectedIndices to a zero-length array (or undefined) clears the current
selection. The value is undefined if nothing is selected.

The selectedIndices property reflects the order in which the items were selected. If you
click the second item, then the third item, and then the first item, selectedIndices returns
[1,2,0].
802 List component

Example

The following example retrieves the selected indices:
var selIndices:Array = my_list.selectedIndices;

The following example selects four items:
var my_array = new Array (1, 4, 5, 7);
my_list.selectedIndices = my_array;

The following example selects two list items by default and displays their label property in the
Output panel:
my_list.multipleSelection = true;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.selectedIndices = [0, 2];

var numSelected:Number = my_list.selectedIndices.length;
for (var i:Number = 0; i < numSelected; i++) {

trace("selectedIndices[" + i + "] = "+
my_list.getItemAt(my_list.selectedIndices[i]).label);

}

See also

List.selectedIndex, List.selectedItem, List.selectedItems

List.selectedItem
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.selectedItem

Description

Property (read-only); an item object in a single-selection list. (In a multiple-selection list with
multiple items selected, selectedItem returns the item that was most recently selected.) If
there is no selection, the value is undefined.
List.selectedItem 803

Example

The following example displays the selected label:
trace(my_list.selectedItem.label);

The following example displays the contents of a selected whenever the user selects a new item
from the list:
my_list.multipleSelection = true;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

//Create listener object.
var listListener:Object = new Object();
listListener.change = function(evt_obj:Object) {

// Display each property of the object.
var tempStr:String = "[object";
for (var i:String in evt_obj.target.selectedItem) {

tempStr += " " + i + ":'" + evt_obj.target.selectedItem[i]+"'";
}
tempStr += "]";
trace(tempStr);

};
// Add listener.
my_list.addEventListener("change", listListener);

See also

List.selectedIndex, List.selectedIndices, List.selectedItems

List.selectedItems
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.selectedItems

Description

Property (read-only); an array of the selected item objects. In a multiple-selection list,
selectedItems lets you access the set of items selected as item objects.
804 List component

Example

The following example retrieves an array of selected item objects:
var myObjArray:Array = my_list.selectedItems;

The following example displays two List instances on the Stage. When a user selects an item
from the first list, the selected item is copied to the second list. To try this code, you must add
a copy of the List component to the library of the current document. Add the following code
to Frame 1 in the timeline:
this.createClassObject(mx.controls.List, "my_list", 10,

{multipleSelection:true});
my_list.setSize(200, 100);

this.createClassObject(mx.controls.List, "selectedItems_list", 20,
{selectable:false});

selectedItems_list.setSize(200, 100);
selectedItems_list.move(0, 110);

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

var listListener:Object = new Object();
listListener.change = function(evt_obj:Object) {

trace("You have selected " + my_list.selectedItems.length + " items.");
selectedItems_list.dataProvider = my_list.selectedItems;

}
my_list.addEventListener("change", listListener);

See also

List.selectedIndex, List.selectedItem, List.selectedIndices

List.setPropertiesAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.setPropertiesAt(index, styleObj)
List.setPropertiesAt() 805

Parameters

index A number greater than 0 or less than List.length indicating the index of the item
to change.

styleObj An object that enumerates the properties and values to set.

Returns

Nothing.

Description

Method; applies the specified properties to the specified item. The supported properties are
icon and backgroundColor.

Example

The following example changes the background color of the third item to red and gives it an
icon. To try this code, drag a List component to the Stage and give it the instance name
my_list. Next, add a MovieClip/Graphic symbol to the library with a linkage identifier of
“file”. Add the following code to Frame 1 in the timeline:
var my_list:mx.controls.List;

my_list.setSize(200, 100);

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.setPropertiesAt(2, {backgroundColor:0xFF0000, icon: "file"});

List.sortItems()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.sortItems(compareFunc)
806 List component

Parameters

compareFunc A reference to a function. This function is used to compare two items to
determine their sort order.

For more information, see sort (Array.sort method) in ActionScript 2.0 Language Reference.

Returns

Nothing.

Description

Method; sorts the items in the list by using the function specified in the compareFunc
parameter.

Example

The following example sorts the items according to uppercase labels. Note that the a and b
parameters that are passed to the function are items that have label and data properties.
var my_list:mx.controls.List;

my_list.setSize(200, 100);
my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.sortItems(upperCaseFunc);
function upperCaseFunc(a:Object, b:Object):Boolean {
 return (a.label.toUpperCase() > b.label.toUpperCase());
}

See also

List.sortItemsBy()

List.sortItemsBy()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
List.sortItemsBy() 807

Usage
listInstance.sortItemsBy(fieldName, optionsFlag)

listInstance.sortItemsBy(fieldName, order)

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is
usually "label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or
descending order ("DESC").

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or resort it repeatedly.

The following are possible values for optionsFlag:

■ Array.DESCENDING, which sorts from highest to lowest.
■ Array.CASEINSENSITIVE, which sorts without regard to case.
■ Array.NUMERIC, which sorts numerically if the two elements being compared are

numbers. If they aren’t numbers, use a string comparison (which can be case-insensitive if
that flag is specified).

■ Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two
objects in the array are identical or have identical sort fields.

■ Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines
options 3 and 1:
my_array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.
808 List component

Description

Method; sorts the items in the list in the specified order, using the specified field name. If the
fieldName items are a combination of text strings and integers, the integer items are listed
first. The fieldName parameter is usually "label" or "data", but you can specify any
primitive data value.

This is the fastest way to sort data in a component. It also maintains the component’s
selection state. The sortItemsBy() method is fast because it doesn’t run any ActionScript
while sorting. The sortItems() method needs to run an ActionScript compare function, and
is therefore slower.

Example

The following code sorts the items in the list in ascending order using the labels of the list
items:
var my_list:mx.controls.List;

my_list.setSize(200, 100);
my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});

my_list.sortItemsBy("label", "ASC");

See also

List.sortItems()

List.vPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.vPosition

Description

Property; sets the topmost visible item of the list. If you set this property to an index number
that doesn’t exist, the list scrolls to the nearest index. The default value is 0.
List.vPosition 809

Example

The following example displays the current value of the vPosition of the list whenever the
contents of the list are scrolled:
my_list.setSize(200, 60);
my_list.rowCount = 4;
my_list.vPosition = 2;

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"flex", label:"Flex"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"fireworks", label:"Fireworks"});
my_list.addItem({data:"contribute", label:"Contribute"});
my_list.addItem({data:"breeze", label:"Breeze"});

var listListener:Object = new Object();
listListener.scroll = function(evt_obj:Object) {

trace("my_list.vPosition = " + my_list.vPosition);
}
my_list.addEventListener("scroll", listListener);

List.vScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listInstance.vScrollPolicy

Description

Property; a string that determines whether the list supports vertical scrolling. The value of this
property can be "on", "off" or "auto". The value "auto" causes a scroll bar to appear
when needed.
810 List component

Example

The following example disables the vertical scroll bar for a list:
var my_list:mx.controls.List;

my_list.setSize(200, 60);
my_list.rowCount = 4;
my_list.vScrollPolicy = "off";

my_list.addItem({data:"flash", label:"Flash"});
my_list.addItem({data:"flex", label:"Flex"});
my_list.addItem({data:"coldfusion", label:"ColdFusion"});
my_list.addItem({data:"dreamweaver", label:"Dreamweaver"});
my_list.addItem({data:"fireworks", label:"Fireworks"});
my_list.addItem({data:"contribute", label:"Contribute"});
my_list.addItem({data:"breeze", label:"Breeze"});

var listListener:Object = new Object();
listListener.scroll = function(evt_obj:Object) {

trace("my_list.vPosition = " + my_list.vPosition);
}
my_list.addEventListener("scroll", listListener);

You can still create scrolling by using List.vPosition, or by using the mouse or keyboard.

See also

List.vPosition
List.vScrollPolicy 811

812 List component

28

CHAPTER 28

Loader component
The Loader component is a container that can display a SWF or JPEG file (but not progressive
JPEG files). You can scale the contents of the loader or resize the loader itself to accommodate
the size of the contents. By default, the contents are scaled to fit the loader. You can also load
content at runtime and monitor loading progress (although after content has been loaded
once it is cached, so the progress jumps to 100% quickly).

A Loader component can’t receive focus. However, content loaded into the Loader
component can accept focus and have its own focus interactions. For more information about
controlling focus, see “FocusManager class” on page 721 or “Creating custom focus
navigation” in Using Components.

A live preview of each Loader instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

You can use the Accessibility panel to make Loader component content accessible to screen
readers. For more information, see Chapter 19, “Creating Accessible Content,” in Using Flash.

Using the Loader component
You can use a loader whenever you need to retrieve content from a remote location and pull it
into a Flash application. For example, you could use a loader to add a company logo (JPEG
file) to a form. You could also use a loader to leverage Flash work that has already been
completed. For example, if you had already built a Flash application and wanted to expand it,
you could use the loader to pull the old application into a new application, perhaps as a
section of a tab interface. In another example, you could use the loader component in an
application that displays photos. Use Loader.load(), Loader.percentLoaded, and
Loader.complete to control the timing of the image loads and display progress bars to the
user during loading.
813

If you load certain version 2 Macromedia Component Architecture components into a SWF
file or into the Loader component, the components may not work correctly. These
components include the following: Alert, ComboBox, DateField, Menu, MenuBar,
and Window.

Use the _lockroot property when calling loadMovie() or loading into the Loader
component. If you’re using the Loader component, add the following code:
myLoaderComponent.content._lockroot = true;

If you’re using a movie clip with a call to loadMovie(), add the following code:
myMovieClip._lockroot = true;

If you don’t set _lockroot to true in the loader movie clip, the loader only has access to its
own library, but not the library in the loaded movie clip.

Flash Player 7 supports the _lockroot property. For information about this property, see
_lockroot (MovieClip._lockroot property) in ActionScript 2.0 Language Reference.

Components such as Loader, ScrollPane and Window have events to determine when content
has finished loading. So, if you want to set properties on the content of a Loader, ScrollPane,
or Window, add the property statement within a “complete” event handler, as shown in the
following example:
loadtest = new Object();
loadtest.complete = function(eventObject){
 content_mc._rotation= 45;
}
my_loader.addEventListener("complete", loadtest)

For more information, see “Loader.complete” on page 823.

Loader parameters
You can set the following authoring parameters for each Loader component instance in the
Property inspector or in the Component inspector (Window > Component Inspector
menu option):

autoload indicates whether the content should load automatically (true), or wait to load
until the Loader.load() method is called (false). The default value is true.

contentPath an absolute or relative URL indicating the file to load into the loader. A relative
path must be relative to the SWF file loading the content. The URL must be in the same
subdomain as the URL where the Flash content currently resides. For use in Flash Player or in
test mode, all SWF files must be stored in the same folder, and the filenames cannot include
folder or disk drive specifications. The default value is undefined until the load starts.
814 Loader component

The Loader can load content from other domains, if you have policy files in those domains.
See “Allowing cross-domain data loading” in Learning ActionScript 2.0 in Flash.

scaleContent indicates whether the content scales to fit the loader (true), or the loader scales
to fit the content (false). The default value is true.

You can set the following additional parameters for each Loader component instance in the
Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to set additional options for Loader instances using its methods,
properties, and events. For more information, see “Loader class” on page 817.

Creating an application with the Loader component
The following procedure explains how to add a Loader component to an application while
authoring. In this example, the loader loads a logo JPEG from an imaginary URL.

To create an application with the Loader component:

1. Drag a Loader component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name flower.

3. Select the loader on the Stage and in the Component inspector, and enter http://
www.flash-mx.com/images/image1.jpg for the contentPath parameter.

To create a Loader component instance using ActionScript:

1. Drag the Loader component from the Components panel to the library.

2. Select the first frame in the main Timeline, open the Actions panel, and enter the
following code:
this.createClassObject(mx.controls.Loader, "my_loader", 1);
my_loader.contentPath = "http://www.flash-mx.com/images/image1.jpg";

This script uses the method “UIObject.createClassObject()” on page 1362 to create the
Loader instance.

3. Select Control > Test Movie.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
Using the Loader component 815

Customizing the Loader component
You can transform a Loader component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The sizing behavior of the Loader component is controlled by the scaleContent property.
When scaleContent is true, the content is scaled to fit within the bounds of the loader (and
is rescaled when UIObject.setSize() is called). When scaleContent is false, the size of
the component is fixed to the size of the content and UIObject.setSize() has no effect.

Using styles with the Loader component
The Loader component uses the following styles.

For example:
my_ldr.setStyle("backgroundColor", 0xEEEEEE);

For more information, see “Using styles to customize component color and text” in Using
Components.

Using skins with the Loader component
The Loader component uses an instance of RectBorder for its border (see “RectBorder class”
on page 1063).

Style Theme Description

borderStyle Both The Loader component uses a RectBorder instance as
its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.

The default border style is "none".
816 Loader component

Loader class
Inheritance MovieClip > UIObject class > UIComponent class > View > Loader

ActionScript Class Name mx.controls.Loader

The properties of the Loader class let you set content to load and monitor its loading progress
at runtime.

Setting a property of the Loader class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.Loader.version);

Method summary for the Loader class
The following table lists the method of the Loader class.

Methods inherited from the UIObject class
The following table lists the methods the Loader class inherits from the UIObject class. When
calling these methods from the Loader object, use the form LoaderInstance.methodName.

N
O

T
E

The code trace(myLoaderInstance.version); returns undefined.

Method Description

Loader.load() Loads the content specified by the contentPath property.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.
Loader class 817

Methods inherited from the UIComponent class
The following table lists the methods the Loader class inherits from the UIComponent class.
When calling these methods from the Loader object, use the form
LoaderInstance.methodName.

Property summary for the Loader class
The following table lists properties of the Loader class.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads
automatically (true) or you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that
have been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes
in the content.

Loader.content A reference to the content of the loader. This property is
read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content.
This property is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to
fit the loader (true), or the loader scales to fit the content
(false).

Method Description
818 Loader component

Properties inherited from the UIObject class
The following table lists the properties the Loader class inherits from the UIObject class.
When accessing these properties from the Loader object, use the form
LoaderInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the Loader class inherits from the UIComponent class.
When accessing these properties from the Loader object, use the form
LoaderInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
Loader class 819

Event summary for the Loader class
The following table lists events of the Loader class.

Events inherited from the UIObject class
The following table lists the events the Loader class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Loader class inherits from the UIComponent class.

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
820 Loader component

Loader.autoLoad
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.autoLoad

Description

Property; a Boolean value that indicates whether to automatically load the content (true), or
wait until Loader.load() is called (false). The default value is true.

Example

The following code sets up the loader component to wait for a Loader.load() call:
loader.autoload = false;

Loader.bytesLoaded
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.bytesLoaded

Description

Property (read-only); the number of bytes of content that have been loaded. The default value
is 0 until content begins loading.

Example

With a Loader component and a ProgressBar component in the library of the current
document, the following code creates progress bar and loader instances. It then creates a
listener object with a progress event handler that shows the progress of the load. The listener
is registered with the my_ldr instance.
Loader.bytesLoaded 821

When you create an instance with createClassObject(), you have to position it on the
Stage with move(). See UIObject.move().
import mx.controls.Loader;
import mx.controls.ProgressBar;

System.security.allowDomain("http://www.flash-mx.com");

this.createClassObject(Loader, "my_ldr", 10);
this.createClassObject(ProgressBar, "my_pb", 20, {source:"my_ldr"});

my_ldr.move(1, 50);
my_pb.move(1, 1);

var loaderListener:Object = new Object();
loaderListener.progress = function(evt_obj:Object) {
 // evt_obj.target is the component that generated the progress event,
 // that is, the loader.
 my_pb.setProgress(my_ldr.bytesLoaded, my_ldr.bytesTotal);
 // Show progress.
};
my_ldr.addEventListener("progress", loaderListener);
my_ldr.contentPath = "http://www.flash-mx.com/images/image2.jpg";

Loader.bytesTotal
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.bytesTotal

Description

Property (read-only); the size of the content, in bytes. The default value is 0 until content
begins loading.
822 Loader component

Example

The following code creates a progress bar and a Loader component. It then creates a load
listener object with a progress event handler that shows the progress of the load. The listener
is registered with the my_ldr instance, as follows:
import mx.controls.Loader;
import mx.controls.ProgressBar;
this.createClassObject(ProgressBar, "my_pb", 998);
this.createClassObject(Loader, "my_ldr", 999);
my_pb.move(1, 1);
my_ldr.move(1, 50);
my_pb.source = "my_ldr";
var loadListener:Object = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event,
// that is, the loader.
my_pb.setProgress(my_ldr.bytesLoaded, my_ldr.bytesTotal); // Show
progress.

}
my_ldr.addEventListener("progress", loadListener);
my_ldr.contentPath = "http://www.flash-mx.com/images/image2.jpg";

See also

Loader.bytesLoaded

Loader.complete
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObj:Object){

// ...
};
loaderInstance.addEventListener("complete", listenerObject);

Usage 2:
on (complete) {

// ...
}

Loader.complete 823

Description

Event; broadcast to all registered listeners when the content finishes loading.

The first usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, complete) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a Loader
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the Loader instance
myLoaderComponent, sends “_level0.myLoaderComponent” to the Output panel:
on (complete) {

trace(this);
}

Example

The following example creates a Loader component, my_ldr, and then defines a listener
object for a complete event. The example loads an image from a web page; when loading is
complete, the listener displays a message in the Output panel.

Drag a Loader component to the library, then add the following code to the first frame of
the timeline.
/**
 Requires:
 - Loader component in Library.
*/

System.security.allowDomain("http://www.flash-mx.com");

//Create loader instance.
this.createClassObject(mx.controls.Loader, "my_ldr", 10);

//Create listener object.
var loaderListener:Object = new Object();
loaderListener.complete = function(evt_obj:Object){
824 Loader component

 trace("loading complete");
}

//Add listener.
my_ldr.addEventListener("complete", loaderListener);
my_ldr.load("http://www.flash-mx.com/images/image2.jpg");

Loader.content
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.content

Description

Property (read-only); a reference to a movie clip instance that contains the contents of the
loaded file. The value is undefined until the load begins. Set properties for the content
within an event handler function for the Loader.complete event.

Example

The Loader component has a “complete” event so you can make sure the content is
completely loaded before trying to access properties of the loader’s content.

The following example uses the Loader.content property within an event handler function
for the complete event. Drag a Loader component from the Components panel to the current
document’s library, so the component appears in the library. Then add the following
ActionScript to the first frame of the main timeline:
this.createClassObject(mx.controls.Loader, "my_ldr", 10);
my_ldr.contentPath = "http://www.flash-mx.com/images/image1.jpg";
//Assign a variable to the content.
var content_mc:MovieClip = my_ldr.content;

var loadtest:Object = new Object();
loadtest.complete = function(){
//Set properties for the content.

content_mc._alpha = 50;
content_mc._rotation= 45;
trace(content_mc._width);

}
my_ldr.addEventListener("complete", loadtest);
Loader.content 825

Loader.contentPath
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the file to load into the loader.
A relative path must be relative to the SWF file that loads the content. The URL must be in
the same subdomain as the loading SWF file.

If you are using Flash Player or test mode in Flash, all SWF files must be stored in the same
folder, and the filenames cannot include folder or disk drive information.

Example

The following example tells the loader instance to display the contents of the logo.swf file:
flower.contentPath = "http://www.flash-mx.com/images/image1.jpg"

The following example unloads content from the Loader when the button instance my_btn
is clicked:
flower.contentPath = "http://www.flash-mx.com/images/image1.jpg"
function clicked(){

flower.contentPath = "";
}
my_btn.addEventListener("click", clicked);

Loader.load()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.load([path])
826 Loader component

Parameters

path An optional parameter that specifies the value for the contentPath property before
the load begins. If a value is not specified, the current value of contentPath is used as is.

Returns

Nothing.

Description

Method; tells the loader to begin loading its content.

Example

The following example creates a Loader instance, my_ldr, and a Button instance and sets the
loader autoload property to false so that loading does not begin until a call to the load()
method is made. Next the example sets contentPath to the web location of an image and
creates a listener for a click event on the button. When the user clicks the button, the event
handler calls my_ldr.load() to load the image. The event handler also disables the button.

Drag a Loader component and a Button component from the Component panel to the
Library, then add the following code to the first frame of the timeline.
/**
 Requires:
 - Loader component in Library.
 - Button component in Library.
*/

System.security.allowDomain("http://www.flash-mx.com");

//Create loader instance.
this.createClassObject(mx.controls.Loader, "my_ldr", 10);
this.createClassObject(mx.controls.Button, "load_button", 20, {label:"Load

image"});

my_ldr.move(0, 30);

my_ldr.autoLoad = false;
my_ldr.contentPath = "http://www.flash-mx.com/images/image1.jpg";

var loadListener:Object = new Object();
loadListener.click = function (evt_obj:Object) {
 my_ldr.load();
 load_button.enabled = false;
}
load_button.addEventListener("click", loadListener);
Loader.load() 827

Loader.percentLoaded
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.percentLoaded

Description

Property (read-only); a number indicating what percent of the content has loaded. Typically,
this property is used to present the progress to the user in an easily readable form. Use the
following code to round the figure to the nearest integer:
Math.round(bytesLoaded/bytesTotal*100))

Example

The following example creates a Loader instance and then creates a listener object with a
progress handler that traces the percent loaded and sends it to the Output panel:
import mx.controls.Loader;
this.createClassObject(Loader, "my_ldr", 999);
var loadListener:Object = new Object();
loadListener.progress = function(eventObj) {

// eventObj.target is the component that generated the progress event,
// that is, the loader.
trace("The image is "+my_ldr.percentLoaded+"% loaded.");
// Track loading progress.

};
my_ldr.addEventListener("progress", loadListener);
my_ldr.contentPath = "http://www.flash-mx.com/images/image2.jpg";

Loader.progress
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
828 Loader component

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObj:Object) {

// ...
};
loaderInstance.addEventListener("progress", listenerObject);

Usage 2:
on (progress) {

// ...
}

Description

Event; broadcast to all registered listeners while content is loading. This event occurs when
the load is triggered by the autoload parameter or by a call to Loader.load(). The progress
event is not always broadcast, and the complete event may be broadcast without any
progress events being dispatched. This can happen if the loaded content is a local file.

The first usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, progress) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a Loader
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the Loader instance
myLoaderComponent, sends “_level0.myLoaderComponent” to the Output panel:
on (progress) {

trace(this);
}

Loader.progress 829

Example

The following code creates a Loader instance and then creates a listener object with an event
handler for the progress event that sends a message to the Output panel telling what percent
of the content has loaded:
//Create loader instance.
this.createClassObject(mx.controls.Loader, "my_ldr", 10);

//Create listener object.
var loaderListener:Object = new Object();
loaderListener.progress = function(evt_obj:Object){
 // evt_obj.target is the component that generated the progress event,
 // that is, the loader.
 trace("image is " + my_ldr.percentLoaded + "% loaded.");
}

//Add Listener.
my_ldr.addEventListener("progress", loaderListener);

//Assign content path of loader.
my_ldr.contentPath = "http://www.flash-mx.com/images/image1.jpg";

Loader.scaleContent
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
loaderInstance.scaleContent

Description

Property; indicates whether the content scales to fit the loader (true), or the loader scales to fit
the content (false). The default value is true.

Example

The following code tells the loader to resize itself to match the size of its content:
my_ldr.scaleContent = false;
830 Loader component

29

CHAPTER 29

Media components (Flash
Professional only)
The streaming media components make it easy to incorporate streaming media into
Macromedia Flash presentations. These components let you present your media in a variety
of ways.

You can use the following three media components:

■ The MediaDisplay component lets media stream into your Flash content without a
supporting user interface. You can use this component with video and audio data. When
you use this component by itself, the user has no control over the media.

■ The MediaController component provides standard user interface controls (play, pause,
and so on) for media playback. Media is never loaded into or played by this component; it
is used only for controlling playback in a MediaPlayback or MediaDisplay instance. The
MediaController component features a “drawer,” which displays the contents of the
playback controls when the mouse is positioned over the component.

■ The MediaPlayback component is a combination of the MediaDisplay and
MediaController components; it provides methods to stream your media content.

Bear in mind these points about media components:

■ The media components require Flash Player 6 or later. In Flash Player 6, media
components support FLV files only through Flash Communication Server, not
through HTTP.

■ The media components do not support scan forward and scan backward functionality.
However, you can effect this functionality by moving the playback slider.

■ Only component size and controller policy are reflected in the live preview.
■ The media components do not support accessibility.
831

Interacting with media components
(Flash Professional only)
The streaming MediaPlayback and MediaController components respond to mouse and
keyboard activity; the MediaDisplay component does not. The following table summarizes
the actions for the MediaPlayback and MediaController components upon receiving focus:

Target Navigation Description

Playback controls
of a given controller

Mouse rollover The button is highlighted.

Playback controls
of a given controller

Single click of left
mouse button

Users can click the playback controls to
manipulate the playback of audio and video media.
The Pause/Play and Go to Beginning/Go to End
buttons behave as standard buttons. When the
mouse button is pressed, the onscreen button
highlights in its pressed state, and when the mouse
button is released, the onscreen button reverts to
its unselected appearance.
The Go to End button is disabled when FLV media
files are playing.

Slider controls of a
given controller

Move slider back
and forth

The playbar indicates the user’s position within the
media; the playback slider moves horizontally (by
default) to indicate the playback from beginning
(left) to end (right). The slider moves from bottom
to top when the controls are oriented vertically. As
the slider moves from left to right, it highlights the
previous display space to indicate that this content
has been played back or selected. Display space
ahead of the slider remains unhighlighted until the
slider passes. Users can drag the slider to affect
the media’s playback position. If media is playing,
automatic playback begins from the point at which
the mouse is released. If the media is paused, the
user can move and release the slider and the media
remains paused.
There is also a volume slider, which moves from left
(muted) to right (maximum volume) in both the
horizontal and vertical layouts.
832 Media components (Flash Professional only)

Understanding media components (Flash
Professional only)
This section provides an overview of how the media components work. Most of the properties
listed in this section can be set with the Component inspector. (See “Using the Component
inspector with media components” on page 840.)

Apart from the layout properties discussed later in this section, the following properties can be
set for the MediaDisplay and MediaPlayback components:

■ The media type, which can be set to MP3 or FLV (see Media.mediaType and
Media.setMedia()).

■ The relative or absolute content path, which holds the media file to be streamed (see
Media.contentPath).

■ Cue point objects, along with their name, time, and player properties (see
Media.addCuePoint() and Media.cuePoints). The name of the cue point is arbitrary;
use a name that will have meaning when using listener and trace events. A cue point
broadcasts a cuePoint event when the value of its time property is equal to that of the
playhead location of the MediaPlayback or MediaDisplay component with which it is
associated. The player property is a reference to the MediaPlayback instance with which it
is associated. You can remove cue points by using Media.removeCuePoint() and
Media.removeAllCuePoints().

Playback controller
navigation

Tab, Shift+Tab Moves the focus from button to button within the
controller component, where the focused element
becomes highlighted. This navigation works with
the Pause/Play, Go to Beginning, Go to End,
Volume Mute, and Volume Max controls. The focus
moves from left to right and top to bottom as users
tab through the elements. Shift+Tab moves focus
from right to left and bottom to top. Upon receiving
focus through the Tab key, the control immediately
passes focus to the Play/Pause button. When
focus is on the Volume Max button, and then Tab is
pressed, the focus moves to the next control in the
tab index on the Stage.

A given control
button

Spacebar or Enter/
Return

Selects the element in focus. On press, the button
appears in its pressed state. On release, the button
reverts back to its focused, mouse-over state.

Target Navigation Description
Understanding media components (Flash Professional only) 833

The streaming media components broadcast several related events. The following broadcast
events can be used to set other items in motion:

■ A change event is broadcast continuously by the MediaDisplay and MediaPlayback
components while media is playing. (See Media.change.)

■ A progress event is continuously broadcast by the MediaDisplay and MediaPlayback
components while media is loading. (See Media.progress.)

■ A click event is broadcast by the MediaController and MediaPlayback components
whenever the user clicks the Pause/Play button. In this case, the detail property of the
event object provides information on which button was clicked. (See Media.click.)

■ A volume event is broadcast by the MediaController and MediaPlayback components
when the user adjusts the volume controls. (See Media.volume.)

■ A playheadChange event is broadcast by the MediaController and MediaPlayback
components when the user moves the playback slider or when the Go to Beginning or Go
to End buttons are clicked. (See Media.playheadChange.)

The MediaDisplay component works with the MediaController component. Combined, the
components behave in a manner similar to the MediaPlayback component, but they give you
more flexibility in the look and feel of your media presentation.

Understanding the MediaDisplay component
When you place a MediaDisplay component on the Stage, it has no user interface. It is simply
a container to hold and play media. The following properties affect the appearance of video
media playing in a MediaDisplay component:

■ Media.aspectRatio

■ Media.autoSize

■ Height (in the Property inspector)
■ Width (in the Property inspector)

The Media.aspectRatio property takes precedence over the other properties. When
Media.aspectRatio is set to true (the default), the component always readjusts the size of
the playing media to maintain the media’s aspect ratio.

N
O

T
E

The user does not see anything unless some media is playing.
834 Media components (Flash Professional only)

For FLV files, when Media.autoSize is set to true, the media is displayed at its preferred
size, regardless of the size of the component. This means that if the size of the MediaDisplay
instance is different from the size of the media, the media either spills out of the instance
boundaries or does not fill the instance size. When Media.autoSize is set to false, Flash
uses the instance size as much as possible, while honoring the aspect ratio. If both
Media.autoSize and Media.aspectRatio are set to false, the exact size of the component
is used.

The MediaDisplay component also supports the Media.volume property. This property takes
on integer values from 0 (mute) to 100 (maximum volume). The default setting is 75.

Understanding the MediaController component
The interface for the MediaController component depends on its Media.controllerPolicy
and Media.backgroundStyle properties. The Media.controllerPolicy property
determines if the media control set is always visible, collapsed, or only visible when the mouse
hovers over the control portion of the component. When collapsed, the controller draws a
modified progress bar, which is a combination of the loadbar and the playbar. It shows the
progress of the bytes being loaded at the bottom of the bar, and the progress of the playhead
just above it. When expanded, the controller draws an enhanced version of the playbar/
loadbar, which contains the following items:

■ Text labels on the left that indicate the playback state (streaming or paused), and on the
right that indicate playhead location, in seconds

■ A playhead location indicator
■ A slider, which users can drag to navigate through the media

The MediaController component also provides the following items:

■ A Play/Pause button
■ Go to Beginning and Go to End buttons, which navigate to the beginning and end of the

media, respectively
■ A volume control that consists of a slider, a mute button, and a maximum volume button

Both the collapsed and expanded states of the MediaController component use the
Media.backgroundStyle property. This property determines whether the controller draws a
chrome background (the default) or allows the media background to display from behind
the controls.

N
O

T
E

Since there is no image to show with MP3 files, setting Media.autoSize would have no
effect. For MP3 files, the minimum usable size is 60 pixels high by 256 pixels wide in the
default orientation.
Understanding media components (Flash Professional only) 835

The MediaController component has an orientation setting, Media.horizontal, which you
can use to draw the component with a horizontal orientation (the default) or a vertical one.
With a horizontal orientation, the playbar tracks playing media from left to right. With a
vertical orientation, the playbar tracks media from bottom to top.

You can associate the MediaDisplay and MediaController components with each other by
using the Media.associateDisplay() and Media.associateController() methods.
These methods allow the MediaController instance to update its controls based on events
broadcast from the MediaDisplay instance, and allow the MediaDisplay component to react
to user settings in the MediaController.

Understanding the MediaPlayback component
The MediaPlayback contains the MediaController and MediaDisplay subcomponents. The
MediaController and MediaDisplay portions always scale to fit the size of the overall
MediaPlayback instance.

The MediaPlayback component uses Media.controlPlacement to determine the layout of
the controls. By setting this property to top, bottom, left, or right, you can indicate where
the controls are drawn in relation to the display. For example, a value of right gives a control
a vertical orientation and positions it on the right of the display.

Using media components (Flash
Professional only)
With the sharp increase in the use of media to provide information to web users, many
developers want their users to be able to stream media and then control it. You might use
media components in the following kinds of situations:

■ Showing media that introduces a company
■ Streaming movies or movie previews
■ Streaming songs or song snippets
■ Providing learning material in the form of media

Using the MediaPlayback component
Suppose you must develop a website that allows users to preview DVDs and CDs that you sell
in a rich media environment. The following example shows the steps involves. (It assumes
your website is ready for inserting streaming components.)
836 Media components (Flash Professional only)

To create a Flash document that displays a CD or DVD preview:

1. Select File > New; then select Flash Document.

2. Open the Components panel and double-click the MediaPlayback component to place an
instance of it on the Stage.

3. Select the MediaPlayback component instance and enter the instance name myMedia in
the Property inspector.

4. In the Component inspector, set your media type according to the type of media that will
be streaming (MP3 or FLV).

5. If you selected FLV, enter the duration of the video in the Video Length text boxes; use the
format HH:MM:SS.

6. Enter the location of your preview video in the URL text box. For example, you might
enter www.helpexamples.com/flash/video/clouds.flv.

7. Set the desired options for the Automatically Play, Use Preferred Media Size, and Respect
Aspect Ratio check boxes.

8. Set the control placement to the desired side of the MediaPlayback component.

9. Add a cue point toward the end of the media by clicking the Add (+) button; this cue point
is used with a listener to open a pop-up window that announces that the movie is on sale.
Give the cue point the name cuePointName and a position near the end of your media
duration.

10. Drag a Window component from the Components panel to the current document’s
library.

This places a symbol called Window in your library, and makes the Window component
available to your SWF file at runtime.

11. Create a text box and write some text informing the user that the movie is on sale.

12. Select Modify > Convert to Symbol to convert the text box to a movie clip, and name it
mySale_mc.

13. Right-click (Windows) or Control-click (Macintosh) the mySale_mc movie clip in the
library, select Linkage, and select Export for ActionScript.

This places the movie clip in your runtime library.
Using media components (Flash Professional only) 837

14. Add the following ActionScript to Frame 1. This code creates a listener to open a pop-up
window informing the user that the movie is on sale.
// Import the classes necessary to create the pop-up window dynamically.

import mx.containers.Window;
import mx.managers.PopUpManager;

// Create a listener object to open sale pop-up.
var saleListener:Object = new Object();

saleListener.cuePoint = function(eventObj:Object) {

var saleWin:MovieClip = PopUpManager.createPopUp(_root, Window, false,
{closeButton:true, title:"Movie Sale", contentPath:"mySale_mc"});

// Enlarge the window so that the content fits.

saleWin.setSize(80, 80);
var delSaleWin:Object = new Object();
delSaleWin.click = function(eventObj:Object) {

saleWin.deletePopUp();
}
saleWin.addEventListener("click", delSaleWin);

}

myMedia.addEventListener("cuePoint", saleListener);

15. Select Control > Test Movie to test the SWF file.

When the application reaches the playback time of the cuePointName cue point, a
window pops up to show your message.

Using the MediaDisplay and MediaController
components
If you want a lot of control over the look and feel of your media display, you may want to use
the MediaDisplay and MediaController components together. The following example creates
a Flash application that displays your CD and DVD preview media.
838 Media components (Flash Professional only)

To create a Flash document that displays a CD or DVD preview:

1. In Flash, select File > New; then select Flash Document.

2. From the Components panel, drag a MediaController and a MediaDisplay component to
the Stage.

3. Select the MediaDisplay instance and enter the instance name myDisplay in the
Property inspector.

4. Select the MediaController instance and enter the instance name myController in the
Property inspector.

5. Select the MediaDisplay instance, and open the Component inspector, Parameters tab. Set
your media type according to the type of media that will be streaming (MP3 or FLV).

6. If you selected FLV, enter the duration of the video in the Video Length text boxes using
the format HH:MM:SS.

7. Enter the location of your preview video in the URL text box. For example, you might
enter www.helpexamples.com/flash/video/clouds.flv.

8. Set the desired options for the Automatically Play, Use Preferred Media Size, and Respect
Aspect Ratio check boxes.

9. Select the MediaController instance and, in the Component inspector, Parameters tab, set
your orientation to vertical by setting the horizontal property to false.

10. In the Component inspector, Parameters tab, set backgroundStyle to none.

This specifies that the MediaController instance should not draw a background but
should instead fill the media between the controls.
Next, you’ll use a behavior to associate the MediaController and MediaDisplay instances
so that the MediaController instance accurately reflects the playhead movement and other
settings in the MediaDisplay instance, and so that the MediaDisplay instance responds to
user clicks.

11. With the MediaController instance still selected, open the Behaviors panel (Window >
Behaviors).

12. In the Behaviors panel, click the Add (+) button, and select Media > Associate Display.

13. In the Associate Display window, select myDisplay under _root, and click OK.

For more information on using behaviors with media components, see “Controlling media
components by using behaviors” on page 841.
Using media components (Flash Professional only) 839

Using the Component inspector with media
components
The Component inspector makes it easy to set media component parameters, properties, and
so on. To use this panel, click the desired component on the Stage and, with the Property
inspector open, click Launch Component Inspector. The Component inspector can be used
for the following purposes:

■ To automatically play the media (see Media.activePlayControl and Media.autoPlay)
■ To keep or ignore the media’s aspect ratio (see Media.aspectRatio)
■ To determine if the media will be automatically sized to fit the component instance (see

Media.autoSize)
■ To enable or disable the chrome background (see Media.backgroundStyle)
■ To specify the path to your media in the form of a URL (see Media.contentPath)
■ To specify the visibility of the playback controls (see Media.controllerPolicy)
■ To add cue point objects (see Media.addCuePoint())
■ To delete cue point objects (see Media.removeCuePoint())
■ To set the orientation of MediaController instances (see Media.horizontal)
■ To set the type of media being played (see Media.setMedia())
■ To set the play time of the FLV media (see Media.totalTime)
■ To set the last few digits of the time display to indicate milliseconds or frames per

second (fps)

It is important to understand a few concepts when working with the Component inspector:

■ The video time control is not available when you select an MP3 video type, because this
information is automatically read in when MP3 files are used. For FLV files created with
Flash Video Exporter 1.0, you must enter the total time of the media (Media.totalTime)
in order for the playbar of the MediaPlayback component (or any listening
MediaController component) to accurately reflect play progress. FLV files created with
Flash Video Exporter 1.1 or later set the duration automatically.
840 Media components (Flash Professional only)

■ With the file type set to FLV, you’ll notice a Milliseconds option and (if Milliseconds is
unselected) a Frames Per Second (FPS) pop-up menu. When Milliseconds is selected, the
FPS control is not visible. In this mode, the time displayed in the playbar at runtime is
formatted as HH:MM:SS.mmm (H = hours, M = minutes, S = seconds, m = milliseconds),
and cue points are set in seconds. When Milliseconds is unselected, the FPS control is
enabled and the playbar time is formatted as HH:MM:SS.FF (F = frames per second),
while cue points are set in frames.

Controlling media components by using behaviors
Behaviors are prewritten ActionScript scripts that you add to an instance, such as a
MediaDisplay component, to control that object. Behaviors let you add the power, control,
and flexibility of ActionScript coding to your document without having to create the
ActionScript code yourself.

To control a media component with a behavior, you use the Behaviors panel to apply the
behavior to a given media component instance. You specify the event that triggers the
behavior (such as reaching a specified cue point), select a target object (the media components
that are affected by the behavior), and, if necessary, select settings for the behavior (such as the
movie clip within the media to navigate to).

The following behaviors are packaged with Flash Professional 8 and are used to control
embedded media components.

N
O

T
E

You can set the FPS value only by using the Component inspector. Setting an fps
value by using ActionScript has no effect and is ignored.

Behavior Purpose Parameters

Associate
Controller

Associates a MediaController
component with a MediaDisplay
component

Instance name of target
MediaController components

Associate Display Associates a MediaDisplay component
with a MediaController component

Instance name of target
MediaController components

Labeled Frame
CuePoint
Navigation

Places an action on a MediaDisplay or
MediaPlayback instance that tells an
indicated movie clip to navigate to a
frame with the same name as a given
cue point

Name of frame and name of
cue point (the names should be
equal)

Slide CuePoint
Navigation

Makes a slide-based Flash document
navigate to a slide with the same name
as a given cue point

Name of slide and name of cue
point (the names should be
equal)
Using media components (Flash Professional only) 841

To associate a MediaDisplay component with a MediaController component:

1. Place a MediaDisplay instance and a MediaController instance on the Stage.

2. Select the MediaDisplay instance and, using the Property inspector, enter the instance
name myMediaDisplay.

3. Select the MediaController instance that will trigger the behavior.

4. In the Behaviors panel, click the Add (+) button and select Media > Associate Display.

5. In the Associate Display window, select myMediaDisplay under _root and click OK.

To associate a MediaController component with a MediaDisplay component:

1. Place a MediaDisplay instance and a MediaController instance on the Stage.

2. Select the MediaController instance and, using the Property inspector, enter the instance
name myMediaController.

3. Select the MediaDisplay instance that will trigger the behavior.

4. In the Behaviors panel, click the Add (+) button and select Media > Associate Controller.

5. In the Associate Controller window, select myMediaController under _root and
click OK.

To use a Labeled Frame CuePoint Navigation behavior:

1. Place a MediaDisplay or MediaPlayback component instance on the Stage.

2. Select the desired frame that you want the media to navigate to and, using the Property
inspector, enter the frame name myLabeledFrame.

3. Select your MediaDisplay or MediaPlayback instance.

4. In the Component inspector, click the Add (+) button and enter the cue point time in the
format HH:MM:SS:mmm or HH:MM:SS:FF, and give the cue point the name
myLabeledFrame.

The cue point indicates the amount of time that should elapse before you navigate to the
selected frame. For example, if you want to jump to myLabeledFrame 5 seconds into the
media, enter 5 in the SS text box and enter myLabeledFrame in the Name text box.

5. In the Behaviors panel, click the Add (+) button and select Media > Labeled Frame
CuePoint Navigation.

6. In the Labeled Frame CuePoint Navigation window, select the _root clip and click OK.

N
O

T
E

If you have associated the MediaDisplay component with the MediaController
component, you do not need to associate the MediaController component with the
MediaDisplay component.
842 Media components (Flash Professional only)

To use a Slide CuePoint Navigation behavior:

1. Open your new document as a Flash slide presentation.

2. Place a MediaDisplay or MediaPlayback component instance on the Stage.

3. In the Screen Outline pane to the left of the Stage, click the Insert Screen (+) button to add
a second slide; then select the second slide and rename it mySlide.

4. Select your MediaDisplay or MediaController instance.

5. In the Component inspector, click the Add (+) button and enter the cue point time in the
format HH:MM:SS:mmm or HH:MM:SS:FF, and give the cue point the name MySlide.

The cue point indicates the amount of time that should elapse before you navigate to the
selected slide. For example, if you want to jump to mySlide 5 seconds into the media,
enter 5 in the SS text box and enter mySlide in the Name text box.

6. In the Behaviors panel, click the Add (+) button and select Media > Slide CuePoint
Navigation.

7. In the Slide CuePoint Navigation window, select Presentation under the _root clip and
click OK.

Media component parameters (Flash
Professional only)
The following tables list MediaDisplay, MediaController, and MediaPlayback authoring
parameters that you can set for a given media component instance in the Property inspector.

MediaDisplay parameters

Name Type Default
value

Description

Automatically Play
(Media.autoPlay)

Boolean Selected Determines if the media plays as soon
as it has loaded.

Use Preferred Media Size
(Media.autoSize)

Boolean Selected Determines whether the media
associated with the MediaDisplay
instance conforms to the component
size or simply uses its default size.

FPS Integer 30 Indicates the number of frames per
second. When the Milliseconds option
is selected, this control is disabled.
Media component parameters (Flash Professional only) 843

MediaController parameters

Cue Points
(Media.cuePoints)

Array Undefined An array of cue point objects, each with
a name and position in time in a valid
HH:MM:SS:FF (Milliseconds option
selected) or HH:MM:SS:mmm format.

FLV or MP3
(Media.mediaType)

FLV or
MP3

FLV Designates the type of media to be
played.

Milliseconds Boolean Unselected Determines whether the playbar uses
frames or milliseconds, and whether the
cue points use seconds or frames.
When this option is selected, the FPS
control is not visible.

URL (Media.contentPath) String Undefined A string that holds the path and filename
of the media to be played.

Video Length
(Media.totalTime)

Integer Undefined The total time needed to play the FLV
media. This setting is required in order
for the playbar to work correctly. This
control is only visible when the media
type is set to FLV.

Name Type Default
value

Description

activePlayControl
(Media.activePlayControl)

String:
pause or
play

pause Determines whether the playbar is in
play or pause mode upon instantiation.
This mode determines the image
displayed on the Play/Pause button,
which is the opposite of the playing/
paused state that the controller is
actually in.

backgroundStyle
(Media.backgroundStyle)

String:
default
or none

default Determines whether the chrome
background is drawn for the
MediaController instance.

controllerPolicy
(Media.controllerPolicy)

String:
auto, on,
or off

auto Determines whether the controller
opens or closes according to mouse
position, or is locked in the open or
closed state.

Name Type Default
value

Description
844 Media components (Flash Professional only)

MediaPlayback parameters

horizontal
(Media.horizontal)

Boolean true Determines whether the controller
portion of the instance is vertically or
horizontally oriented. A true value
indicates that the component has a
horizontal orientation.

enabled Boolean true Determines whether this control can be
modified by the user. A true value
indicates that the control can be
modified.

visible Boolean true Determines whether this control is
viewable by the user. A true value
indicates that the control is viewable.

Name Type Default
value

Description

Control Placement
(Media.controlPlacement)

String:
top,
bottom,
left,
right

bottom Position of the controller. The value is
related to orientation.

Control Visibility
(Media.controllerPolicy)

Boolean true Determines whether the controller
opens or closes according to mouse
position.

Automatically Play
(Media.autoPlay)

Boolean true Determines whether the media plays as
soon as it loads.

Use Preferred Media
Size (Media.autoSize)

Boolean true Determines whether the
MediaController instance sizes to fit the
media or uses other settings.

FPS Integer 30 Number of frames per second. When
the Milliseconds option is selected, this
control is disabled.

Cue Points
(Media.cuePoints)

Array undefined An array of cue point objects, each with
a name and position in time in a valid
HH:MM:SS:mmm (Milliseconds option
selected) or HH:MM:SS:FF format.

Name Type Default
value

Description
Media component parameters (Flash Professional only) 845

Creating applications with media
components (Flash Professional only)
Creating Flash content by using media components is quite simple and often requires only a
few steps. This example shows how to create an application to play a small, publicly available
media file.

To add a media component to an application:

1. In Flash, select File > New; then select Flash Document.

2. In the Components panel, double-click the MediaPlayback component to add it to
the Stage.

3. In the Property inspector, do the following:

■ Enter the instance name myMedia.
■ Click Launch Component Inspector.

4. In the Component inspector, enter http://www.helpexamples.com/flash/video/water.flv
in the URL text box.

5. Select Control > Test Movie to see the media play.

FLV or MP3
(Media.mediaType)

String:
FLV or
MP3

FLV Designates the type of media to be
played.

Milliseconds Boolean false Determines whether the playbar uses
frames or milliseconds, and whether the
cue points use seconds or frames.
When this option is selected, the FPS
control is disabled.

URL (Media.contentPath) String undefined A string that holds the path and
filename of the media to be played.

Video Length
(Media.totalTime)

Integer undefined The total time needed to play the FLV
media. This setting is required for the
playbar to work correctly.

Name Type Default
value

Description
846 Media components (Flash Professional only)

Customizing media components (Flash
Professional only)
If you want to change the appearance of your media components, you can use skinning. For a
complete guide to component customization, see Chapter 5, “Customizing Components” in
Using Components.

Using styles with media components
The media components do not use styles.

Using skins with media components
The media components do not support dynamic skinning, although you can open the media
component source document and change their assets to achieve the desired look. It is best to
make a copy of this file and work from the copy, so that you always have the installed source
to go back to. You can find the media component source document at the following locations:

■ Windows: C:\Program Files\Macromedia\Flash 8\<language>\Configuration\
ComponentFLA\MediaComponents.fla

■ Macintosh: HD/Applications/Macromedia Flash 8/Configuration/ComponentFLA/
MediaComponents.fla

Media class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > Media

ActionScript Class Names mx.controls.MediaController, mx.controls.MediaDisplay,
mx.controls.MediaPlayback

Each component class has a version property, which is a class property. Class properties are
available only for the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.MediaPlayback.version);

N
O

T
E

The code trace(myMediaInstance.version); returns undefined.
Media class (Flash Professional only) 847

Method summary for the Media class
The following table lists methods of the Media class.

Method Components Description

Media.addCuePoint() MediaDisplay,
MediaPlayback

Adds a cue point object to the
component instance.

Media.associateController() MediaDisplay Associates a MediaDisplay instance with a
MediaController instance.

Media.associateDisplay() MediaController Associates a MediaController instance with
a MediaDisplay instance.

Media.displayFull() MediaPlayback Converts the component instance to full-
screen playback mode.

Media.displayNormal() MediaPlayback Converts the component instance back to its
original screen size.

Media.getCuePoint() MediaDisplay,
MediaPlayback

Returns a cue point object.

Media.pause() MediaDisplay,
MediaPlayback

Pauses the playhead at its current location in
the media timeline.

Media.play() MediaDisplay,
MediaPlayback

Plays the media associated with the
component instance at a given starting
point.

Media.removeAllCuePoints() MediaDisplay,
MediaPlayback

Deletes all cue point objects associated with
a given component instance.

Media.removeCuePoint() MediaDisplay,
MediaPlayback

Deletes a specified cue point associated
with a given component instance.

Media.setMedia() MediaDisplay,
MediaPlayback

Sets the media type and path to the
specified media type.

Media.stop() MediaDisplay,
MediaPlayback

Stops the playhead and moves it to position
0, which is the beginning of the media.
848 Media components (Flash Professional only)

Property summary for the Media class
The following table lists properties of the Media class.

Property Components Description

Media.activePlayControl MediaController Determines the component state when
loaded at runtime.

Media.aspectRatio MediaDisplay,
MediaPlayback

Determines if the component instance
maintains its video aspect ratio.

Media.autoPlay MediaDisplay,
MediaPlayback

Determines if the component instance
immediately starts to buffer and play.

Media.autoSize MediaDisplay,
MediaPlayback

Determines the size of the media-viewing
portion of the MediaDisplay or
MediaPlayback component.

Media.backgroundStyle MediaController Determines if the component instance
draws its chrome background.

Media.bytesLoaded MediaDisplay,
MediaPlayback

Read-only; the number of bytes loaded that
are available for playing.

Media.bytesTotal MediaDisplay,
MediaPlayback

The number of bytes to be loaded into the
component instance.

Media.contentPath MediaDisplay,
MediaPlayback

A string that holds the relative path and
filename of the media to be streamed and
played.

Media.controllerPolicy MediaController
,
MediaPlayback

Determines whether the controller is hidden
when instantiated and only appears when
the user moves the mouse over the
controller’s collapsed state.

Media.controlPlacement MediaPlayback Determines where the component’s controls
are positioned.

Media.cuePoints MediaDisplay,
MediaPlayback

An array of cue point objects that have been
assigned to a given component instance.

Media.horizontal MediaController Determines the orientation of the
component instance.

Media.mediaType MediaDisplay,
MediaPlayback

Determines the type of media to be played.

Media.playheadTime MediaDisplay,
MediaPlayback

Holds the current position of the playhead
(in seconds) for the media timeline that is
playing.
Media class (Flash Professional only) 849

Event summary for the Media class
The following table lists events of the Media class.

Media.playing MediaDisplay,
MediaPlayback,
MediaController

For MediaDisplay and MediaPlayback, this
property is read-only and returns a Boolean
value to indicate whether a given component
instance is playing media. For
MediaController, this property is read/write
and controls the image (playing or paused)
displayed on the Play/Pause button of the
controller.

Media.preferredHeight MediaDisplay,
MediaPlayback

The default value of the height of a FLV file.

Media.preferredWidth MediaDisplay,
MediaPlayback

The default value of the width of a FLV file.

Media.totalTime MediaDisplay,
MediaPlayback

An integer that indicates the total length of
the media, in seconds.

Media.volume MediaDisplay,
MediaPlayback

An integer from 0 (minimum) to 100
(maximum) that represents the volume level.

Event Components Description

Media.change MediaDisplay,
MediaPlayback

Broadcast continuously while media is
playing.

Media.click MediaController,
MediaPlayback

Broadcast when the user clicks the Play/
Pause button.

Media.complete MediaDisplay,
MediaPlayback

Notification that the playhead has reached
the end of the media.

Media.cuePoint MediaDisplay,
MediaPlayback

Notification that the playhead has reached
a given cue point.

Media.playheadChange MediaController,
MediaPlayback

Broadcast by the component instance
when a user moves the playback slider or
clicks the Go to Beginning or Go to End
button.

Media.progress MediaDisplay,
MediaPlayback

Generated continuously until the media has
downloaded completely.

Property Components Description
850 Media components (Flash Professional only)

Media.activePlayControl
Applies to

MediaController.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.activePlayControl

Description

Property; a string value that specifies the state the MediaController component should be in
when it is loaded at runtime. A value of "play" indicates a play state; a value of "pause"
indicates a paused state. Set this property and the autoPlay property such that both indicate
the same state. The default value is "play".

The button image displayed in the MediaController component is the opposite of the current
play/pause state. For example, in the play state, the MediaController displays a pause button,
because that is what would result from the user clicking the button and toggling the state.

Because it indicates the state that the controller is in when it is loaded, the
activePlayControl property must be set before the controller is created, either through the
Property inspector or the Component inspector, if the component is on the Stage. If the
component is being created by ActionScript code, this property must be set in the initObj
parameter. Changing the value of this property after the component has been created has no
effect. The value can be changed only by the user clicking the Play/Pause button.

Example

The following example indicates that the control is paused when first loaded:
myMedia.activePlayControl = "pause";

Media.scrubbing MediaController,
MediaPlayback

Generated when the playhead is dragged.

Media.volume MediaController,
MediaPlayback

Broadcast when the user adjusts the
volume.

Event Components Description
Media.activePlayControl 851

See also

Media.autoPlay

Media.addCuePoint()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.addCuePoint(cuePointName, cuePointTime)

Parameters

cuePointName A string that names the cue point.

cuePointTime A number, in seconds, that indicates when a cuePoint event is broadcast.

Returns

Nothing.

Description

Method; adds a cue point object to a MediaPlayback or MediaDisplay instance. When the
playhead time equals a cue point time, a cuePoint event is broadcast.

Example

The following code adds a cue point called Homerun to myMedia when the playhead time
equals 16 seconds.
myMedia.addCuePoint("Homerun", 16);

See also

Media.cuePoint, Media.cuePoints, Media.getCuePoint(),
Media.removeAllCuePoints(), Media.removeCuePoint()
852 Media components (Flash Professional only)

Media.aspectRatio
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.aspectRatio

Description

Property; a Boolean value that determines whether a MediaDisplay or MediaPlayback
instance maintains its video aspect ratio during playback. A true value indicates that the
aspect ratio should be maintained; a false value indicates that the aspect ratio can change
during playback. The default value is true.

Example

The following example indicates that the aspect ratio can change during playback:
myMedia.aspectRatio = false;

Media.associateController()
Applies to

MediaDisplay.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.associateController(instanceName)
Media.associateController() 853

Parameters

instanceName A string that specifies the instance name of the MediaController component
to associate.

Returns

Nothing.

Description

Method; associates a MediaDisplay instance with a MediaController instance.

If you use Media.associateDisplay() to associate a MediaController instance with a
MediaDisplay instance, you do not need to use Media.associateController().

Example

The following code associates myMedia with myController:
myMedia.associateController(myController);

See also

Media.associateDisplay()

Media.associateDisplay()
Applies to

MediaController.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.associateDisplay(instanceName)

Parameters

instanceName A string that specifies the instance name of the MediaDisplay component
to associate.

Returns

Nothing.
854 Media components (Flash Professional only)

Description

Method; associates a MediaController instance with a MediaDisplay instance.

If you associate a MediaDisplay instance with a MediaController instance by using
Media.associateController(), you do not need to use Media.associateDisplay().

Example

The following code associates myMedia with myDisplay:
myMedia.associateDisplay(myDisplay);

See also

Media.associateController()

Media.autoPlay
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.autoPlay

Description

Property; a Boolean value that determines whether the MediaPlayback or MediaDisplay
instance should immediately start attempting to buffer and play. A true value indicates that
the control buffers and plays at runtime; a false value indicates the control is stopped at
runtime. This property depends on the contentPath and mediaType properties. If
contentPath and mediaType are not set, no playback occurs at runtime. The default value
is true.

Example

The following example indicates that the control is not started when first loaded:
myMedia.autoPlay = false;

See also

Media.contentPath, Media.mediaType
Media.autoPlay 855

Media.autoSize
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.autoSize

Description

Property; a Boolean value that determines the size of the media-viewing portion of the
MediaDisplay or MediaPlayback component.

For the MediaDisplay component, the property behaves as follows:

■ If you set this property to true, Flash displays the media at its preferred size, regardless of
the size of the component. This implies that, unless the MediaDisplay instance size is the
same as the size of the media, the media either spills out of the instance boundaries or does
not fill the instance.

■ If you set this property to false, Flash uses the instance size as much as possible, while
honoring the aspect ratio. If both Media.autoSize and Media.aspectRatio are set to
false, the exact size of the component is used.

For the MediaPlayback component, the property behaves as follows:

■ If you set this property to true, Flash displays the media at its preferred size unless the
media playback area is smaller than the preferred size. If this is the case, Flash shrinks the
media to fit inside the instance and respect the aspect ratio. If the preferred size is smaller
than the media area of the instance, part of the media area goes unused.

■ If you set this property to false, Flash uses the instance size as much as possible, while
honoring the aspect ratio. If both Media.autoSize and Media.aspectRatio are set to
false, the media area of the component is filled. This area is defined as the area above the
controls (in the default layout), minus a surrounding 8-pixel margin that makes up the
edges of the component.

The default value is true.
856 Media components (Flash Professional only)

Example

The following example indicates that the control is not played back according to its
media size:
myMedia.autoSize = false;

See also

Media.aspectRatio

Media.backgroundStyle
Applies to

MediaController.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.backgroundStyle

Description

Property; a string value that indicates which background is drawn for the MediaController
instance. A value of "default" indicates that the chrome background is drawn, and a value of
"none" indicates that no chrome background is drawn. The default value is "default".

This is not a style property and therefore is not affected by style settings.

Example

The following example indicates that the chrome background is not drawn for the control:
myMedia.backgroundStyle = "none";
Media.backgroundStyle 857

Media.bytesLoaded
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.bytesLoaded

Description

Read-only property; the number of bytes already loaded into the component that are available
for playing. The default value is undefined.

Example

The following code creates a variable called PlaybackLoad that is set with the number of
bytes loaded. The variable is then used in a for loop.
// Create variable that holds the number of bytes that are loaded.
var PlaybackLoad:Number = myMedia.bytesLoaded;
// Perform some function until playback is ready.
for (PlaybackLoad < 150) {

someFunction();
}

Media.bytesTotal
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.bytesTotal
858 Media components (Flash Professional only)

Description

Read-only property; the number of bytes to be loaded into the MediaPlayback or
MediaDisplay component. The default value is undefined.

Example

The following example tells the user the size of the media to be streamed:
myTextField.text = myMedia.bytesTotal;

Media.change
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.change = function(eventObject){

// Insert your code here.
}
myMedia.addEventListener("change", listenerObject)

Description

Event; broadcast by the MediaDisplay and MediaPlayback components while the media is
playing. The percentage complete can be retrieved from the component instance.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Media.change event’s event
object has two additional properties:

target A reference to the broadcasting object.

type The string "change", which indicates the type of event.

For more information, see “EventDispatcher class” on page 499.
Media.change 859

Example

The following example uses an object listener to determine the playhead position
(Media.playheadTime), from which the percentage complete can be calculated:
var myPlayerListener:Object = new Object();
myPlayerListener.change = function(eventObj:Object) {

var myPosition:Number = myPlayer.playheadTime;
var myPercentPosition:Number = (myPosition/myPlayer.totalTime);

};
myPlayer.addEventListener("change", myPlayerListener);

See also

Media.playing, Media.pause()

Media.click
Applies to

MediaController, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.click = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("click", listenerObject);

Description

Event; broadcast when the user clicks the Play/Pause button. The detail field can be used to
determine which button was clicked. The Media.click event object has the following
properties:

detail The string "pause" or "play".

target A reference to the MediaController or MediaPlayback instance.

type The string "click".
860 Media components (Flash Professional only)

Example

For a MediaController component instance named myMedia (and with a Window
component in the library), the following example opens a pop-up window when the user
clicks the Play/Pause button:
var myMediaListener:Object = new Object();
myMediaListener.click = function(eventObj:Object) {

mx.managers.PopUpManager.createPopUp(_root, mx.containers.Window, true);
};
myMedia.addEventListener("click", myMediaListener);

Media.complete
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("complete", listenerObject);

Description

Event; notification that the playhead has reached the end of the media. The Media.complete
event object has the following properties:

target A reference to the MediaDisplay or MediaPlayback instance.

type The string "complete".
Media.complete 861

Example

The following example uses an object listener to determine when the media has
finished playing:
var myListener:Object = new Object();
myListener.complete = function(eventObj:Object) {
 trace("media is Finished");
};
myMedia.addEventListener("complete", myListener);

Media.contentPath
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.contentPath

Description

Property; a string that holds the relative path and filename of the media to be streamed and/or
played. Setting the contentPath property is equivalent to calling the Media.setMedia()
method without specifying a mediaType parameter. When no mediaType parameter is set
with Media.setMedia(), the default type is FLV. The default value of the contentPath
property is undefined.

Example

The following example displays the name of the media playing in a text box:
myTextField.text = myMedia.contentPath;

See also

Media.setMedia()
862 Media components (Flash Professional only)

Media.controllerPolicy
Applies to

MediaController, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.controllerPolicy

Description

Property; determines whether the MediaController component (or the controller
subcomponent within the MediaPlayback component) is hidden when instantiated and only
appears when the user moves the mouse over the controller’s collapsed state.

The possible values for this property are as follows:

■ "on" specifies that the controls are always expanded.
■ "off" specifies that the controls are always collapsed.
■ "auto" (the default) specifies that the control remains in the collapsed state until the user

moves the mouse over the hit area. The hit area matches the area in which the collapsed
control is drawn. The control remains expanded until the mouse leaves the hit area.

Example

The following example keeps the controller open at all times:
myMedia.controllerPolicy = "on";

N
O

T
E

The hit area expands and contracts with the controller.
Media.controllerPolicy 863

Media.controlPlacement
Applies to

MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.controlPlacement

Description

Property; determines where the controller portion of the MediaPlayback component is
positioned in relation to its display. The possible values are "top", "bottom", "left", and
"right". The default value is "bottom".

Example

For the following example, the controller portion of the MediaPlayback component is on the
right side:
myMedia.controlPlacement = "right";

Media.cuePoint
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.cuePoint = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("cuePoint", listenerObject);
864 Media components (Flash Professional only)

Description

Event; notification that the playhead has reached the cue point. The Media.cuePoint event
object has the following properties:

cuePointName A string that indicates the name of the cue point.

cuePointTime A number, expressed in frames or seconds, that indicates when the cue point
was reached.

target A reference to the MediaPlayback object if there is one, or to the MediaDisplay
object itself.

type The string "cuePoint".

Example

The following example uses an object listener to determine when a cue point has
been reached:
var myCuePointListener:Object = new Object();
myCuePointListener.cuePoint = function(eventObject:Object){

trace("heard " + eventObject.type + ", " + eventObject.target + ", " +
eventObject.cuePointName + ", " + eventObject.cuePointTime);

};
myPlayback.addEventListener("cuePoint", myCuePointListener);

See also

Media.addCuePoint(), Media.cuePoints, Media.getCuePoint()

Media.cuePoints
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.cuePoints

or
myMedia.cuePoints[N]
Media.cuePoints 865

Description

Property; an array of cue point objects that have been assigned to a MediaPlayback or
MediaDisplay instance. In the array, each cue point object can have a name, a time in seconds
or frames, and a player property (which is the instance name of the component it is associated
with). The default value is an empty array ([]).

Example

The following example deletes the third cue point if playing an action preview:
if (myVariable == actionPreview) {

myMedia.removeCuePoint(myMedia.cuePoints[2]);
}

See also

Media.addCuePoint(), Media.getCuePoint(), Media.removeCuePoint()

Media.displayFull()
Applies to

MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.displayFull()

Returns

Nothing.

Description

Method; sets the MediaPlayback instance to full-screen mode. In this mode, the component
expands to fill the entire Stage. To return the component to its normal size, use
Media.displayNormal().
866 Media components (Flash Professional only)

Example

The following code forces the component to expand to fit the Stage:
myMedia.displayFull();

See also

Media.displayNormal()

Media.displayNormal()
Applies to

MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.displayNormal()

Returns

Nothing.

Description

Method; sets the MediaPlayback instance back to its normal size after a
Media.displayFull() method has been used.

Example

The following code returns a MediaPlayback component to its original size:
myMedia.displayNormal();

See also

Media.displayFull()
Media.displayNormal() 867

Media.getCuePoint()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.getCuePoint(cuePointName)

Parameters

cuePointName The string that was provided when Media.addCuePoint() was used.

Returns

A cue point object.

Description

Method; returns a cue point object based on its cue point name.

Example

The following code retrieves a cue point named myCuePointName.
myMedia.removeCuePoint(myMedia.getCuePoint("myCuePointName"));

See also

Media.addCuePoint(), Media.cuePoint, Media.cuePoints, Media.removeCuePoint()

Media.horizontal
Applies to

MediaController.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
868 Media components (Flash Professional only)

Usage
myMedia.horizontal

Description

Property; determines whether the MediaController component displays itself in a vertical or
horizontal orientation. A true value indicates that the component is displayed in a horizontal
orientation; a false value indicates a vertical orientation. When set to false, the playbar and
playback slider move from bottom to top. The default value is true.

Example

The following example displays the MediaController component in a vertical orientation:
myMedia.horizontal = false;

Media.mediaType
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.mediaType

Description

Property; indicates the type of media (FLV or MP3) to be played. The default value is "FLV".
See “Working with Video” in Using Flash.

Example

The following example determines the current media type being played:
var currentMedia:String = myMedia.mediaType;

See also

Media.setMedia()
Media.mediaType 869

Media.pause()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.pause()

Returns

Nothing,

Description

Method; pauses the playhead at the current location.

Example

The following code pauses the playback.
myMedia.pause();

Media.play()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.play(startingPoint)
870 Media components (Flash Professional only)

Parameters

startingPoint A non-negative integer that indicates the starting point (in seconds) at
which the media should begin playing.

Returns

Nothing.

Description

Method; plays the media associated with the component instance at the given starting point.
The default value is the current value of playheadTime.

Example

The following code indicates that the media component should start playing at 120 seconds:
myMedia.play(120);

See also

Media.pause()

Media.playheadChange
Applies to

MediaController, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.playheadChange = function(eventObject){

// Insert your code here.
}
myMedia.addEventListener("playheadChange", listenerObject)
Media.playheadChange 871

Description

Event; broadcast by the MediaController or MediaPlayback component when the user moves
the playback slider or clicks the Go to Beginning or Go to End button. The
Media.playheadChange event object has the following properties:

detail A number that indicates the percentage of the media that has played.

type The string "playheadChange".

Example

The following example sends the percentage played to the Output panel when the user stops
dragging the playhead:
var controlListen:Object = new Object();
controlListen.playheadChange = function(eventObj:Object) {

trace(eventObject.detail);
};
myMedia.addEventListener("playheadChange", controlListen);

Media.playheadTime
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.playheadTime

Description

Property; holds the current position of the playhead (in seconds) for the media timeline that is
playing. The default value is the location of the playhead.

Example

The following example sets a variable to the location of the playhead, which is indicated
in seconds:
var myPlayhead:Number = myMedia.playheadTime;
872 Media components (Flash Professional only)

Media.playing
Applies to

MediaDisplay, MediaPlayback, MediaController.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.playing

Description

Property; returns a Boolean value that indicates whether the media is playing (true) or paused
(false). This property is read-only for the MediaDisplay and MediaPlayback components,
and read/write for the MediaController component.

Example

The following code determines if the media is playing or paused:
if(myMedia.playing == true){
 some function;
}

See also

Media.change

Media.preferredHeight
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
Media.preferredHeight 873

Usage
myMedia.preferredHeight

Description

Property; set according to a FLV file’s default height value. This property applies only to FLV
media, because the height is fixed for MP3 files. This property can be used to set the height
and width properties (plus some margin for the component itself). The default value is
undefined if no FLV media is set.

Example

The following example sizes a MediaPlayback instance according to the media it is playing
and accounts for the pixel margin needed for the component instance:
if (myPlayback.contentPath != undefined) {

var mediaHeight:Number = myPlayback.preferredHeight;
var mediaWidth:Number = myPlayback.preferredWidth;
myPlayback.setSize((mediaWidth + 20), (mediaHeight + 70));

}

Media.preferredWidth
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.preferredWidth

Description

Property; set according to a FLV file’s default width value. The default value is undefined.

Example

The following example sets the desired width of the variable mediaWidth:
var mediaWidth:Number = myMedia.preferredWidth;
874 Media components (Flash Professional only)

Media.progress
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("progress", listenerObject);

Description

Event; is generated continuously until media has completely downloaded. The
Media.progress event object has the following properties:

target A reference to the MediaDisplay or MediaPlayback instance.

type The string "progress".

Example

The following example listens for progress:
var myProgressListener:Object = new Object();
myProgressListener.progress = function(eventObj:Object) {

// Make lightMovieClip blink while progress is occurring.
var lightVisible:Boolean = lightMovieClip.visible;
lightMovieClip.visible = !lightVisible;

};
Media.progress 875

The following example listens for progress and calls another function if the progress event
continues for more than 3000 milliseconds (3 seconds):
// Duration of delay before calling timeOut.
var timeOut:Number = 3000;

// If timeOut has been reached, do this:
function callback(arg) {

trace(arg);
}

// Listen for progress.
var myListener:Object = new Object();
myListener.progress = function(eventObj:Object) {

setInterval(callback, timeOut, "Experiencing Network Delay");
};
md.addEventListener("progress", myListener);

Media.scrubbing
Applies to

MediaController, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("scrubbing", listenerObject);

Description

Event; generated when the playhead is dragged.

target A reference to the MediaController or MediaPlayback instance.

type The string "scrubbing".
876 Media components (Flash Professional only)

Example

The following example listens for the user to drag the playhead:
my_mp.addEventListener("scrubbing", scrubbingListener);
function scrubbingListener(evt_obj:Object):Void {

trace(evt_obj.type+" @ "+getTimer()+" ms
(isScrubbing="+evt_obj.detail+")");

}

Media.removeAllCuePoints()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.removeAllCuePoints()

Returns

Nothing.

Description

Method; deletes all cue point objects associated with a component instance.

Example

The following code deletes all cue point objects:
myMedia.removeAllCuePoints();

See also

Media.addCuePoint(), Media.cuePoints, Media.removeCuePoint()
Media.removeAllCuePoints() 877

Media.removeCuePoint()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.removeCuePoint(cuePoint)

Parameters

cuePoint A reference to a cue point object that has been assigned previously by means of
Media.addCuePoint().

Returns

Nothing.

Description

Method; deletes a cue point associated with a component instance.

Example

The following code deletes a cue point named myCuePoint:
myMedia.removeCuePoint(getCuePoint("myCuePoint"));

See also

Media.addCuePoint(), Media.cuePoints, Media.removeAllCuePoints()
878 Media components (Flash Professional only)

Media.setMedia()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.setMedia(contentPath [, mediaType])

Parameters

contentPath A string that indicates the URL of the media to be played. The default value
is undefined.

mediaType A string used to set the media type to either FLV or MP3. This parameter
is optional. The default value is FLV.

Returns

Nothing.

Description

Method; sets the media type and path to the specified media type using a URL parameter.

This method provides the recommended way of setting the content path and media type for
the MediaPlayback and MediaDisplay components. The Media.contentPath property can
also be used to set the content path, but does not allow you to set the media type.

If you are working only with FLV files, you do not need to specify a mediaType parameter. If
you are working exclusively with MP3 files, you must set the mediaType parameter to MP3
once. If you are switching back and forth between FLV and MP3 files, you must change the
media type each time in your setMedia() call. If you attempt to play an MP3 file without
explicitly setting the media type to MP3, the file does not play.

Example

The following code provides new media for a component instance to play:
myMedia.setMedia("http://www.helpexamples.com/flash/video/clouds.flv",

"FLV");
Media.setMedia() 879

Media.stop()
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.stop()

Returns

Nothing.

Description

Method; stops the playhead and moves it to position 0, which is the beginning of the media.

Example

The following code stops the playhead and moves it to position 0:
myMedia.stop()

Media.totalTime
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.totalTime
880 Media components (Flash Professional only)

Description

Property; the total length of the media, in seconds. Since the FLV file format does not provide
its play time to a media component until it is completely loaded, you must input
Media.totalTime manually so that the playbar can accurately reflect the actual play time of
the media. The default value for MP3 files is the play time of the media. For FLV files, the
default value is undefined.

You cannot set this property for MP3 files, because the information is contained in the
Sound object.

Example

The following example sets the play time (in seconds) for the FLV media:
myMedia.totalTime = 151;

Media.volume
Applies to

MediaDisplay, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
myMedia.volume

Description

Property; stores an integer that indicates the volume setting, which can range from 0 to 100.
The default value is 75.

Example

The following example sets the maximum volume for media playback:
myMedia.volume = 100;

See also

Media.volume, Media.pause()
Media.volume 881

Media.volume
Applies to

MediaController, MediaPlayback.

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.volume = function(eventObj:Object) {

// ...
};
myMedia.addEventListener("volume", listenerObject);

Description

Event; broadcast when the volume value is adjusted by the user. The Media.volume event
object has the following properties:

detail An integer between 0 and 100 that represents the volume level.

type The string "volume".

Example

The following example informs the user that the volume is being adjusted:
var myVolListener:Object = new Object();
myVolListener.volume = function(eventObj:Object) {
 mytextfield.text = "Volume adjusted!";
};
myMedia.addEventListener("volume", myVolListener);

See also

Media.volume
882 Media components (Flash Professional only)

30

CHAPTER 30

Menu component (Flash
Professional only)
The Menu component lets a user select an item from a pop-up menu, much like the File or
Edit menu of most software applications.

A Menu component usually opens in an application when a user rolls over or clicks a button-
like menu activator. You can also script a Menu component to open when a user presses a
certain key.

Menu components are always created dynamically at runtime. You drag the component from
the Components panel to the library, and then use the following code to create a menu with
ActionScript:
var myMenu = mx.controls.Menu.createMenu(parent, menuDataProvider);

Use the following code to open a menu in an application:
myMenu.show(x, y);

A menuShow event is broadcast to all of the Menu instance’s listeners immediately before the
menu is rendered, so you can update the state of the menu items. Similarly, immediately after
a Menu instance is hidden, a menuHide event is broadcast.

The items in a menu are described by XML. For more information, see “Understanding the
Menu component: view and data” on page 886.

You cannot make the Menu component accessible to screen readers.

Menus are often nested within menu bars. For information about menu bars, see “MenuBar
component (Flash Professional only)” on page 945.
883

Interacting with the Menu component
(Flash Professional only)
You can use the mouse and keyboard to interact with a Menu component.

After a Menu component is opened, it remains visible until it is closed by a script or until the
user clicks the mouse outside the menu or inside an enabled item.

Clicking selects a menu item, except with the following types of menu items:

Disabled items or separators Rollovers and clicks have no effect (the menu remains
visible).

Anchors for a submenu Rollovers activate the submenu; clicks have no effect; rolling onto
any item other than those of the submenu closes the submenu.

When an item is selected, a Menu.change event is sent to all of the menu’s listeners, the menu
is hidden, and the following actions occur, depending on item type:

check The item’s selected attribute is toggled.

radio The item becomes the current selection of its radio group.

Moving the mouse triggers Menu.rollOut and Menu.rollOver events.

Pressing the mouse outside the menu closes the menu and triggers a Menu.menuHide event.

Releasing the mouse in an enabled item affects item types in the following ways:

check The item’s selected attribute is toggled.

radio The item’s selected attribute is set to true, and the previously selected item’s
selected attribute in the radio group is set to false. The selection property of the
corresponding radio group object is set to refer to the selected menu item.

undefined and the parent of a hierarchical menu The visibility of the hierarchical menu
is toggled.
884 Menu component (Flash Professional only)

When a Menu instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Using the Menu component (Flash
Professional only)
You can use the Menu component to create a menu of selectable choices; this menu is like the
File or Edit menu of most software applications. You can also use the Menu component to
create context-sensitive menus that appear when a user clicks a hot spot or a presses a modifier
key. Use the Menu component with the MenuBar component to create a horizontal menu bar
with menus that extend under each menu bar item.

Like standard desktop menus, the Menu component supports menu items whose functions
fall into the following general categories:

Command activators These items trigger events; you write code to handle those events.

Submenu anchors These items are anchors that open submenus.

Radio buttons These items operate in groups; you can select only one item at a time.

Check box items These items represent a Boolean (true or false) value.

Separators These items provide a simple horizontal line that divides the items in a menu
into different visual groups.

Key Description

Down Arrow
Up Arrow

Moves the selection down and up the rows of the menu. The selection
cycles at the top or bottom row.

Right Arrow Opens a submenu, or moves selection to the next menu in a menu bar (if a
menu bar exists).

Left Arrow Closes a submenu and returns focus to the parent menu (if a parent menu
exists), or moves selection to the previous menu in a menu bar (if the menu
bar exists).

Enter Opens a submenu. If a submenu does not exist, this key has the same
effect as clicking and releasing on a row.

N
O

T
E

If a menu is opened, you can press the Tab key to move out of the menu. You must either
make a selection or dismiss the menu by pressing Escape.
Using the Menu component (Flash Professional only) 885

Understanding the Menu component: view and data
Conceptually, the Menu component consists of a data model and a view that displays the
data. The Menu class provides the view and contains the visual configuration methods. The
MenuDataProvider class adds methods to the global XML prototype object (much like the
DataProvider API does to the Array object); these methods let you externally construct data
providers and add them to multiple menu instances. The data provider broadcasts any
changes to all of its client views. (See “MenuDataProvider class” on page 933.)

A Menu instance is a hierarchical collection of XML elements that correspond to individual
menu items. The attributes define the behavior and appearance of the corresponding menu
item on the screen. The collection is easily translated to and from XML, which is used to
describe menus (the menu tag) and items (the menuitem tag). The built-in ActionScript XML
class is the basis for the model underlying the Menu component.

A simple menu with two items can be described in XML with two menu item subelements:
<menu>

<menuitem label="Up" />
<menuitem label="Down" />

</menu>

About hierarchical menus
To create hierarchical menus, embed XML elements within a parent XML element, as follows:
<menu>
 <menuitem label="MenuItem A" >
 <menuitem label="SubMenuItem 1-A" />
 <menuitem label="SubMenuItem 2-A" />
 </menuitem>
 <menuitem label="MenuItem B" >
 <menuitem label="SubMenuItem 1-B" />
 <menuitem label="SubMenuItem 2-B" />
 </menuitem>
</menu>

This converts the parent menu item into a pop-up menu anchor, so it does not generate
events when selected.

N
O

T
E

The tag names of the XML nodes (menu and menuitem) are not important; the attributes
and their nesting relationships are used in the menu.
886 Menu component (Flash Professional only)

About menu item XML attributes
The attributes of a menu item XML element determine what is displayed, how the menu
item behaves, and how it is exposed to ActionScript. The following table describes the
attributes of an XML menu item:

Attribute
name

Type Default Description

label String undefined The text that is displayed to represent a menu
item. This attribute is required for all item
types, except separator.

type separator,
check, radio,
normal, or
undefined

undefined The type of menu item: separator, check box,
radio button, or normal (a command or
submenu activator). If this attribute does not
exist, the default value is normal.

icon String undefined The linkage identifier of an image asset. This
attribute is not required and is not available for
the check, radio, or separator type.

instanceName String undefined An identifier that you can use to reference the
menu item instance from the root menu
instance. For example, a menu item named
yellow can be referenced as myMenu.yellow.
This attribute is not required.

groupName String undefined An identifier that you can use to associate
several radio button items in a radio group,
and to expose the state of a radio group from
the root menu instance. For example, a radio
group named colors can be referenced as
myMenu.colors. This attribute is required only
for the type radio.

selected A Boolean value
(false or true)
or string
("false" or
"true")

false A Boolean or string value indicating whether a
check or radio item is on (true) or off (false).
This attribute is not required.

enabled A Boolean value
(false or true)
or string
("false" or
"true")

true A Boolean or string value indicating whether
this menu item can be selected (true) or not
(false). This attribute is not required.
Using the Menu component (Flash Professional only) 887

About menu item types (Flash
Professional only)
There are four kinds of menu items, specified by the type attribute:
<menu>
 <menuitem label="Normal Item" />
 <menuitem type="separator" />
 <menuitem label="Checkbox Item" type="check" instanceName="check_1"/>
 <menuitem label="RadioButton Item" type="radio"

groupName="radioGroup_1" />
</menu>

Normal menu items
The Normal Item menu item doesn’t have a type attribute, which means that the type
attribute defaults to normal. Normal items can be command activators or submenu
activators, depending on whether they have nested subitems.

Separator menu items
A menu item whose type attribute is set to separator acts as a visual divider in a menu.
The following XML creates three menu items, Top, Middle, and Bottom, with separators
between them:
<menu>
 <menuitem label="Top" />
 <menuitem type="separator" />
 <menuitem label="Middle" />
 <menuitem type="separator" />
 <menuitem label="Bottom" />
</menu>

All separator items are disabled. Clicking on or rolling over a separator has no effect.

Check box menu items
A menu item whose type attribute is set to check acts as check box item in the menu; when
the selected attribute is set to true, a check mark appears beside the menu item’s label.
When a check box item is selected, its state automatically toggles, and a change event is
broadcast to all listeners on the root menu. However, although a check box menu item
behaves similarly to a CheckBox component, a check box menu item appears visually without
the box surrounding the check. So an unselected check box menu item looks like a normal
menu item until selected.
888 Menu component (Flash Professional only)

The following example defines three check box menu items:
<menu>
 <menuitem label="Apples" type="check" instanceName="buyApples"

selected="true" />
 <menuitem label="Oranges" type="check" instanceName="buyOranges"

selected="false" />
 <menuitem label="Bananas" type="check" instanceName="buyBananas"

selected="false" />
</menu>

You can use the instance names in ActionScript to access the menu items directly from the
menu itself, as in the following example:
myMenu.setMenuItemSelected(myMenu.buyapples, true);
myMenu.setMenuItemSelected(myMenu.buyoranges, false);

Radio button menu items
Menu items whose type attribute is set to radio can be grouped together so that only one of
the items can be selected at a time. Although a radio button menu item behaves similarly to a
RadioButton component, a radio button menu item appears visually without the border
surrounding the button. So an unselected radio button menu item looks like a Normal menu
item until selected.

You create a radio group by giving the menu items the same value for their groupName
attribute, as in the following example:
<menu>
 <menuitem label="Center" type="radio" groupName="alignment_group"

instanceName="center_item"/>
 <menuitem type="separator" />
 <menuitem label="Top" type="radio" groupName="alignment_group" />
 <menuitem label="Bottom" type="radio" groupName="alignment_group" />
 <menuitem label="Right" type="radio" groupName="alignment_group" />
 <menuitem label="Left" type="radio" groupName="alignment_group" />
</menu>

N
O

T
E

The selected attribute should be modified only with the setMenuItemSelected() method.
You can directly examine the selected attribute, but it returns a string value of true or
false.
About menu item types (Flash Professional only) 889

When the user selects one of the items, the current selection automatically changes, and a
change event is broadcast to all listeners on the root menu. The currently selected item in a
radio group is available in ActionScript through the selection property, as follows:
var selectedMenuItem = myMenu.alignment_group.selection;
myMenu.alignment_group = myMenu.center_item;

Each groupName value must be unique within the scope of the root menu instance.

Exposing menu items to ActionScript
You can assign each menu item a unique identifier in the instanceName attribute, which
makes the menu item accessible directly from the root menu. For example, the following
XML code provides instanceName attributes for each menu item:
<menu>
 <menuitem label="Item 1" instanceName="item_1" />
 <menuitem label="Item 2" instanceName="item_2" >
 <menuitem label="SubItem A" instanceName="sub_item_A" />
 <menuitem label="SubItem B" instanceName="sub_item_B" />
 </menuitem>
</menu>

You can use ActionScript to access the corresponding instances and their attributes directly
from the menu component, as follows:
var aMenuItem = myMenu.item_1;
myMenu.setMenuItemEnabled(item_2, true);
var aLabel = myMenu.sub_item_A.attributes.label;

N
O

T
E

The selected attribute should be modified only with the setMenuItemSelected() method.
You can directly examine the selected attribute, but it returns a string value of true
or false.

N
O

T
E

Each instanceName attribute must be unique within the scope of the root menu
component instance (including all of the submenus of root).
890 Menu component (Flash Professional only)

About initialization object properties
(Flash Professional only)
The initObject (initialization object) parameter is a fundamental concept in creating the
layout for the Menu component. This parameter is an object with properties. Each property
represents one of the possible the XML attributes of a menu item. (For a description of the
properties allowed in the initObject parameter, see “About menu item XML attributes”
on page 887.)

The initObject parameter is used in the following methods:

■ Menu.addMenuItem()

■ Menu.addMenuItemAt()

■ MenuDataProvider.addMenuItem()

■ MenuDataProvider.addMenuItemAt()

The following example creates an initObject parameter with two properties, label and
instanceName:
var i = myMenu.addMenuItem({label:"myMenuItem",

instanceName:"myFirstItem"});

Several of the properties work together to create a particular type of menu item. You assign
specific properties to create certain types of menu items (normal, separator, check box, or
radio button).

For example, you can initialize a normal menu item with the following initObject
parameter:
myMenu.addMenuItem({label:"myMenuItem", enabled:true, icon:"myIcon",

instanceName:"myFirstItem"});

You can initialize a separator menu item with the following initObject parameter:
myMenu.addMenuItem({type:"separator"});

You can initialize a check box menu item with the following initObject parameter:
myMenu.addMenuItem({type:"check", label:"myMenuCheck", enabled:false,

selected:true, instanceName:"myFirstCheckItem"})

You can initialize a radio button menu item with the following initObject parameter:
myMenu.addMenuItem({type:"radio", label:"myMenuRadio1", enabled:true,

selected:false, groupName:"myRadioGroup",
instanceName:"myFirstRadioItem"})
About initialization object properties (Flash Professional only) 891

You should treat the instanceName, groupName, and type attributes of a menu item as read-
only. You should set them only while creating an item (for example, in a call to
addMenuItem()). Modifying these attributes after creation may produce
unpredictable results.

Menu parameters (Flash Professional
only)
You can set the following authoring parameter for each Menu component instance in the
Property inspector:

rowHeight indicates the height of each row, in pixels. Changing the font size does not change
the row height. The default value is 20.

You can write ActionScript to control the Menu component using its properties, methods,
and events. For more information, see “Menu class (Flash Professional only)” on page 901.

Creating an application with the Menu
component (Flash Professional only)
In the following example, a developer is building an application and uses the Menu
component to expose some of the commands that users can issue, such as Open, Close,
and Save.

To create an application with the Menu component:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the library.

Menus are created dynamically through ActionScript.
3. Drag a Button component from the Components panel to the library.

The button will be used to activate the menu.
892 Menu component (Flash Professional only)

4. In the Actions panel, on the first frame, enter the following code to add an event listener
to listen for click events on the button. The code also listens for a change event on the
menu and displays the name of the selected menu item in the Output panel:
/**
 Requires:
 - Menu component in library
 - Button component in library
*/

import mx.controls.Button;
import mx.controls.Menu;

this.createClassObject(Button, "menu_button", 10, {label:"Launch
Menu"});

// Create a menu.
var my_menu:Menu = Menu.createMenu();

// Add some menu items.
my_menu.addMenuItem("Open");
my_menu.addMenuItem("Close");
my_menu.addMenuItem("Save");
my_menu.addMenuItem("Revert");

// Add a change-listener to Menu to detect which menu item is selected.
var menuListener:Object = new Object();
menuListener.change = function(evt_obj:Object) {
 var item_obj:Object = evt_obj.menuItem;
 trace("Item selected: "+item_obj.attributes.label);
};
my_menu.addEventListener("change", menuListener);

// Add a button listener that displays the menu when the button is
clicked.

var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 var my_button:Button = evt_obj.target;
 // Display the menu at the bottom of the button.
 my_menu.show(my_button.x, my_button.y + my_button.height);
};
menu_button.addEventListener("click", buttonListener);

5. Select Control > Test Movie.

Click the Launch Menu button to display the menu. When you select a menu item, a
trace() statement reports the selection in the Output panel.
Creating an application with the Menu component (Flash Professional only) 893

To use XML data from a server to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the library.

Menus are created dynamically through ActionScript.
3. In the Actions panel, add the following code to the first frame to create a menu, and use

the dataProvider property to load menu items from a web page:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

var my_menu:Menu = Menu.createMenu();

// Import an XML file.
var myDP_xml:XML = new XML();
myDP_xml.ignoreWhite = true;
myDP_xml.onLoad = function(success:Boolean) {
 // When the data arrives, pass it to the menu.
 if (success) {
 my_menu.dataProvider = myDP_xml.firstChild;
 }
};
myDP_xml.load("http://www.flash-mx.com/mm/xml/menu.xml");

// Show and position the menus.
my_menu.show(100, 20);

4. Select Control > Test Movie.

The xml menu definition from the web page is provided here for your reference:
<?xml version="1.0" ?>
<menu>
<menuitem label="Undo" />
<menuitem type="separator" />
<menuitem label="Cut" />
<menuitem label="Copy" />
<menuitem label="Paste" />
<menuitem label="Clear" />
<menuitem type="separator" />
<menuitem label="Select All" />
</menu>

N
O

T
E

The menu items are described by the children of the XML document’s first child.
894 Menu component (Flash Professional only)

To use a well-formed XML string to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the library.

Menus are created dynamically through ActionScript.
3. In the Actions panel, add the following code to the first frame to create a menu and add

some items:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var theMenuElement_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
theMenuElement_obj.addMenuItem({label:"Undo"});
theMenuElement_obj.addMenuItem({type:"separator"});
theMenuElement_obj.addMenuItem({label:"Cut"});
theMenuElement_obj.addMenuItem({label:"Copy"});
theMenuElement_obj.addMenuItem({label:"Paste"});
theMenuElement_obj.addMenuItem({label:"Clear", enabled:"false"});
theMenuElement_obj.addMenuItem({type:"separator"});
theMenuElement_obj.addMenuItem({label:"Select All"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, theMenuElement_obj);

// Show and position the menus.
my_menu.show(100, 20);

4. Select Control > Test Movie.
Creating an application with the Menu component (Flash Professional only) 895

To use the MenuDataProvider class to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the library.

Menus are created dynamically through ActionScript.
3. In the Actions panel, add the following code to the first frame to create a menu and add

some items:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var xml = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var theMenuElement = xml.addMenuItem("XXXXX");

// Add the menu items.
theMenuElement.addMenuItem({label:"Undo"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Cut"});
theMenuElement.addMenuItem({label:"Copy"});
theMenuElement.addMenuItem({label:"Paste"});
theMenuElement.addMenuItem({label:"Clear", enabled:"false"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Select All"});
// Create the Menu object.
var my_menu = mx.controls.Menu.createMenu(_root, theMenuElement);

my_menu.show(100, 20);

4. Select Control > Test Movie.
896 Menu component (Flash Professional only)

Customizing the Menu component (Flash
Professional only)
The menu sizes itself horizontally to fit its widest text. You can also call the setSize()
method to size the component. Icons should be sized to a maximum of 16 by 16 pixels.

Using styles with the Menu component
You can call the setStyle() method to change the style of the menu, its items, and its
submenus.The Menu component supports the following styles:

Style n Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

alternatingRowColors Both Specifies colors for rows in an alternating pattern.
The value can be an array of two or more colors, for
example, 0xFF00FF, 0xCC6699, and 0x996699.
Unlike single-value color styles,
alternatingRowColors does not accept color names;
the values must be numeric color codes. By default,
this style is not set, and backgroundColor is used in its
place for all rows.

backgroundColor Both The background color of the menu. The default color
is white and is defined on the class style declaration.
This style is ignored if alternatingRowColors is
specified.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to “false”. The default value is
0xDDDDDD (medium gray).

borderStyle Both The Menu component uses a RectBorder instance as
its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.

The default border style is "menuBorder".

color Both The text color.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).
Customizing the Menu component (Flash Professional only) 897

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. Otherwise, the embedded font is not
used. If this style is set to true and fontFamily does
not refer to an embedded font, no text is
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The
default value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or
"center". The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value
is 0.

defaultIcon Both The name of the default icon to display on each row.
The default value is undefined, which means no icon is
displayed. The icon property is not required, does not
work for "check", "radio", or "separator" items, and
uses the linkage identifier of an image asset as the
value parameter. All menu items show the same icon.

popupDuration Both The duration of the transition as a menu opens. The
value is specified in milliseconds; 0 indicates no
transition. The default value is 150.

rollOverColor Both The background color of a rolled-over row. The
default value is 0xE3FFD6 (bright green) with the
Halo theme and 0xAAAAAA (light gray) with the
Sample theme.

When themeColor is changed through a setStyle()
call, the framework sets rollOverColor to a value
related to the themeColor chosen.

Style n Description
898 Menu component (Flash Professional only)

Setting styles for all Menu components in a document
The Menu class inherits from the ScrollSelectList class. The default class-level style properties
are defined on the ScrollSelectList class, which is shared by all List-based components. You
can set new default style values on this class directly, and the new settings are reflected in all
affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

selectionColor Both The background color of a selected row. The default
value is a 0xCDFFC1 (light green) with the Halo
theme and 0xEEEEEE (very light gray) with the
Sample theme.

When themeColor is changed through a setStyle()
call, the framework sets selectionColor to a value
related to the themeColor chosen.

selectionDuration Both The length of the transition from a normal to selected
state, in milliseconds. The default value is 200.

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. The default
equation uses a sine in/out formula. For more
information, see “Customizing component
animations” in Using Components.

textRollOverColor Both The color of text when the pointer rolls over. The
default value is 0x2B333C (dark gray). This style is
important when you set rollOverColor, because the
two settings must complement each other so that text
is easily viewable during rollover.

textSelectedColor Both The color of text in the selected row. The default value
is 0x005F33 (dark gray). This style is important
when you set selectionColor, because the two must
complement each other so that text is easily viewable
while selected.

useRollOver Both Determines whether rolling over a row activates
highlighting. The default value is true.

Style n Description
Customizing the Menu component (Flash Professional only) 899

To set a style property on the Menu components only, you can create a new
CSSStyleDeclaration and store it in _global.styles.Menu.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.Menu == undefined) {

_global.styles.Menu = new CSSStyleDeclaration();
}
_global.styles.Menu.setStyle("backgroundColor", 0xFF00AA);

When you create a new class-level style declaration, you lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.Menu;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles see “Setting styles for a component class” in
Using Components.

Using skins with the Menu component
The Menu component uses an instance of RectBorder for its border (see “RectBorder class”
on page 1063).

The Menu component has visual assets for the branch, check mark, radio dot, and separator
graphics. These assets are not dynamically skinnable, but the assets can be copied from the
Flash UI Components 2/Themes/MMDefault/Menu Assets/States folder in both themes, and
can be modified as desired. The linkage identifiers cannot be changed, and all Menu instances
must use the same symbols.

To create movie clip symbols for Menu assets:

1. Create a new FLA file.

2. Select File > Import > Open External Library and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the Menu Assets folder to the library of your document.

4. Expand the Menu Assets/States folder in the library of your document.
900 Menu component (Flash Professional only)

5. Open the symbols that you want to customize for editing.

For example, open the MenuCheckEnabled symbol.
6. Customize the symbol as desired.

For example, change the image to be an X instead of a check mark.
7. Repeat steps 6-7 for all symbols that you want to customize.

8. Click the Back button to return to the main timeline.

9. Drag a Menu component from the Components panel to the current document’s library.

This adds the Menu component to the library and makes it available at runtime.
10. Add ActionScript to the main timeline to create a Menu instance at runtime:

var myMenu = mx.controls.Menu.createMenu();
myMenu.addMenuItem({label: "One", type: "check", selected: true});
myMenu.addMenuItem({label: "Two", type: "check"});
myMenu.addMenuItem({label: "Three", type: "check"});
myMenu.show(0, 0);

11. Select Control > Test Movie.

Menu class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > Menu

ActionScript Class Name mx.controls.Menu

The methods and properties of the Menu class let you create and edit menus at runtime.

Setting a property of the menu class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.Menu.version);

N
O

T
E

The code trace(myMenuInstance.version); returns undefined.
Menu class (Flash Professional only) 901

Method summary for the Menu class
The following table lists methods of the Menu class.

Methods inherited from the UIObject class
The following table lists the methods the Menu class inherits from the UIObject class. When
calling these methods from the Menu object, use the form MenuInstance.methodName.

Method Description

Menu.addMenuItem() Adds a menu item to the menu.

Menu.addMenuItemAt() Adds a menu item to the menu at a specific location.

Menu.createMenu() Creates an instance of the Menu class. This is a static
method.

Menu.getMenuItemAt() Gets a reference to a menu item at a specified location.

Menu.hide() Closes a menu.

Menu.indexOf() Returns the index of a given menu item.

Menu.removeAll() Removes all items from a menu.

Menu.removeMenuItem() Removes the specified menu item.

Menu.removeMenuItemAt() Removes a menu item from a menu at a specified location.

Menu.setMenuItemEnabled() Indicates whether a menu item is enabled (true) or not
(false).

Menu.setMenuItemSelected() Indicates whether a menu item is selected (true) or not
(false).

Menu.show() Opens a menu at a specific location or at its previous
location.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.
902 Menu component (Flash Professional only)

Methods inherited from the UIComponent class
The following table lists the methods the Menu class inherits from the UIComponent class.
When calling these methods from the Menu object, use the form
MenuInstance.methodName.

Property summary for the Menu class
The following table lists the property of the Menu class.

Properties inherited from the UIObject class
The following table lists the properties the Menu class inherits from the UIObject class.
When accessing these properties from the Menu object, use the form
MenuInstance.propertyName.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Menu.dataProvider The data source for a menu.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

Method Description
Menu class (Flash Professional only) 903

Properties inherited from the UIComponent class
The following table lists the properties the Menu class inherits from the UIComponent class.
When accessing these properties from the Menu object, use the form
MenuInstance.propertyName.

Event summary for the Menu class
The following table lists events of the Menu class.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.

Event Description

Menu.change Broadcast when a user causes a change in a menu.

Menu.menuHide Broadcast when a menu closes.

Menu.menuShow Broadcast when a menu opens.

Menu.rollOut Broadcast when the pointer rolls off an item.

Menu.rollOver Broadcast when the pointer rolls over an item.

Property Description
904 Menu component (Flash Professional only)

Events inherited from the UIObject class
The following table lists the events the Menu class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Menu class inherits from the UIComponent class.

Menu.addMenuItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
menuInstance.addMenuItem(initObject)

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
Menu.addMenuItem() 905

Usage 2:
menuInstance.addMenuItem(childMenuItem)

Parameters

initObject An object containing properties that initialize a menu item’s attributes. See
“About menu item XML attributes” on page 887.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item at the end of the menu. The menu item is constructed
from the values supplied in the initObject parameter. Usage 2 adds a menu item that is a
prebuilt XML node (in the form of an XML object) at the end of the menu. Adding a
preexisting node removes the node from its previous location.

Example

The following example creates two menus, initially adding one menu item to each. The
example then adds two more menu items to the first menu, calling addMenuItem() to add the
first menu item by specifying its attributes. It then adds the second menu item by using the
prebuilt menu item node from the second menu.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create the Menu objects.
var first_menu:Menu = Menu.createMenu();
first_menu.addMenuItem({label:"1st Item"});
var second_menu:Menu = Menu.createMenu();
second_menu.addMenuItem({label:"1st Item 2nd Menu"});

// First usage method
first_menu.addMenuItem({label:"Radio Item", instanceName:"radioItem1",

type:"radio", selected:false, enabled:true, groupName:"myRadioGroup"});

// Second usage method
first_menu.addMenuItem(second_menu.getMenuItemAt(0));

// Show menu.
first_menu.show();
906 Menu component (Flash Professional only)

Menu.addMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
menuInstance.addMenuItemAt(index, initObject)

Usage 2:
menuInstance.addMenuItemAt(index, childMenuItem)

Parameters

index An integer indicating the index position (among the child nodes) at which the item
is added.

initObject An object containing properties that initialize a menu item’s attributes. See
“About menu item XML attributes” on page 887.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item (child node) at the specified location in the menu. The
menu item is constructed from the values supplied in the initObject parameter. Usage 2
adds a menu item that is a prebuilt XML node (in the form of an XML object) at a specified
location in the menu. Adding a preexisting node removes the node from its previous location.

Example

The following example creates two menus, initially adding one menu item to each. The
example then adds two more menu items to the first menu, calling addMenuItemAt() to add
a menu item in the second position by specifying its attributes. It then adds a menu item in
the third position by using the prebuilt menu item node from the second menu.
Menu.addMenuItemAt() 907

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create the Menu objects.
var first_menu:Menu = Menu.createMenu();
first_menu.addMenuItem({label:"1st Item"});
var second_menu:Menu = Menu.createMenu();
second_menu.addMenuItem({label:"1st Item 2nd Menu"});

// First usage method
first_menu.addMenuItemAt(1, {label:"Radio Item", instanceName:"radioItem1",

type:"radio", selected:false, enabled:true, groupName:"myRadioGroup"});

// Second usage method
first_menu.addMenuItemAt(2, second_menu.getMenuItemAt(0));

// Show menu.
first_menu.show();

Menu.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// Insert your code here.
};
menuInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// Insert your code here.
}

908 Menu component (Flash Professional only)

Description

Event; broadcast to all registered listeners whenever a user causes a change in the menu.

Version 2 Macromedia Component Architecture components use a dispatcher-listener event
model. When a Menu component broadcasts a change event, the event is handled by a
function (also called a handler) that is attached to a listener object (listenerObject) that you
create. You call the addEventListener() method and pass it the name of the handler as a
parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Menu.change event’s event
object has the following additional properties:

■ menuBar A reference to the MenuBar instance that is the parent of the target menu.
When the target menu does not belong to a MenuBar instance, this value is undefined.

■ menu A reference to the Menu instance where the target item is located.
■ menuItem An XML node that is the menu item that was selected.
■ groupName A string indicating the name of the radio button group to which the item

belongs. If the item is not in a radio button group, this value is undefined.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a menu, my_menu, and defines an event listener for it,
menulistener, which listens for a change event. When a user causes a change event by
clicking a menu item, the example displays its label attribute in the Output panel.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("Edit");
Menu.change 909

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);
my_menu.show();

var menuListener:Object = new Object();
menuListener.change = function(evt_obj:Object) {
 trace("Menu item chosen: " + evt_obj.menuItem.attributes.label);
};
my_menu.addEventListener("change", menuListener);

Menu.createMenu()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
Menu.createMenu([parent [, mdp]])

Parameters

parent A MovieClip instance. The movie clip is the parent component that contains the
new Menu instance. This parameter is optional.

mdp The MenuDataProvider instance that describes this Menu instance. This parameter
is optional.

Returns

A reference to the new menu instance.

Description

Method (static); instantiates a Menu instance, and optionally attaches it to the specified
parent, with the specified MenuDataProvider as the data source for the menu items.

If the parent parameter is omitted or null, the Menu is attached to the _root timeline.

If the mdp parameter is omitted or null, the menu does not have any items; you must call
addMenu() or setDataProvider() to populate the menu.
910 Menu component (Flash Professional only)

Example

The following example creates a menu with a submenu for the New menu item. It creates the
menu by creating an XML object, my_xml, and adding menu items to it with calls to
addMenuItem(). It then creates the menu with a call to createMenu(), passing the XML
object as the data provider.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

var my_xml:XML = new XML();
var newItem_obj:Object = my_xml.addMenuItem({label:"New"});

// Create other submenu items for main menu.
my_xml.addMenuItem({label:"Open", instanceName:"miOpen"});
my_xml.addMenuItem({label:"Save", instanceName:"miSave"});
my_xml.addMenuItem({type:"separator"});
my_xml.addMenuItem({label:"Quit", instanceName:"miQuit"});

// Create submenu items for "New" submenu.
newItem_obj.addMenuItem({label:"File..."});
newItem_obj.addMenuItem({label:"Project..."});
newItem_obj.addMenuItem({label:"Resource..."});

// Create menu.
var my_menu:Menu = Menu.createMenu(myParent_mc, my_xml);
my_menu.show(100, 20);

Menu.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.dataProvider
Menu.dataProvider 911

Description

Property; the data source for items in a Menu component.

Menu.dataProvider is an XML node object. Setting this property replaces the existing data
source of the menu.

The default value is undefined.

Example

The following example creates a menu (my_menu), loads menu items from a web page into an
XML object, and then populates the menu with menu items by assigning child nodes of the
XML object to the dataProvider property of the menu (my_menu.dataProvider).

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create the Menu object.
var my_menu:Menu = Menu.createMenu();

var my_xml:XML = new XML();
my_xml.ignoreWhite = true;
my_xml.onLoad = function(success:Boolean){
 if (success) {
 my_menu.dataProvider = my_xml.firstChild;
 }
}
my_xml.load("http://www.flash-mx.com/mm/xml/menu.xml");

// Show and position the menus.
my_menu.show(100, 20);

N
O

T
E

All XML or XMLNode instances are automatically given the methods and properties of
the MenuDataProvider class when they are used with the Menu component.
912 Menu component (Flash Professional only)

Menu.getMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.getMenuItemAt(index)

Parameters

index An integer indicating the index of the node in the menu.

Returns

A reference to the specified node.

Description

Method; returns a reference to the specified child node of the menu.

Example

The following example initially creates two menus with a single menu item for each one. It
then adds a second menu item to the first menu by calling the getmenuItemAt() method to
obtain the menu item from the second menu and add it to the first menu.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create the Menu objects.
var first_menu:Menu = Menu.createMenu();
first_menu.addMenuItem({label:"1st Item"});
var second_menu:Menu = Menu.createMenu();
second_menu.addMenuItem({label:"1st Item 2nd Menu"});

// Add item from second_menu to 2nd position on first menu.
first_menu.addMenuItemAt(1, second_menu.getMenuItemAt(0));

// Show menu.
first_menu.show();
Menu.getMenuItemAt() 913

Menu.hide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.hide()

Returns

Nothing.

Description

Method; closes a menu.

Example

The following example creates a button and a two-item menu and displays the menu for an
interval of 2000 milliseconds. When the interval expires, the closeMenu() function calls the
menu.hide() method to close the menu. Clicking the Reset Menu button triggers the
resetMenu() listener, which redisplays the menu and resets the interval.

You first drag a Menu component and a Button component to the library and then add the
following code to Frame 1:
/**
 Requires:
 - Menu component in library
 - Button component in library
*/

import mx.controls.Button;
import mx.controls.Menu;

this.createClassObject(Button, "my_button", 10, {label:"Reset Menu",
_x:100, _y:50});

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
914 Menu component (Flash Professional only)

var menuDP_obj:Object = my_xml.addMenuItem("Edit");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

my_menu.show(100, 100);
// Call closeMenu after 2000 milliseconds.
var interval_id:Number = setInterval(closeMenu, 2000, my_menu);
function closeMenu(the_menu:Menu):Void {

the_menu.hide();
clearInterval(interval_id);

}
// Listener for button click; show menu and reset interval.
function resetMenu(evt_obj:Object):Void {

clearInterval(interval_id);
my_menu.show(100, 100);
interval_id = setInterval(closeMenu, 2000, my_menu);

}
my_button.addEventListener("click", resetMenu);

See also

Menu.show()

Menu.indexOf()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.indexOf(item)

Parameters

item A reference to an XML node that describes a menu item.

Returns

The index of the specified menu item, or undefined if the item does not belong to this menu.
Menu.indexOf() 915

Description

Method; returns the index of the specified menu item within this menu instance.

Example

The following example creates a menu with two items from an XML data provider and then
adds a third item to the menu and saves the reference that is returned by the addMenuItem()
method. Next, it calls the indexOf() method by using the reference to obtain the index of the
item and display it in the Output panel.

You first drag a Menu component and a Button component to the library and then add the
following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("Edit");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);
var myItem_obj:Object = my_menu.addMenuItem({label:"That item"});

// Show and position the menus.
my_menu.show(100, 20);

var myIndex_num:Number = my_menu.indexOf(myItem_obj);
trace("Index of 'That Item': " + myIndex_num);
916 Menu component (Flash Professional only)

Menu.menuHide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.menuHide = function(eventObject:Object) {

// Insert your code here.
};
menuInstance.addEventListener("menuHide", listenerObject);

Usage 2:
on (menuHide) {

// Insert your code here.
}

Description

Event; broadcast to all registered listeners whenever a menu closes.

Version 2 components use a dispatcher-listener event model. When a Menu component
dispatches a menuHide event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler and the name of the
listener object as parameters.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Menu.menuHide event’s event
object has two additional properties:

■ menuBar A reference to the MenuBar instance that is the parent of the target menu.
When the target menu does not belong to a MenuBar instance, this value is undefined.

■ menu A reference to the Menu instance that is hidden.

For more information, see “EventDispatcher class” on page 499.
Menu.menuHide 917

Example

The following example creates a button and a two-item menu. When the user clicks the
button, a listener for a button click event displays the menu. When the user clicks a second
time, the menu is hidden and a listener for the menuHide event, menuListener, displays
“Menu closed” in the Output panel.

You first drag a Menu component and a Button component to the library and then add the
following code to Frame 1:
/**
 Requires:
 - Menu component in library
 - Button component in library
*/

import mx.controls.Button;
import mx.controls.Menu;

this.createClassObject(Button, "my_button", 10);

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Add a button that displays the menu when the button is clicked.
var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 // get reference to the button
 var the_button:Button = evt_obj.target;
 // Display the menu at the bottom of the button.
 my_menu.show(the_button.x, the_button.y + the_button.height);
};
my_button.addEventListener("click", buttonListener);

// Create listener object.
var menuListener:Object = new Object();
918 Menu component (Flash Professional only)

menuListener.menuHide = function(evt_obj:Object) {
 trace("Menu closed.");
};

// Add listener.
my_menu.addEventListener("menuHide", menuListener);

See also

Menu.menuShow

Menu.menuShow
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.menuShow = function(eventObject:Object) {

// Insert your code here.
};
menuInstance.addEventListener("menuShow", listenerObject);

Usage 2:
on (menuShow) {

// Insert your code here.
}

Description

Event; broadcast to all registered listeners whenever a menu opens. All parent nodes open
menus to show their children.

Version 2 components use a dispatcher-listener event model. When a Menu component
dispatches a menuShow event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler and listener object
as parameters.
Menu.menuShow 919

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Menu.menuShow event’s event
object has two additional properties:

■ menuBar A reference to the MenuBar instance that is the parent of the target menu.
When the target menu does not belong to a MenuBar instance, this value is undefined.

■ menu A reference to the Menu instance that is shown.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a button and a two-item menu. When the user clicks the
button, a listener for a button click event displays the menu. A listener for the menuShow
event, menuListener, displays “Menu open” in the Output panel.

You first drag a Menu component and a Button component to the library and then add the
following code to Frame 1:
/**
 Requires:
 - Menu component in library
 - Button component in library
*/

import mx.controls.Button;
import mx.controls.Menu;

this.createClassObject(Button, "my_button", 10);

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("Edit");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Add a button that displays the menu when the button is clicked.
var buttonListener:Object = new Object();
920 Menu component (Flash Professional only)

buttonListener.click = function(evt_obj:Object) {
 // get reference to the button
 var the_button:Button = evt_obj.target;
 // Display the menu at the bottom of the button.
 my_menu.show(the_button.x, the_button.y + the_button.height);
};
my_button.addEventListener("click", buttonListener);

// Create listener object.
var menuListener:Object = new Object();
menuListener.menuShow = function(evt_obj:Object) {
 trace("Menu open.");
};

// Add listener.
my_menu.addEventListener("menuShow", menuListener);

See also

Menu.menuHide

Menu.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.removeAll()

Returns

Nothing.

Description

Method; removes all items and refreshes the menu.

Example

The following example creates a menu with two items and, after an interval of a couple of
seconds 2000 milliseconds), removes all nodes from the menu.
Menu.removeAll() 921

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);
var interval_id:Number = setInterval(remove, 2000, my_menu);
function remove(the_menu:Menu):Void {

// Delete all menu items.
the_menu.removeAll();
clearInterval(interval_id);
the_menu.show(100, 20);

}

Menu.removeMenuItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.removeMenuItem()
922 Menu component (Flash Professional only)

Returns

A reference to the returned menu item (XML node). This value is undefined if there is no
item in that position.

Description

Method; removes the specified menu item and all its children, and refreshes the menu.

Example

The following example creates a menu with three menu items and sets an interval to cause the
menu to be displayed for a couple of seconds (2000 milliseconds). When the interval expires,
the example calls the removeItem() function, which calls the removeMenuItem() method to
remove the first item in the menu and redisplay it.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"first Item"});
menuDP_obj.addMenuItem({label:"second Item"});
menuDP_obj.addMenuItem({label:"third Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menu.
my_menu.show(100, 20);

// Call closeMenu after 2000 milliseconds.
var interval_id:Number = setInterval(removeItem, 2000, my_menu);
function removeItem(the_menu:Menu):Void {

// Delete the first node item.
var myItem_obj:Object = my_menu.getMenuItemAt(0);
Menu.removeMenuItem() 923

myItem_obj.removeMenuItem();
clearInterval(interval_id);
my_menu.show(100, 20);

}

Menu.removeMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.removeMenuItemAt(index)

Parameters

index The index of the menu item to remove.

Returns

A reference to the returned menu item (XML node). This value is undefined if there is no
item in that position.

Description

Method; removes the menu item and all its children at the specified index. If there is no menu
item at that index, calling this method has no effect.

Example

The following example creates a menu with two items and, after an interval of a couple of
seconds (2000 milliseconds), removes the second item (at index 1).

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
924 Menu component (Flash Professional only)

// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);
var interval_id:Number = setInterval(remove, 2000, my_menu);
function remove(the_menu:Menu):Void {

// Delete the 2nd node item.
var item_obj:Object = my_menu.removeMenuItemAt(1);
trace("Item removed: " + item_obj);
clearInterval(interval_id);
the_menu.show(100, 20);

}

Menu.rollOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.rollOut = function(eventObject:Object) {

// Insert your code here.
};
menuInstance.addEventListener("rollOut", listenerObject);

Usage 2:
on (rollOut) {

// Insert your code here.
}

Menu.rollOut 925

Description

Event; broadcast to all registered listeners when the pointer rolls off a menu item.

Version 2 components use a dispatcher-listener event model. When a Menu component
broadcasts a rollOut event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Menu.rollOut event’s event
object has one additional property: menuItem, which is a reference to the menu item (XML
node) that the pointer rolled off.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a menu with two items and a listener for a rollOut event.
When the rollOut event is broadcast, a trace() function in the event handler,
menuListener, displays the name of the menu item for which the event occurred.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
926 Menu component (Flash Professional only)

my_menu.show(100, 20);

// Create listener object.
var menuListener:Object = new Object();
menuListener.rollOut = function(evt_obj:Object) {
 trace("Menu rollOut: " + evt_obj.menuItem.attributes.label);
};

// Add listener.
my_menu.addEventListener("rollOut", menuListener);

Menu.rollOver
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.rollOver = function(eventObject:Object) {

// Insert your code here.
};
menuInstance.addEventListener("rollOver", listenerObject);

Usage 2:
on (rollOver) {

// Insert your code here.
}

Description

Event; broadcast to all registered listeners when the pointer rolls over a menu item.

Version 2 components use a dispatcher-listener event model. When a Menu component
broadcasts a rollover event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.
Menu.rollOver 927

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Menu.rollOver event’s event
object has one additional property: menuItem, which is a reference to the menu item (XML
node) that the pointer rolled over.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a menu with two items and a listener for a rollOver event.
When the rollOver event is broadcast, a trace() function in the event handler,
menuListener, displays the name of the menu item for which the event occurred.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus
my_menu.show(100, 20);

// Create listener object.
var menuListener:Object = new Object();
menuListener.rollOver = function(evt_obj:Object) {
 trace("Menu rollOver: "+evt_obj.menuItem.attributes.label);
};

// Add listener.
my_menu.addEventListener("rollOver", menuListener);
928 Menu component (Flash Professional only)

Menu.setMenuItemEnabled()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.setMenuItemEnabled(item, enable)

Parameters

item An XML node; the target menu item’s node in the data provider.

enable A Boolean value indicating whether the item is enabled (true) or not (false).

Returns

Nothing.

Description

Method; changes the target item’s enabled attribute to the state specified in the enable
parameter. If this call results in a change of state, the item is redrawn with the new state.

Example

The following example creates a menu with two menu items and calls the
setMenuItemEnabled() method to disable the first one.

First, you drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");
Menu.setMenuItemEnabled() 929

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Select the first menu item and disable it.
var item_obj:Object = my_menu.getMenuItemAt(0);
my_menu.setMenuItemEnabled(item_obj, false);

// Show and position the menu.
my_menu.show(100, 20);

See also

Menu.setMenuItemSelected()

Menu.setMenuItemSelected()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.setMenuItemSelected(item, select)

Parameters

item An XML node. The target menu item’s node in the data provider.

select A Boolean value indicating whether the item is selected (true) or not (false). If
the item is a check box, its check mark is visible or not visible. If a selected item is a radio
button, it becomes the current selection in the radio group.

Returns

Nothing.
930 Menu component (Flash Professional only)

Description

Method; changes the selected attribute of the item to the state specified by the select
parameter. If this call results in a change of state, the item is redrawn with the new state. This
is only meaningful for items whose type attribute is set to "radio" or "check", because it
causes their dot or check to appear or disappear. If you call this method on an item whose type
is "normal" or "separator", it has no effect.

Example

The following example creates a menu with two menu items, the second of which is a check
box menu item. The example calls the setMenuItemSelected() method to put the check
box menu item in a selected state.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({type:"check", label:"2nd Item"})

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

var myItem = my_menu.getMenuItemAt(1);
my_menu.setMenuItemSelected(myItem, true);

// Show and position the menu.
my_menu.show(100, 20);
Menu.setMenuItemSelected() 931

Menu.show()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuInstance.show(x, y)

Parameters

x The x coordinate.

y The y coordinate.

Returns

Nothing.

Description

Method; opens a menu at a specific location. The menu is automatically resized so that all of
its top-level items are visible, and the upper left corner is placed at the specified location in the
coordinate system provided by the component’s parent.

If the x and y parameters are omitted, the menu is shown at its previous location.

Example

The following example creates a menu from an XML menu object and calls the menu.show()
method to display it.

You first drag a Menu component to the library; and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

var my_xml:XML = new XML();

// Create items for the menu.
var newItem_obj:Object = my_xml.addMenuItem({label:"New"});
my_xml.addMenuItem({label:"Open", instanceName:"miOpen"});
my_xml.addMenuItem({label:"Save", instanceName:"miSave"});
my_xml.addMenuItem({type:"separator"});
932 Menu component (Flash Professional only)

my_xml.addMenuItem({label:"Quit", instanceName:"miQuit"});

// Create and show the menu.
var my_menu:Menu = Menu.createMenu(myParent_mc, my_xml);
my_menu.show(100, 20);

See also

Menu.hide()

MenuDataProvider class
ActionScript Class Name mx.controls.menuclasses.MenuDataProvider

The MenuDataProvider class is a decorator (mix-in) class that adds functionality to the
XMLNode global class. This functionality lets XML instances assigned to a
Menu.dataProvider property use the MenuDataProvider methods and properties to
manipulate their own data as well as the associated menu views.

Keep in mind these concepts about the MenuDataProvider class:

■ MenuDataProvider is a decorator (mix-in) class. You do not need to instantiate it to use it.
■ Menus natively accept XML as a dataProvider property value.
■ If a Menu class is instantiated, all XML instances in the SWF file are decorated by the

MenuDataProvider class.
■ Only MenuDataProvider methods broadcast events to the Menu components. You can

still use native XML methods, but they do not broadcast events that refresh the Menu
views. To control the data model, use MenuDataProvider methods. For read-only
operations like moving through the Menu hierarchy, use XML methods.

■ All items in the Menu component are XML objects decorated with the
MenuDataProvider class.

■ Changes to item attributes are not reflected in the onscreen menu until redrawing occurs.
MenuDataProvider class 933

Method summary for the MenuDataProvider class
The following table lists the methods of the MenuDataProvider class.

MenuDataProvider.addMenuItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuDataProvider.addMenuItem(initObject)

Usage 2:
myMenuDataProvider.addMenuItem(childMenuItem)

Parameters

initObject An object containing the attributes that initialize a Menu item’s attributes. For
more information, see “About menu item XML attributes” on page 887.

childMenuItem An XML node.

Returns

A reference to an XMLNode object.

Method Description

MenuDataProvider.addMenuItem() Adds a child item.

MenuDataProvider.addMenuItemAt() Adds a child item at a specified location.

MenuDataProvider.getMenuItemAt() Gets a reference to a menu item at a specified
location.

MenuDataProvider.indexOf() Returns the index of a specified menu item.

MenuDataProvider.removeMenuItem() Removes a menu item.

MenuDataProvider.removeMenuItemAt() Removes a menu item at a specified location.
934 Menu component (Flash Professional only)

Description

Method; Usage 1 adds a child item to the end of a parent menu item (which could be the
menu itself). The menu item is constructed from the values passed in the initObject
parameter. Usage 2 adds a child item that is defined in the specified XML childMenuItem
parameter to the end of a parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example creates a menu from an XML data provider. It calls the
addMenuItem() method to add two items to the main menu and also to add two items to a
submenu for the first item of the main menu.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"Folders"});
menuDP_obj.addMenuItem({label:"Radio Edit", type:"radio"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menu.
my_menu.show(100, 20);

// Retrieve the first menu item and add items into it.
var item_obj:Object = menuDP_obj.getMenuItemAt(0);
item_obj.addMenuItem({label:"First item", instanceName:"firstItem1"});
item_obj.addMenuItem({label:"Second item", instanceName:"secondItem1"});
MenuDataProvider.addMenuItem() 935

MenuDataProvider.addMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuDataProvider.addMenuItemAt(index, initObject)

Usage 2:
myMenuDataProvider.addMenuItemAt(index, childMenuItem)

Parameters

index An integer.

initObject An object containing the specific attributes that initialize a Menu item’s
attributes. For more information, see “About menu item XML attributes” on page 887.

childMenuItem An XML node.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a child item at the specified index position in the parent menu item
(which could be the menu itself). The menu item is constructed from the values passed in the
initObject parameter. Usage 2 adds a child item that is defined in the specified XML
childMenuItem parameter to the specified index of a parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example creates a menu with one menu item and then calls the
addMenuItemAt() method to add a second item.
936 Menu component (Flash Professional only)

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"Edit"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menu.
my_menu.show(100, 20);

// Add the menu item.
menuDP_obj.addMenuItemAt(1, {label:"Save", instanceName:"saveItem1"});
MenuDataProvider.addMenuItemAt() 937

MenuDataProvider.getMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myMenuDataProvider.getMenuItemAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the specified XML node.

Description

Method; returns a reference to the specified child menu item of the current menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example creates a menu, adds a menu item to it, and then calls the
getMenuItemAt() method to access its node object for the purpose of adding a submenu
item to it. It also calls the getMenuItemAt() method to display the label of the submenu item
in the Output panel.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
938 Menu component (Flash Professional only)

// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
var menuItem_obj:Object = menuDP_obj.getMenuItemAt(0);
menuItem_obj.addMenuItem({label:"Submenu Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);

// Retrieve the submenu item from the 1st menu item.
var myMenuItem_obj:Object = menuDP_obj.firstChild;
trace(myMenuItem_obj.getMenuItemAt(0));

MenuDataProvider.indexOf()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myMenuDataProvider.indexOf(item)

Parameters

item A reference to the XML node that describes the menu item.

Returns

The index of the specified menu item; returns undefined if the item does not belong to
this menu.

Description

Method; returns the index of the specified menu item in this parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.
MenuDataProvider.indexOf() 939

Example

The following example adds a menu item to a menu and calls the indexOf() method to
display the item’s index in the Output panel.

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);

// Add an item and trace the position of that item.
var myItem_obj:Object = menuDP_obj.addMenuItem({label:"That item"});
var myIndex_num:Number = menuDP_obj.indexOf(myItem_obj);
trace("Position: " + myIndex_num);
940 Menu component (Flash Professional only)

MenuDataProvider.removeMenuItem()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myMenuDataProvider.removeMenuItem()

Returns

A reference to the removed Menu item (XML node); undefined if an error occurs.

Description

Method; removes the target item and any child nodes.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example creates a menu with three menu items and, after an interval of a
couple of seconds (2000 milliseconds), calls removeMenuItem() to remove the first
menu item.
MenuDataProvider.removeMenuItem() 941

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();
d
// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});
menuDP_obj.addMenuItem({label:"3rd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);
// Call removeItem after 2000 milliseconds.
var interval_id:Number = setInterval(removeItem, 2000, my_menu);
function removeItem(the_menu:Menu):Void {

// Remove the item at position 0.
var myItem_obj:Object = menuDP_obj.getMenuItemAt(0);
myItem_obj.removeMenuItem();
clearInterval(interval_id);

}

942 Menu component (Flash Professional only)

MenuDataProvider.removeMenuItemAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myMenuDataProvider.removeMenuItemAt(index)

Parameters

index The index of the menu item.

Returns

A reference to the removed menu item. This value is undefined if there is no item in that
position.

Description

Method; removes the child item of the menu item specified by the index parameter. If there is
no menu item at that index, calling this method has no effect.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example creates a menu with three menu items and, after an interval of a
couple of seconds (2000 milliseconds), calls removeMenuItemAt() to remove the first
menu item.
MenuDataProvider.removeMenuItemAt() 943

You first drag a Menu component to the library and then add the following code to Frame 1:
/**
 Requires:
 - Menu component in library
*/

import mx.controls.Menu;

// Create an XML object to act as a factory.
var my_xml:XML = new XML();

// The item created next does not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name.
var menuDP_obj:Object = my_xml.addMenuItem("XXXXX");

// Add the menu items.
menuDP_obj.addMenuItem({label:"1st Item"});
menuDP_obj.addMenuItem({label:"2nd Item"});
menuDP_obj.addMenuItem({label:"3rd Item"});

// Create the Menu object.
var my_menu:Menu = Menu.createMenu(this, menuDP_obj);

// Show and position the menus.
my_menu.show(100, 20);
// Call removeItem after 2000 milliseconds.
var interval_id:Number = setInterval(removeItem, 2000, my_menu);
function removeItem(the_menu:Menu):Void {

// Remove the item at position 0.
menuDP_obj.removeMenuItemAt(0);
clearInterval(interval_id);

}

944 Menu component (Flash Professional only)

31

CHAPTER 31

MenuBar component (Flash
Professional only)
The MenuBar component lets you create a horizontal menu bar with pop-up menus and
commands, just like the menu bars that contain File and Edit menus in common software
applications. The MenuBar component complements the Menu component by providing a
clickable interface to show and hide menus that behave as a group for mouse and keyboard
interactivity.

The MenuBar component lets you create an application menu in a few steps. To build a menu
bar, you can either assign an XML data provider to the menu bar that describes a series of
menus, or use the MenuBar.addMenu() method to add menu instances one at a time.

Each menu in the menu bar is composed of two parts: the menu and the button that causes
the menu to open (called the menu activator). These clickable menu activators appear in the
menu bar as a text label with inset and outset border highlight states that react to interaction
from the mouse and keyboard.

When a menu activator is clicked, the corresponding menu opens below it. The menu stays
active until the activator is clicked again, or until a menu item is selected or a click occurs
outside the menu area.

In addition to creating menu activators that show and hide menus, the MenuBar component
creates group behavior among a series of menus. This lets a user scan a large number of
command choices by rolling over the series of activators or by using the arrow keys to move
through the lists. Mouse and keyboard interactivity work together to let the user jump from
menu to menu in the menu bar.

A user cannot scroll through menus on a menu bar. If menus exceed the width of the menu
bar, they are masked.

You cannot make the MenuBar component accessible to screen readers.

Menus are often nested within menu bars. For information about menus, see “Menu
component (Flash Professional only)” on page 883.
945

Interacting with the MenuBar component
(Flash Professional only)
You can use the mouse and keyboard to interact with a MenuBar component.

Rolling over a menu activator displays an outset border highlight around the activator label.

When a MenuBar instance has focus either from clicking or tabbing, you can use the
following keys to control it:

Using the MenuBar component (Flash
Professional only)
You can use the MenuBar component to add a set of menus (for example, File, Edit, Special,
Window) to the top edge of an application.

MenuBar parameters
You can set the following authoring parameter for each MenuBar component instance in the
Property inspector or in the Component inspector (Window > Component Inspector menu
option):

Labels An array that adds menu activators with the specified labels to the MenuBar
component. The default value is [] (an empty array).

You can set the following additional parameters for each MenuBar component instance in the
Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

Key Description

Down Arrow Moves the selection down a menu row.

Up Arrow Moves the selection up a menu row.

Right Arrow Moves the selection to the next button.

Left Arrow Moves the selection to the previous button.

Enter/Escape Closes an open menu.

N
O

T
E

If a menu is open, you can’t press the Tab key to close it. You must either make a
selection or close the menu by pressing Escape.
946 MenuBar component (Flash Professional only)

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You cannot access the Labels parameter using ActionScript. However, you can write
ActionScript to control additional options for the MenuBar component using its properties,
methods, and events. For more information, see “MenuBar class (Flash Professional only)”
on page 951.

Creating an application with the MenuBar component
In this example, you drag a MenuBar component to the Stage, add code to add menu items to
it, and attach a listener to the menu to respond to the selection of a menu item.

To use a MenuBar component in an application:

1. Select File > New and create a new Flash document.

2. Drag the MenuBar component from the Components panel to the Stage.

3. Position the menu at the top of the Stage for a standard layout.

4. Select the MenuBar instance and, in the Property inspector, enter the instance name
my_mb.

5. In the Actions panel on Frame 1, enter the following code:
import mx.controls.Menu;
import mx.controls.MenuBar;

var my_mb:MenuBar;

var my_menu:Menu = my_mb.addMenu("File");
my_menu.addMenuItem({label:"New", instanceName:"newInstance"});
my_menu.addMenuItem({label:"Open", instanceName:"openInstance"});
my_menu.addMenuItem({label:"Close", instanceName:"closeInstance"});

This code adds a File menu to the MenuBar instance. It then uses a Menu method to add
three menu items: New, Open, and Close.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
Using the MenuBar component (Flash Professional only) 947

6. In the Actions panel on Frame 1, enter the following code:
//Create listener object.
var mbListener:Object = new Object();
mbListener.change = function(evt_obj:Object) {
 var menuItem_obj:Object = evt_obj.menuItem;
 switch (menuItem_obj.attributes.instanceName) {
 case "newInstance":
 trace("New menu item");
 break;
 case "openInstance":
 trace("Open menu item");
 break;
 case "closeInstance":
 trace("Close menu item");
 break;
 }
 trace(menuItem_obj);
};

//Add listener.
my_menu.addEventListener("change", mbListener);

This code creates a listener object, mblistener, that catches a menu item selection and
displays its name and the value of the menu item object.

7. Select Control > Test Movie to test the MenuBar component.

Customizing the MenuBar component
(Flash Professional only)
This component sizes itself according to the activator labels that are supplied through the
dataProvider property or the methods of the MenuBar class. When an activator button is in
a menu bar, it remains at a fixed size that is dependent on the font styles and the text length.

N
O

T
E

You must call the addEventListener() method to register the listener with the menu
instance, not with the menu bar instance.
948 MenuBar component (Flash Professional only)

Using styles with the MenuBar component
The MenuBar component creates an activator label for each menu in a group. You can use
styles to change the look of the activator labels. A MenuBar component supports the
following styles:

The MenuBar component also forwards all style settings for Menu style properties to the
composed Menu instances. For a list of Menu style properties, see “Using styles with the
Menu component” on page 897.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values
are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen".

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".
Customizing the MenuBar component (Flash Professional only) 949

Using skins with the MenuBar component
The MenuBar component uses three skins to represent its background, uses a movie clip
symbol for highlighting individual items, and contains a Menu component as the pop-up,
which itself is skinnable. The MenuBar skins are described in the following table. For
information about skinning the Menu component, see “Using skins with the Menu
component” on page 900.

The MenuBar component supports the following skin properties.

To create movie clip symbols for MenuBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library and then select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the MenuBar Assets folder to the library of your document.

4. Expand the MenuBar Assets/Elements folder in the library of your document.

5. Open the symbols that you want to customize for editing.

For example, open the MenuBarBackLeft symbol.
6. Customize the symbol as desired.

For example, change the outer edge to blank.
7. Repeat steps 5-6 for all symbols that you want to customize.

For example, set the outer edges for the middle and right symbols to black.
8. Click the Back button to return to the main timeline.

9. Drag a MenuBar component to the Stage.

10. Set MenuBar properties so that they display items on the bar.

Property Description

menuBarBackLeftName The up state of the pop-up icon

menuBarBackRightName The down state of the pop-up icon

menuBarBackMiddleName The disabled state of the pop-up icon
950 MenuBar component (Flash Professional only)

11. Select Control > Test Movie.

MenuBar class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > MenuBar

ActionScript Class Name mx.controls.MenuBar

The methods and properties of the MenuBar class let you create a horizontal menu bar with
pop-up menus and commands. These methods and properties complement those of the
Menu class by allowing you to create a clickable interface to show and hide menus that behave
as a group for mouse and keyboard interactivity.

Method summary for the MenuBar class
The following table lists methods of the MenuBar class.

N
O

T
E

The border used to highlight individual items in a MenuBar component is an instance
of ActivatorSkin found in the Flash UI Components 2/Themes/MMDefault/Button
Assets folder. This symbol can be customized to point to a different class to provide
a different border. However, the symbol name cannot be modified, and you cannot
use a different symbol for different MenuBar instances in a single document.

Method Description

MenuBar.addMenu() Adds a menu to the menu bar.

MenuBar.addMenuAt() Adds a menu at a specified location to the menu bar.

MenuBar.getMenuAt() Gets a reference to a menu at a specified location.

MenuBar.getMenuEnabledAt() Returns a Boolean value indicating whether a menu is
enabled (true) or not (false).

MenuBar.removeMenuAt() Removes a menu at a specified location from a menu bar.

MenuBar.removeAll() Removes all menu items from the menu bar.

MenuBar.setMenuEnabledAt() A Boolean value indicating whether a menu is can be chosen
(true) or not (false).
MenuBar class (Flash Professional only) 951

Methods inherited from the UIObject class
The following table lists the methods the MenuBar class inherits from the UIObject class.
When calling these methods from the MenuBar object, use the form MenuBar.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the MenuBar class inherits from the UIComponent
class. When calling these methods from the MenuBar object, use the form
MenuBar.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
952 MenuBar component (Flash Professional only)

Property summary for the MenuBar class
The following table lists properties of the MenuBar class.

Properties inherited from the UIObject class
The following table lists the properties the MenuBar class inherits from the UIObject class.
When calling these properties from the MenuBar object, use the form
MenuBar.propertyName.

Property Description

MenuBar.dataProvider The data model for a menu bar.

MenuBar.labelField A string that determines which attribute of each XMLNode to
use as the label text of the menu.

MenuBar.labelFunction A function that determines what to display in each menu’s
label.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
MenuBar class (Flash Professional only) 953

Properties inherited from the UIComponent class
The following table lists the properties the MenuBar class inherits from the UIComponent
class. When calling these properties from the MenuBar object, use the form
MenuBar.propertyName.

Event summary for the MenuBar class
There are no events exclusive to the MenuBar class.

Events inherited from the Menu class
The following table lists the events the MenuBar class inherits from the Menu class. When
calling these events from the MenuBar object, use the form MenuBar.eventName.

Events inherited from the UIObject class
The following table lists the events the MenuBar class inherits from the UIObject class. When
calling these events from the MenuBar object, use the form MenuBar.eventName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

Menu.change Broadcast when a user causes a change in a menu.

Menu.menuHide Broadcast when a menu closes.

Menu.menuShow Broadcast when a menu opens.

Menu.rollOut Broadcast when the pointer rolls off an item.

Menu.rollOver Broadcast when the pointer rolls over an item.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.
954 MenuBar component (Flash Professional only)

Events inherited from the UIComponent class
The following table lists the events the MenuBar class inherits from the UIComponent class.
When calling these events from the MenuBar object, use the form MenuBar.eventName.

MenuBar.addMenu()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
menuBarInstance.addMenu(label)

Usage 2:
menuBarInstance.addMenu(label, menuDataProvider)

Parameters

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu and its items.
If the value is an XML instance, the instance’s first child is used.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
MenuBar.addMenu() 955

Returns

A reference to the new Menu object.

Description

Method; Usage 1 adds a single menu and menu activator at the end of the menu bar and uses
the specified label. Usage 2 adds a single menu and menu activator that are defined in the
specified XML menuDataProvider parameter.

Example

Usage 1: The following example adds a File menu and then uses Menu.addMenuItem() to add
the menu items New and Open.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/
var my_mb:mx.controls.MenuBar;

var my_menu:mx.controls.Menu = my_mb.addMenu("File");
my_menu.addMenuItem({label:"New", instanceName:"newInstance"});
my_menu.addMenuItem({label:"Open", instanceName:"openInstance"});

Usage 2: The following example adds a Font menu with the menu items Bold and Italic,
which are defined in the XML data provider myDP_xml.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var myDP_xml:XML = new XML();
myDP_xml.addMenuItem({type:"check", label:"Bold", instanceName:"check1"});
myDP_xml.addMenuItem({type:"check", label:"Italic",

instanceName:"check2"});

var my_menu:mx.controls.Menu = my_mb.addMenu("Font", myDP_xml);
956 MenuBar component (Flash Professional only)

MenuBar.addMenuAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
menuBarInstance.addMenuAt(index, label)

Usage 2:
menuBarInstance.addMenuAt(index, label, menuDataProvider)

Parameters

index An integer indicating the position where the menu should be inserted. The first
position is 0. To append to the end of the menu, call MenuBar.addMenu(label).

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu. If the value is
an XML instance, the instance’s first child is used.

Returns

A reference to the new Menu object.

Description

Method; Usage 1 adds a single menu and menu activator at the specified index with the
specified label. Usage 2 adds a single menu and a labeled menu activator at the specified
index. The content for the menu is defined in the menuDataProvider parameter.

Example

Usage 1: The following example places a menu in the first position on the MenuBar instance
my_mb.
MenuBar.addMenuAt() 957

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var my_menu:mx.controls.Menu = my_mb.addMenuAt(0, "Flash");
my_menu.addMenuItem({label:"About Macromedia Flash",

instanceName:"aboutInst"});
my_menu.addMenuItem({label:"Preferences", instanceName:"PrefInst"});

Usage 2: The following example adds an Edit menu with the menu items Undo, Redo, Cut,
and Copy, which are defined in the XML data provider myDP_xml. It adds the menu to the
first position of the MenuBar instance my_mb.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var myDP_xml:XML = new XML();
myDP_xml.addMenuItem({label:"Undo", instanceName:"undoInst"});
myDP_xml.addMenuItem({label:"Redo", instanceName:"redoInst"});
myDP_xml.addMenuItem({type:"separator"});
myDP_xml.addMenuItem({label:"Cut", instanceName:"cutInst"});
myDP_xml.addMenuItem({label:"Copy", instanceName:"copyInst"});

my_mb.addMenuAt(0, "Edit", myDP_xml);

MenuBar.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
958 MenuBar component (Flash Professional only)

Usage
menuBarInstance.dataProvider

Description

Property; the data model for items in a MenuBar component.

MenuBar.dataProvider is an XML node object. Setting this property replaces the existing
data model of the MenuBar component. Whatever child nodes the data provider might have
are used as the items for the menu bar itself; any subnodes of these child nodes are used as the
items for their respective menus.

The default value is undefined.

Example

The following example loads an XML menu file from a web page and uses the onLoad event
handler to assign it to the dataProvider property of the MenuBar instance my_mb.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var myDP_xml:XML = new XML();
myDP_xml.ignoreWhite = true;
myDP_xml.onLoad = function(success:Boolean) {
 if (success) {
 my_mb.dataProvider = myDP_xml.firstChild;
 } else {
 trace("error loading XML file");
 }
};
myDP_xml.load("http://www.flash-mx.com/mm/xml/menubar.xml");

N
O

T
E

All XML or XMLNode instances are automatically given the methods and properties of
the MenuDataProvider class when they are used with the MenuBar component.
MenuBar.dataProvider 959

MenuBar.getMenuAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.getMenuAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the menu at the specified index. This value is undefined if there is no menu at
that position.

Description

Method; returns a reference to the menu at the specified index. Because getMenuAt() returns
a reference, it is possible to add items to a menu at the specified index.

Example

The following example creates a File menu and calls getMenuAt(), which creates a reference
to it. It then uses the reference to add two menu items, New and Open, to the File menu.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

my_mb.addMenu("File");

var my_menu:mx.controls.Menu = my_mb.getMenuAt(0);
my_menu.addMenuItem({label:"New",instanceName:"newInst"});
my_menu.addMenuItem({label:"Open",instanceName:"openInst"});
960 MenuBar component (Flash Professional only)

MenuBar.getMenuEnabledAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.getMenuEnabledAt(index)

Parameters

index The index of the menu in the menu bar.

Returns

A Boolean value that indicates whether this menu can be chosen (true) or not (false).

Description

Method; returns a Boolean value that indicates whether this menu can be chosen (true) or
not (false).

Example

The following example creates a File menu with two menu items and then calls
setMenuEnabledAt() with a value of false to disable it. It also calls getMenuEnabledAt()
and displays the result to show you how to determine whether a menu is enabled.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var my_menu:mx.controls.Menu = my_mb.addMenu("File");
my_menu.addMenuItem({label:"New", instanceName:"newInstance"});
my_menu.addMenuItem({label:"Open", instanceName:"openInstance"});

//Disable "file" menu.
my_mb.setMenuEnabledAt(0, false);

//Check if "file" menu can be selected.
trace("Menu can be selected: " + my_mb.getMenuEnabledAt(0));
MenuBar.getMenuEnabledAt() 961

MenuBar.labelField
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.labelField

Description

Property; a string that specifies which attribute of each XML node to use as the label text of
the menu. The value of this property is also passed to any menus that are created from the
menu bar. The default value is "label".

After the dataProvider property is set, this property is read-only.

Example

The following example specifies that the name attribute of each XML node is to provide the
label text for menu items.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/
var my_mb:mx.controls.MenuBar;

//Change label text to be read from "name".
my_mb.labelField = "name";

var my_menu:mx.controls.Menu = my_mb.addMenu({name:"File"});
my_menu.addMenuItem({name:"New", instanceName:"newInstance"});
my_menu.addMenuItem({name:"Open", instanceName:"openInstance"});
962 MenuBar component (Flash Professional only)

MenuBar.labelFunction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.labelFunction

Description

Property; a function that determines what to display in each menu’s label text. The function
accepts the XML node associated with an item as a parameter and returns a string to be used
as label text. This property is passed to any menus created from the menu bar. The default
value is undefined.

After the dataProvider property is set, this property is read-only.

Example

The following example uses a label function to build and return a custom label, such as New
(Control +N), from the node attributes.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

var my_mb:mx.controls.MenuBar;

var my_menu:mx.controls.Menu = my_mb.addMenu("File");
my_menu.addMenuItem({label:"New", data:"Control+N",

instanceName:"newInstance"});
my_menu.addMenuItem({label:"Open", data:"Control+O",

instanceName:"openInstance"});
my_menu.addMenuItem({label:"Close", data:"Control+W",

instanceName:"closeInstance"});

//Format XML data provided for menu.
my_menu.labelFunction = function(node:XMLNode):String {
 var attrb:Object = node.attributes;
 return (attrb.label + " (" + attrb.data + ")");
};
MenuBar.labelFunction 963

MenuBar.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all menu items on the menu bar.

Example

The following example creates File, Edit, Tools, and Window menus on the menu bar. Then
when a button is clicked, the script calls removeAll() to remove the menu items.

Drag the MenuBar component onto the Stage, and enter the instance name myMenuBar in the
Property inspector. Also drag the Button component to the Stage, and enter the instance
name remBtn. Add the following code to Frame 1 of the timeline:
var menu = myMenuBar.addMenu("File");
var menu = myMenuBar.addMenu("Edit");
var menu = myMenuBar.addMenu("Tools");
var menu = myMenuBar.addMenu("Window");
// Add a button that removes the menu items.
var rem_listener = new Object();
rem_listener.click = function() {

myMenuBar.removeAll();
};
remBtn.addEventListener("click", rem_listener);
964 MenuBar component (Flash Professional only)

MenuBar.removeMenuAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.removeMenuAt(index)

Parameters

index The index of the menu to be removed from the menu bar.

Returns

A reference to the menu at the specified index in the menu bar. This value is undefined if
there is no menu in that position in the menu bar.

Description

Method; removes the menu at the specified index. If there is no menu item at that index,
calling this method has no effect. Also, when more than one menu is removed, the index
assignments shift accordingly as each menu is removed.

Example

The following example creates a File menu and an Edit menu on the menu bar. It then calls
removeMenuAt() to remove the menu at position 0, which is the File menu, leaving the
Edit menu.
MenuBar.removeMenuAt() 965

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
*/

import mx.controls.Menu;
import mx.controls.MenuBar;

var my_mb:MenuBar;

var file_menu:Menu = my_mb.addMenu("File");
file_menu.addMenuItem({label:"New", instanceName:"newInstance"});
file_menu.addMenuItem({label:"Open", instanceName:"openInstance"});

var edit_menu:Menu = my_mb.addMenu("Edit");
edit_menu.addMenuItem({label:"Cut", instanceName:"cutInstance"});
edit_menu.addMenuItem({label:"Copy", instanceName:"copyInstance"});
edit_menu.addMenuItem({label:"Paste", instanceName:"pasteInstance"});

//Delete "file" menu.
my_mb.removeMenuAt(0);

MenuBar.setMenuEnabledAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
menuBarInstance.setMenuEnabledAt(index, boolean)

Parameters

index The index of the menu item to set in the MenuBar instance.

boolean A Boolean value indicating whether the menu item at the specified index is
enabled (true) or not (false).

Returns

Nothing.
966 MenuBar component (Flash Professional only)

Description

Method; enables the menu at the specified index. If there is no menu at that index, calling this
method has no effect.

Example

The following example adds a File menu to the menu bar and calls the setMenuEnabledAt()
method to enable or disable the menu, depending on whether the menuEnabled_ch check
box is selected or clear.

Drag an instance of the MenuBar component onto the Stage, and enter the instance name
my_mb in the Property inspector. Drag a CheckBox component to the Stage and give it an
instance name of menuEnabled_ch. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - MenuBar component on Stage (instance name: my_mb)
 - CheckBox component on Stage (instance name: menuEnabled_ch)
*/

import mx.controls.CheckBox;
import mx.controls.Menu;
import mx.controls.MenuBar;

var my_mb:MenuBar;
var menuEnabled_ch:CheckBox;

menuEnabled_ch.selected = true;
var my_menu:Menu = my_mb.addMenu("File");
my_menu.addMenuItem({label:"New", instanceName:"newInstance"});
my_menu.addMenuItem({label:"Open", instanceName:"openInstance"});

var chListener:Object = new Object();
chListener.click = function(evt_obj:Object) {
 // Toggle "file" menu.
my_mb.setMenuEnabledAt(0, evt_obj.target.selected);
}
menuEnabled_ch.addEventListener("click", chListener);
MenuBar.setMenuEnabledAt() 967

968 MenuBar component (Flash Professional only)

32

CHAPTER 32

NumericStepper component
The NumericStepper component allows a user to step through an ordered set of numbers.
The component consists of a number in a text box displayed beside small up and down arrow
buttons. When a user presses the buttons, the number is raised or lowered incrementally
according to the unit specified in the stepSize parameter, until the user releases the buttons
or until the maximum or minimum value is reached. The text in the NumericStepper
component’s text box is also editable.

The NumericStepper component handles only numeric data. Also, you must resize the
stepper while authoring to display more than two numeric places (for example, the numbers
5246 or 1.34).

A stepper can be enabled or disabled in an application. In the disabled state, a stepper doesn’t
receive mouse or keyboard input. An enabled stepper receives focus if you click it or tab to it
and its internal focus is set to the text box. When a NumericStepper instance has focus, you
can use the following keys control it:

Key Description

Down Arrow Value changes by one unit.

Left Arrow Moves the insertion point to the left within the text box.

Right Arrow Moves the insertion point to the right within the text box.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Up Arrow Value changes by one unit.
969

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each stepper instance reflects the setting of the value parameter in the
Property inspector or Component inspector during authoring. However, there is no mouse or
keyboard interaction with the stepper’s arrow buttons in the live preview.

When you add the NumericStepper component to an application, you can use the
Accessibility panel to make it accessible to screen readers. First, you must add the following
line of code to enable accessibility:
mx.accessibility.NumericStepperAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you
have of the component. For more information, see Chapter 19, “Creating Accessible
Content,” in Using Flash.

Using the NumericStepper component
You can use the NumericStepper anywhere you want a user to select a numeric value. For
example, you could use a NumericStepper component in a form to allow a user to set a credit
card expiration date. You could also use a NumericStepper component to allow a user to
increase or decrease a font size.

NumericStepper parameters
You can set the following authoring parameters for each NumericStepper instance in the
Property inspector or in the Component inspector (Window > Component Inspector
menu option):

maximum sets the maximum value that can be displayed in the stepper. The default value is
10. If you set a stepSize so that the minimum value plus the stepSize value at some point
doesn’t equal the maximum value (minimum + stepSize + stepSize + stepSize, and so on), the
maximum value will display when the stepper surpasses the maximum.

minimum sets the minimum value that can be displayed in the stepper. The default value is 0.

stepSize sets the unit by which the stepper increases or decreases with each click. The default
value is 1.

value sets the value displayed in the text area of the stepper. The default value is 0.
970 NumericStepper component

You can set the following additional parameters for each NumericStepper component instance
in the Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the NumericStepper
component using its properties, methods, and events. For more information, see
“NumericStepper class” on page 975.

Creating an application with the NumericStepper
component
The following procedure explains how to add a NumericStepper component to an application
while authoring. The example places a NumericStepper component and a Label component
on the Stage and creates a listener for a change event on the NumericStepper instance.
When the value in the numeric stepper changes, the example displays the new value in the
Label instance.

To create an application with the NumericStepper component:

1. Drag a NumericStepper component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name my_nstep.

3. Drag a Label component from the Components panel to the Stage.

4. In the Property inspector, enter the instance name my_label.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
Using the NumericStepper component 971

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
 - Label component on Stage (instance name: my_label)
*/

var my_nstep:mx.controls.NumericStepper;
var my_label:mx.controls.Label;

my_label.text = "value = " + my_nstep.value;

//Create listener object.
var nstepListener:Object = new Object();
nstepListener.change = function(evt_obj:Object) {
 my_label.text = "value = " + evt_obj.target.value;
};

//Add listener.
my_nstep.addEventListener("change", nstepListener);

The last line of code adds a change event handler to the my_nstep instance. The handler
(nstepListener) assigns the current value in the numeric stepper to the text property of
the Label instance.

Customizing the NumericStepper
component
You can transform a NumericStepper component horizontally and vertically while authoring
and at runtime. While authoring, select the component on the Stage and use the Free
Transform tool or any of the Modify > Transform commands. At runtime, use the setSize()
method (see UIObject.setSize()) or any applicable properties and methods of the
NumericStepper class. (See “NumericStepper class” on page 975.)

Resizing the NumericStepper component does not change the size of the down and up arrow
buttons. If the stepper is resized to be greater than the default height, the arrow buttons are
pinned to the top and bottom of the component. The arrow buttons always appear to the
right of the text box.
972 NumericStepper component

Using styles with the NumericStepper component
You can set style properties to change the appearance of a NumericStepper instance. If the
name of a style property ends in “Color”, it is a color style property and behaves differently
than noncolor style properties. For more information, see “Using styles to customize
component color and text” in Using Components.

A NumericStepper component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values
are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen".

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "center".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

repeatDelay Both The number of milliseconds of delay between when a
user first presses a button and when the action begins to
repeat. The default value is 500 (half a second).
Customizing the NumericStepper component 973

Using skins with the NumericStepper component
The NumericStepper component uses skins to represent its up and down button states. To
skin the NumericStepper component while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/Stepper Assets/States folder in the library. For more
information, see “About skinning components” in Using Components.

If a stepper is enabled, the down and up buttons display their over states when the pointer
moves over them. The buttons display their down state when pressed. The buttons return to
their over state when the mouse is released. If the pointer moves off the buttons while the
mouse is pressed, the buttons return to their original state.

If a stepper is disabled, it displays its disabled state, regardless of user interaction.

A NumericStepper component supports the following skin properties:

repeatInterval Both The number of milliseconds between automatic clicks
when a user holds the mouse button down on a button.
The default value is 35.

symbolColor Sample The color of the arrows. The default value is 0x2B333C
(dark gray).

Property Description

upArrowUp The up arrow button’s up state. The default value is
StepUpArrowUp.

upArrowDown The up arrow button’s pressed state. The default value is
StepUpArrowDown.

upArrowOver The up arrow button’s over state. The default value is
StepUpArrowOver.

upArrowDisabled The up arrow button’s disabled state. The default value is
StepUpArrowDisabled.

downArrowUp The down arrow button’s up state. The default value is
StepDownArrowUp.

downArrowDown The down arrow button’s down state. The default value is
StepDownArrowDown.

downArrowOver The down arrow button’s over state. The default value is
StepDownArrowOver.

downArrowDisabled The down arrow button’s disabled state. The default value is
StepDownArrowDisabled.

Style Theme Description
974 NumericStepper component

To create movie clip symbols for NumericStepper skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the Stepper Assets folder to the library of your document.

4. Expand the Stepper Assets folder in the library of your document.

5. Expand the Stepper Assets/States folder in the library of your document.

6. Open the symbols that you want to customize for editing.

For example, open the StepDownArrowDisabled symbol.
7. Customize the symbol as desired.

For example, change the white inner graphics to a light gray.
8. Repeat steps 6-7 for all symbols that you want to customize.

For example, repeat the same change on the up arrow.
9. Click the Back button to return to the main timeline.

10. Drag a NumericStepper component to the Stage.

This example has customized the disabled skins, so use ActionScript to set the
NumericStepper instance to be disabled in order to see the modified skins.

11. Select Control > Test Movie.

NumericStepper class
Inheritance MovieClip > UIObject class > UIComponent class > NumericStepper

ActionScript Class Name mx.controls.NumericStepper

The properties of the NumericStepper class let you set the following at runtime: the
minimum and maximum values displayed in the stepper, the unit by which the stepper
increases or decreases in response to a click, and the current value displayed in the stepper.

Setting a property of the NumericStepper class with ActionScript overrides the parameter of
the same name set in the Property inspector or Component inspector.

N
O

T
E

The Stepper Assets/States folder also contains a StepTrack symbol, which is used
as a spacer between the up and down skins if the total height of the NumericStepper
instance is greater than the sum of the two arrow heights. This symbol linkage
identifier is not available for modification through a skin property, but the library
symbol can be modified, provided that the linkage identifier remains unchanged.
NumericStepper class 975

The NumericStepper component uses the Focus Manager to override the default Flash Player
focus rectangle and draw a custom focus rectangle with rounded corners. For more
information, see “Creating custom focus navigation” in Using Components.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.NumericStepper.version);

Method summary for the NumericStepper class
There are no methods exclusive to the NumericStepper class.

Methods inherited from the UIObject class
The following table lists the methods the NumericStepper class inherits from the UIObject
class. When calling these methods from the NumericStepper object, use the form
NumericStepper.methodName.

N
O

T
E

The code trace(myNumericStepperInstance.version); returns undefined.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
976 NumericStepper component

Methods inherited from the UIComponent class
The following table lists the methods the NumericStepper class inherits from the
UIComponent class. When calling these methods from the NumericStepper object, use the
form NumericStepper.methodName.

Property summary for the NumericStepper class
The following table lists properties of the NumericStepper class.

Properties inherited from the UIObject class
The following table lists the properties the NumericStepper class inherits from the UIObject
class. When calling these properties from the NumericStepper object, use the form
NumericStepper.propertyName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

NumericStepper.maximum A number indicating the maximum range value.

NumericStepper.minimum A number indicating the minimum range value.

NumericStepper.nextValue A number indicating the next sequential value. This property
is read-only.

NumericStepper.previousValue A number indicating the previous sequential value. This
property is read-only.

NumericStepper.stepSize A number indicating the unit of change for each click.

NumericStepper.value A number indicating the current value of the stepper.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.
NumericStepper class 977

Properties inherited from the UIComponent class
The following table lists the properties the NumericStepper class inherits from the
UIComponent class. When calling these properties from the NumericStepper object, use the
form NumericStepper.propertyName.

Event summary for the NumericStepper class
The following table lists the event of the NumericStepper class.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

NumericStepper.change Triggered when the value of the stepper changes.

Property Description
978 NumericStepper component

Events inherited from the UIObject class
The following table lists the events the NumericStepper class inherits from the UIObject class.
When calling these events from the NumericStepper object, use the form
NumericStepper.eventName.

Events inherited from the UIComponent class
The following table lists the events the NumericStepper class inherits from the UIComponent
class. When calling these events from the NumericStepper object, use the form
NumericStepper.eventName.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
NumericStepper class 979

NumericStepper.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

//...
};
numericStepperInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// ...
}

Description

Event; broadcast to all registered listeners when the value of the stepper is changed.

A component instance (stepperInstance) dispatches an event (in this case, change) and the
event is handled by a function, also called a handler, on a listener object (listenerObject)
that you create. You define a method with the same name as the event on the listener object;
the method is called when the event is triggered. When the event is triggered, it automatically
passes an event object (eventObject) to the listener object method. Each event object has
properties that contain information about the event. You can use these properties to write
code that handles the event. Finally, you call the EventDispatcher.addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a listener for a change event on the numeric stepper called
my_nstep. When you change the value in the numeric stepper, the listener displays the value
(value property) in the Output panel.
980 NumericStepper component

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/

var my_nstep:mx.controls.NumericStepper;

// Create listener object.
var nstepListener:Object = new Object();
nstepListener.change = function(evt_obj:Object){
 // evt_obj.target is the component that generated the change event,
 // i.e., the numeric stepper.
 trace("Value changed to " + evt_obj.target.value);
}
// Add listener.
my_nstep.addEventListener("change", nstepListener);

NumericStepper.maximum
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.maximum

Description

Property; the maximum range value of the stepper. This property can contain a number of up
to three decimal places. The default value is 10.

Example

The following example sets the maximum value of the stepper range to 20.
NumericStepper.maximum 981

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/
var my_nstep:mx.controls.NumericStepper;

my_nstep.maximum = 20;

See also

NumericStepper.minimum

NumericStepper.minimum
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.minimum

Description

Property; the minimum range value of the stepper. This property can contain a number of up
to three decimal places. The default value is 0.

Example

The following example sets the minimum value and the initial value of the NumericStepper
instance to 100 and the maximum value to 120.

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/

var my_nstep:mx.controls.NumericStepper;

my_nstep.minimum = 100;
my_nstep.maximum = 120;
my_nstep.value = my_nstep.minimum;
982 NumericStepper component

See also

NumericStepper.maximum

NumericStepper.nextValue
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.nextValue

Description

Property (read-only); the next sequential value. This property can contain a number of up to
three decimal places.

Example

The following example sets the initial value of the NumericStepper component instance to -6
and sets the stepSize property to 3. It then displays the value of the nextValue property in
the Output panel. You should see the same value when you click the up arrow on the stepper.

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/
var my_nstep:mx.controls.NumericStepper;

my_nstep.stepSize = 3;
my_nstep.minimum = -6;
my_nstep.maximum = 12;
my_nstep.value = my_nstep.minimum;
trace(my_nstep.nextValue); // -3

See also

NumericStepper.previousValue
NumericStepper.nextValue 983

NumericStepper.previousValue
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.previousValue

Description

Property (read-only); the previous sequential value. This property can contain a number of up
to three decimal places.

Example

The following example sets the initial value of the NumericStepper instance to equal the
minimum value of 6. It sets the stepSize value to 3 and creates a listener object for a change
event. When a change event occurs, the example displays the previousValue property in the
Output panel.

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/

var my_nstep:mx.controls.NumericStepper;

my_nstep.minimum = 6;
my_nstep.value = my_nstep.minimum;
my_nstep.maximum = 120;
my_nstep.stepSize = 3;

// Create listener object.
var nstepListener:Object = new Object();
nstepListener.change = function(evt_obj:Object) {
 trace("previous value = " + evt_obj.target.previousValue);
}

// Add listener.
my_nstep.addEventListener("change", nstepListener);
984 NumericStepper component

See also

NumericStepper.nextValue

NumericStepper.stepSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.stepSize

Description

Property; the unit amount to change from the current value. The default value is 1. This value
cannot be 0. This property can contain a number of up to three decimal places.

Example

The following example sets the initial value of the NumericStepper instance to equal the
minimum value of 3. It also sets the stepSize value to 3 to cause the numeric stepper to
increment by 3 when the user clicks the up arrow and decrement by 3 when the user clicks the
down arrow.

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/

var my_nstep:mx.controls.NumericStepper;

my_nstep.minimum = 3;
my_nstep.maximum = 120;
my_nstep.value = my_nstep.minimum;
my_nstep.stepSize = 3;
NumericStepper.stepSize 985

NumericStepper.value
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
numericStepperInstance.value

Description

Property; the current value displayed in the text area of the stepper. The value is not assigned
if it does not correspond to the stepper’s range and step increment as defined in the stepSize
property. This property can contain a number of up to three decimal places.

Example

The following example sets the current value of the NumericStepper instance to 10 and sends
the value to the Output panel.

Drag an instance of the NumericStepper component onto the Stage, and enter the instance
name my_nstep in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - NumericStepper component on Stage (instance name: my_nstep)
*/

var my_nstep:mx.controls.NumericStepper;

my_nstep.value = 10;
my_nstep.maximum = 100;
trace(my_nstep.value); // 10
986 NumericStepper component

33

CHAPTER 33

PopUpManager class
ActionScript Class Name mx.managers.PopUpManager

The PopUpManager class lets you create overlapping windows that can be modal or
nonmodal. (A modal window doesn’t allow interaction with other windows while it’s active.)
You use the methods of this class to create and destroy pop-up windows.

Method summary for the PopUpManager class
The following table lists the methods of the PopUpManager class.

Method Description

PopUpManager.createPopUp() Creates a pop-up window.

PopUpManager.deletePopUp() Deletes a pop-up window created by a call to
PopUpManager.createPopUp().
987

PopUpManager.createPopUp()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
PopUpManager.createPopUp(parent, class, modal [, initobj, outsideEvents])

Parameters

parent A reference to a window to pop-up over.

class A reference to the class of object you want to create.

modal A Boolean value indicating whether the window is modal (true) or not (false).

initobj An object containing initialization properties. This parameter is optional.

outsideEvents A Boolean value indicating whether an event is triggered if the user clicks
outside the window (true) or not (false). This parameter is optional.

Returns

A reference to the object that was created.

If the class parameter is Window and a window component is in the library, the returned
reference is a Window.

Description

Method; if modal, a call to createPopUp() finds the topmost parent window starting with
parent and creates an instance of class. If nonmodal, a call to createPopUp() creates an
instance of the class as a child of the parent window.

Example

The following code creates a modal window when the button is clicked:
lo = new Object();
lo.click = function(){

mx.managers.PopUpManager.createPopUp(_root, mx.containers.Window, true);
}
button.addEventListener("click", lo);
988 PopUpManager class

PopUpManager.deletePopUp()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage
windowInstance.deletePopUp();

Parameters

None.

Returns

Nothing.

Description

Method; deletes a pop-up window and removes the modal state. It is the responsibility of the
overlapped window to call PopUpManager.deletePopUp() when the window is being
destroyed.

Example

The following code creates a modal window named win with a close button, and deletes the
window when the close button is clicked:
import mx.managers.PopUpManager
import mx.containers.Window
win = PopUpManager.createPopUp(_root, Window, true, {closeButton:true});
lo = new Object();
lo.click = function(){

win.deletePopUp();
}
win.addEventListener("click", lo);
PopUpManager.deletePopUp() 989

990 PopUpManager class

34

CHAPTER 34

ProgressBar component
The ProgressBar component displays the progress of loading content. The ProgressBar is
useful for displaying the status of loading images and pieces of an application. The loading
process can be determinate or indeterminate. A determinate progress bar is a linear
representation of a task’s progress over time and is used when the amount of content to load is
known. An indeterminate progress bar is used when the amount of content to load is
unknown. You can add a label to display the progress of the loading content.

The ProgressBar component contains a left cap, a right cap, and a progress track. The caps are
simply the ends of the progress bar, where the progress track visually ends. A live preview of
each ProgressBar instance reflects changes made to parameters in the Property inspector or
Component inspector during authoring. The following parameters are reflected in the live
preview: conversion, direction, label, labelPlacement, mode, and source.

Using the ProgressBar component
A progress bar lets you display the progress of content as it loads. This is essential feedback for
users as they interact with an application.

There are several modes in which to use the ProgressBar component; you set the mode with
the mode parameter. The most commonly used modes are event mode and polled mode.
These modes use the source parameter to specify a loading process that either emits progress
and complete events (event and polled mode), or exposes getBytesLoaded() and
getsBytesTotal() methods (polled mode). You can also use the ProgressBar component in
manual mode by manually setting the maximum, minimum, and indeterminate properties
along with calls to the ProgressBar.setProgress() method.
991

ProgressBar parameters
You can set the following authoring parameters for each ProgressBar instance in the Property
inspector or in the Component inspector (Window > Component Inspector menu option):

conversion is a number by which to divide the %1 and %2 values in the label string before
they are displayed. The default value is 1.

direction indicates the direction toward which the progress bar fills. This value can be right
or left; the default value is right.

label is the text indicating the loading progress. This parameter is a string in the format "%1
out of %2 loaded (%3%%)". In this string, %1 is a placeholder for the current bytes loaded,
%2 is a placeholder for the total bytes loaded, and %3 is a placeholder for the percent of
content loaded. The characters “%%” are a placeholder for the “%” character. If a value for
%2 is unknown, it is replaced by two question marks (??). If a value is undefined, the label
doesn’t display.

labelPlacement indicates the position of the label in relation to the progress bar. This
parameter can be one of the following values: top, bottom, left, right, center. The default
value is bottom.

mode is the mode in which the progress bar operates. This value can be one of the following:
event, polled, or manual. The default value is event.

source is a string to be converted into an object representing the instance name of the source.

And, you can set the following additional parameters for each ProgressBar component
instance in the Component inspector (through the Window > Component Inspector
menu option):

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the ProgressBar
component using its properties, methods, and events. For more information, see “ProgressBar
class” on page 999.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
992 ProgressBar component

Creating an application with the ProgressBar
component
The following procedure explains how to add a ProgressBar component to an application
while authoring. In this example, the progress bar is used in event mode. In event mode, the
loading content must emit progress and complete events that the progress bar uses to
display progress. (These events are emitted by the Loader component. For more information,
see “Loader component” on page 813.)

To create an application with the ProgressBar component in event mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name my_pb.
■ Select Event for the mode parameter.

3. Drag a Loader component from the Components panel to the Stage.

4. In the Property inspector, enter the instance name my_ldr.

5. Select the progress bar on the Stage and, in the Property inspector, enter my_ldr for the
source parameter.

6. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code,
which loads a JPEG file into the Loader component:

/**
 Requires:
 - Loader component on Stage (instance name: my_ldr)
 - ProgressBar component on Stage (instance name: my_pb)
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_ldr:mx.controls.Loader;
var my_pb:mx.controls.ProgressBar;

my_pb.source = my_ldr;
my_ldr.autoLoad = false;
my_ldr.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

// when autoLoad is false loading does not start until load() is invoked
my_ldr.load();

In the following example, the progress bar is used in polled mode. In polled mode, the
ProgressBar uses the getBytesLoaded() and getBytesTotal() methods of the source object
to display its progress.
Using the ProgressBar component 993

To create an application with the ProgressBar component in polled mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name my_pb.

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code,
which creates a Sound object called my_sound and calls loadSound() to load a sound into
the Sound object:

/**
 Requires:
 - ProgressBar component on Stage (instance name: my_pb)
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_pb:mx.controls.ProgressBar;

my_pb.mode = "polled";
my_pb.source = "my_sound";

var pbListener:Object = new Object();
pbListener.complete = function(evt_obj:Object) {
 trace("Sound loaded");
}
my_pb.addEventListener("complete", pbListener);

var my_sound:Sound = new Sound();
my_sound.loadSound("http://www.helpexamples.com/flash/sound/disco.mp3",

true);

In the following example, the progress bar is used in manual mode. In manual mode, you
must set the maximum, minimum, and indeterminate properties in conjunction with the
setProgress() method to display progress. You do not set the source property in
manual mode.
994 ProgressBar component

To create an application with the ProgressBar component in manual mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name my_pb.
■ Select Manual for the mode parameter.

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code,
which updates the progress bar manually on every file download by using calls to
setProgress():
for (var i:Number = 1; i <= total; i++){

// insert code to load file
my_pb.setProgress(i, total);

}

Following are two more examples.

To create an application with the ProgressBar component in manual mode
(example 2):

1. Drag a Label component onto the Stage and give it an instance name my_label.

2. Drag a ProgressBar component onto the Stage and give it an instance name my_pb.

3. Select the my_pb ProgressBar on the Stage and, in the Property inspector, set the
component's mode parameter to "manual".

4. Select Frame 1 in the Timeline, and add the following ActionScript in the Actions panel:
var feed_xml:XML = new XML();
feed_xml.onLoad = function(success:Boolean):Void {

clearInterval(timer);
my_label.text = "XML Loaded";
my_pb.setProgress(feed_xml.getBytesLoaded(),
feed_xml.getBytesTotal());

};
function updatePB(local_xml:XML):Void {

my_pb.setProgress(local_xml.getBytesLoaded(),
local_xml.getBytesTotal());

}
var timer:Number = setInterval(updatePB, 100, feed_xml);
feed_xml.load("http://www.helpexamples.com/flash/xml/menu.xml");

5. Press Control+Enter to test.
Using the ProgressBar component 995

To create an application with the ProgressBar component in manual mode
(example 3):

1. Drag a ProgressBar component onto the Stage and give it an instance name my_pb.

2. Select the my_pb ProgressBar on the Stage and, in the Property inspector, set the
component's mode parameter to "manual".

3. Select Frame 1 in the Timeline, and add the following ActionScript in the Actions panel:
var img_mcl:MovieClipLoader = new MovieClipLoader();
var mclListener:Object = new Object();
mclListener.onLoadProgress = function(target_mc:MovieClip,

numBytesLoaded:Number, numBytesTotal:Number) {
my_pb.setProgress(numBytesLoaded, numBytesTotal);

};
mclListener.onLoadComplete = function(target_mc:MovieClip) {
//my_pb._visible = false;
};
img_mcl.addListener(mclListener);
this.createEmptyMovieClip("image_mc", 20);
img_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",

image_mc);

4. Press Control+Enter to test.

Customizing the ProgressBar component
You can transform a ProgressBar component horizontally while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of
the Modify > Transform commands. At runtime, use UIObject.setSize().

The progress bar’s left cap, right cap, and track graphic are set at a fixed size. When you resize
a progress bar, its middle portion is resized to fit between the two caps. If a progress bar is too
small, it may not render correctly.

Using styles with the ProgressBar component
You can set style properties to change the appearance of a progress bar instance. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component
color and text” in Using Components.

N
O

T
E

You can uncomment the line //my_pb._visible = false; if you want to hide the
component after the content loads.
996 ProgressBar component

A ProgressBar component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

barColor Sample The foreground color in denoting the percent complete.
The default color is white. To set the bar color on a
Halo-themed component, set the themeColor style
property.

trackColor Sample The background color for the bar. The default value is
0x666666 (dark gray).
Customizing the ProgressBar component 997

Using skins with the ProgressBar component
The ProgressBar component uses skins to represent the progress bar track, the completed bar,
and an indeterminate bar. To skin the ProgressBar component while authoring, modify
symbols in the Flash UI Components 2/Themes/MMDefault/ProgressBar Elements folder.
For more information, see “About skinning components” in Using Components.

The track and bar graphics are each made up of three skins corresponding to the left and right
caps and the middle. The caps are used “as is,” and the middle is resized horizontally to fit the
width of the ProgressBar instance.

The indeterminate bar is used when the ProgressBar instance’s indeterminate property is set
to true. The skin is resized horizontally to fit the width of the progress bar.

A ProgressBar component supports the following skin properties:

To create movie clip symbols for ProgressBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the ProgressBar Assets folder to the library for your document.

4. Expand the ProgressBar Assets/Elements folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ProgIndBar symbol.

Property Description

progTrackMiddleName The expandable middle of the track. The default value is
ProgTrackMiddle.

progTrackLeftName The fixed-size left cap. The default value is ProgTrackLeft.

progTrackRightName The fixed-size right cap. The default value is ProgTrackRight.

progBarMiddleName The expandable middle bar graphic. The default value is
ProgBarMiddle.

progBarLeftName The fixed-size left bar cap. The default value is ProgBarLeft.

progBarRightName The fixed-size right bar cap. The default value is ProgBarRight.

progIndBarName The indeterminate bar graphic. The default value is
ProgIndBar.
998 ProgressBar component

6. Customize the symbol as desired.

For example, flip the track horizontally.
7. Repeat steps 5-6 for all symbols you want to customize.

8. Click the Back button to return to the main timeline.

9. Drag a ProgressBar component to the Stage.

To view the skins modified in this example, use ActionScript to set the indeterminate
property to true.

10. Select Control > Test Movie.

ProgressBar class
Inheritance MovieClip > UIObject class > ProgressBar

ActionScript Class Name mx.controls.ProgressBar

Setting a property of the ProgressBar class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.ProgressBar.version);

Method summary for the ProgressBar class
The following table lists the method of the ProgressBar class.

N
O

T
E

The code trace(myProgressBarInstance.version); returns undefined.

Method Description

ProgressBar.setProgress() Sets the state of the progress bar to reflect the amount of
progress made when the progress bar is in manual mode
ProgressBar class 999

Methods inherited from the UIObject class
The following table lists the methods the ProgressBar class inherits from the UIObject class.
When calling these methods from the ProgressBar object, use the form
ProgressBar.methodName.

Property summary for the ProgressBar class
The following table lists properties of the ProgressBar class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

ProgressBar.conversion A number used to convert the current bytes loaded value and
the total bytes loaded values.

ProgressBar.direction The direction in which the progress bar fills.

ProgressBar.indeterminate Indicates whether the size of the loading source is unknown.

ProgressBar.label The text that accompanies the progress bar.

ProgressBar.labelPlacement The location of the label in relation to the progress bar.

ProgressBar.maximum The maximum value of the progress bar in manual mode.

ProgressBar.minimum The minimum value of the progress bar in manual mode.

ProgressBar.mode The mode in which the progress bar loads content.
1000 ProgressBar component

Properties inherited from the UIObject class
The following table lists the properties the ProgressBar class inherits from the UIObject class.
When calling these properties from the ProgressBar object, use the form
ProgressBar.propertyName.

ProgressBar.percentComplete Read-only; a number indicating the percent loaded.

ProgressBar.source The content to load.

ProgressBar.value Read-only; indicates the amount of progress that has
been made.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description
ProgressBar class 1001

Event summary for the ProgressBar class
The following table lists events of the ProgressBar class.

Events inherited from the UIObject class
The following table lists the events the ProgressBar class inherits from the UIObject class.
When calling these events from the ProgressBar object, use the form
ProgressBar.eventName.

Event Description

ProgressBar.complete Triggered when loading is complete.

ProgressBar.progress Triggered as content loads in manual or polled mode.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible
to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible
to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
1002 ProgressBar component

ProgressBar.complete
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObject:Object) {

// ...
};
progressBarInstance.addEventListener("complete", listenerObject);

Usage 2:
on (complete) {

// ...
}

Event object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.complete event: current (the loaded value equals total), and total
(the total value).

Description

Event; broadcast to all registered listeners when the loading progress has completed.

The first usage example uses a dispatcher/listener event model. A component instance
(progressBarInstance) dispatches an event (in this case, complete) and the event is
handled by a function, also called a handler, on a listener object (listenerObject) that you
create. You define a method with the same name as the event on the listener object; the
method is called when the event is triggered. When the event is triggered, it automatically
passes an event object (eventObject) to the listener object method. Each event object has
properties that contain information about the event. You can use these properties to write
code that handles the event. Finally, you call the EventDispatcher.addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
ProgressBar.complete 1003

The second usage example uses an on() handler and must be attached directly to a
ProgressBar instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached
to the instance progressBarInstance, sends “_level0.progressBarInstance” to the
Output panel:
on (complete) {

trace(this);
}

Example

This example creates a Loader component, a ProgressBar (my_pb) for it, and a listener that
makes the progress bar invisible when the complete event occurs. The example loads an
image into the loader my_ldr.

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the main
timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.Loader, "my_ldr", 10, {autoLoad:false});
this.createClassObject(mx.controls.ProgressBar, "my_pb", 20,

{indeterminate:true, source:my_ldr, mode:"polled"});

// Create Listener Object
var pbListener:Object = new Object();
pbListener.complete = function(evt_obj:Object) {
 my_pb.visible = false;
};
// Add Listener
my_pb.addEventListener("complete", pbListener);

my_ldr.load("http://www.helpexamples.com/flash/images/image2.jpg");

See also

EventDispatcher.addEventListener()
1004 ProgressBar component

ProgressBar.conversion
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.conversion

Description

Property; a number that sets a conversion value for the incoming values. It divides the current
and total values, floors them, and displays the converted value in the label property. The
default value is 1.

Example

The following code displays the progress of loading a sound object by dividing the number of
bytes loaded by a conversion value of 1024 to produce a value in kilobytes.

You must first drag a ProgressBar component from the Component’s panel to the current
document’s library; then add the following code to Frame 1 of the main timeline:
/**
 Requires:
 - ProgressBar component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 20);

//Set progress bar attributes
my_pb.mode = "polled";
my_pb.source = "my_sound";
my_pb.label = "%1 kb loaded";
my_pb.conversion = 1024;

//Load sound
var my_sound:Sound = new Sound();
my_sound.loadSound("http://www.helpexamples.com/flash/sound/disco.mp3",

true);

N
O

T
E

The floor is the closest integer value that is less than or equal to the specified value. For
example, the number 4.6 becomes 4.
ProgressBar.conversion 1005

ProgressBar.direction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.direction

Description

Property; indicates the fill direction for the progress bar. A value of right specifies that the
bar will fill from left to right. A value of left specifies that the bar will fill from right to left.
The default value is right.

Example

The following code loads a sound object and marks the progress with a progress bar that fills
to the left.

You must first drag a ProgressBar component from the Components panel to the current
document’s library; then add the following code to Frame 1 of the main timeline:
/**
 Requires:
 - ProgressBar component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 20);

//Set progress bar attributes
my_pb.mode = "polled";
my_pb.source = "my_sound";
my_pb.direction = "left";

//Load sound
var my_sound:Sound = new Sound();
my_sound.loadSound("http://www.helpexamples.com/flash/sound/disco.mp3",

true);
1006 ProgressBar component

ProgressBar.indeterminate
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.indeterminate

Description

Property; a Boolean value that indicates whether the progress bar has a striped fill and a
loading source of unknown size (true), or a solid fill and a loading source of a known
size (false). For example, you might use this property if you are loading a large data set into
a SWF file and do not know the size of the data you are loading.

Example

The following code creates an indeterminate progress bar that moves from left to right with a
striped fill.

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the
main timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 10);
this.createClassObject(mx.controls.Loader, "my_ldr", 20);

//Create Listener Object
var pbListener:Object = new Object();
pbListener.complete = function(evt_obj:Object) {
trace("Height: " + evt_obj.target.height + ", Width: " +

evt_obj.target.width);};
//Add Listener
my_pb.addEventListener("complete", pbListener);

//Set progress bar settings
my_pb.mode = "polled";
ProgressBar.indeterminate 1007

my_pb.indeterminate = true;
my_pb.source = my_ldr;

//Set loader settings
my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.move(100, 100)
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");

ProgressBar.label
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.label

Description

Property; text that indicates the loading progress. This property is a string in the format "%1
out of %2 loaded (%3%%)". In this string, %1 is a placeholder for the current bytes loaded,
%2 is a placeholder for the total bytes loaded, and %3 is a placeholder for the percentage of
content loaded. (The characters %% allow Flash to display a single % character.) If a value for %2
is unknown, it is replaced by ??. If a value is undefined, the label doesn’t display. The default
value is "LOADING %3%%".

Example

The following example loads an image into a loader and marks the progress with a progress
bar whose label specifies the percent of total kilobytes that have been loaded.

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the main
timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/
1008 ProgressBar component

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 10);
this.createClassObject(mx.controls.Loader, "my_ldr", 20);

my_ldr.move(0, 30);

//Set progress bar settings
my_pb.mode = "polled";
my_pb.source = my_ldr;
my_pb.label = "%1 of %2 KB loaded";
my_pb.conversion = 1024; // 1024 bytes in a KB

//Set loader settings
my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg")

See also

ProgressBar.labelPlacement

ProgressBar.labelPlacement
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.labelPlacement

Description

Property; sets the placement of the label in relation to the progress bar. The possible values are
"left", "right", "top", "bottom", and "center".

Example

The following example loads an image into a loader and marks the progress with a progress
bar. It sets the labelPlacement property to top to place the label above the progress bar.
ProgressBar.labelPlacement 1009

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the
main timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 10);
this.createClassObject(mx.controls.Loader, "my_ldr", 20);

my_ldr.move(0, 30);

// Set progress bar settings
my_pb.mode = "polled";
my_pb.source = my_ldr;
my_pb.label = "%1 of %2 KB loaded";
my_pb.conversion = 1024; // 1024 bytes in a KB
my_pb.labelPlacement = "top";

// Set loader settings
my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");

See also

ProgressBar.label

ProgressBar.maximum
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.maximum
1010 ProgressBar component

Description

Property; the largest value for the progress bar when the ProgressBar.mode property is set
to "manual".

Example

The following example increments a ProgressBar component manually up to a maximum
value of 200, at which point it stops. It displays the increment in the Output panel as the
value increases.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - ProgressBar component on Stage (instance name: my_pb)
*/

var my_pb:mx.controls.ProgressBar;

//Set progress bar mode
my_pb.mode = "manual";
my_pb.label = "%1 out of %2 loaded";

//minimum numerical value before progress bar increments
my_pb.minimum = 100;

//maximum value of progress bar before it stops
my_pb.maximum = 200;

var increment_num:Number = my_pb.minimum;
this.onEnterFrame = function() {
 if (increment_num < my_pb.maximum) {
 increment_num++;
 //update progress of number incrementing
 my_pb.setProgress(increment_num, my_pb.maximum);
 trace(increment_num);
 } else {
 delete this.onEnterFrame;
 }
};

See also

ProgressBar.minimum, ProgressBar.mode
ProgressBar.maximum 1011

ProgressBar.minimum
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.minimum

Description

Property; the smallest value for the progress bar when the ProgressBar.mode property is set
to "manual".

Example

The following example manually increments a ProgressBar component, starting with a
minimum value of 100. It displays the increment in the Output panel as the value increases.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - ProgressBar component on Stage (instance name: my_pb)
*/

var my_pb:mx.controls.ProgressBar;

//Set progress bar mode
my_pb.mode = "manual";
my_pb.label = "%1 out of %2 loaded";

//minimum numerical value before progress bar increments
my_pb.minimum = 100;

//maximum value of progress bar before it stops
my_pb.maximum = 200;

var increment_num:Number = my_pb.minimum;
this.onEnterFrame = function() {
 if (increment_num < my_pb.maximum) {
 increment_num++;
 //update progress of number incrementing
 my_pb.setProgress(increment_num, my_pb.maximum);
1012 ProgressBar component

 trace(increment_num);
 } else {
 delete this.onEnterFrame;
 }
};

See also

ProgressBar.maximum, ProgressBar.mode

ProgressBar.mode
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.mode

Description

Property; the mode in which the progress bar loads content. This value can be "event",
"polled", or "manual".

Event mode and polled mode are the most common modes. In event mode, the source
property specifies loading content that emits progress and complete events; you should use
a Loader object in this mode. In polled mode, the source property specifies loading content
(such as a MovieClip object) that exposes getBytesLoaded() and getsBytesTotal()
methods. Any object that exposes these methods can be used as a source in polled mode
(including a custom object or the root timeline).

You can also use the ProgressBar component in manual mode by manually setting the
maximum, minimum, and indeterminate properties and making calls to the
ProgressBar.setProgress() method.

Example

The following example loads an image into a loader and marks the progress of loading with a
progress bar that is set to event mode. When the load is complete, a listener for the complete
event displays the name of the loader object.
ProgressBar.mode 1013

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the main
timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 10);
this.createClassObject(mx.controls.Loader, "my_ldr", 20);

//Create Listener Object
var ldrListener:Object = new Object();
ldrListener.complete = function(evt_obj:Object) {

trace("Event complete for " + evt_obj.target);
};
//Add Listener
my_ldr.addEventListener("complete", ldrListener);

//Set progress bar settings
my_pb.mode = "event";
my_pb.indeterminate = true;
my_pb.source = my_ldr;

//Set loader settings
my_ldr.move(0,30);
my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");

ProgressBar.percentComplete
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.percentComplete
1014 ProgressBar component

Description

Property (read-only); tells what percentage of the content has been loaded. This value is
floored. (The floor is the closest integer value that is less than or equal to the specified value.
For example, the number 7.8 becomes 7.) The following formula is used to calculate the
percentage:
100 * (value - minimum) / (maximum - minimum)

Example

The following example loads an image into a loader that is associated with a progress bar. A
listener for the progress event and another for the complete event both access the
percentComplete property to display the percent of loading that has completed.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Drag an instance of the Loader component onto the Stage,
and enter the instance name my_ldr in the Property inspector. Add the following code to
Frame 1 of the timeline:
/**
 Requires:
 - Loader component instance on Stage (instance name: my_ldr)
 - Progress component instance on Stage (instance name: my_pb)
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_ldr:mx.controls.Loader;
var my_pb:mx.controls.ProgressBar;

my_pb.mode = "polled";
my_pb.source = my_ldr;
my_ldr.autoLoad = false;

var pbListener:Object = new Object();
pbListener.progress = function(evt_obj:Object) {
 trace("progress = " + my_pb.percentComplete + "%");
}
pbListener.complete = function(evt_obj:Object) {
 trace("complete = " + my_pb.percentComplete + "%");
}
my_pb.addEventListener("progress", pbListener);
my_pb.addEventListener("complete", pbListener);

// when autoLoad is false loading does not start until load() is invoked
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");
ProgressBar.percentComplete 1015

ProgressBar.progress
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object) {

// ...
};
progressBarInstance.addEventListener("progress", listenerObject);

Usage 2:
on (progress) {

// ...
}

Event object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total
(the total value).

Description

Event; broadcast to all registered listeners whenever the value of a progress bar changes.

The first usage example uses a dispatcher/listener event model. A component instance
(progressBarInstance) dispatches an event (in this case, progress) and the event is
handled by a function, also called a handler, on a listener object (listenerObject) that you
create. You define a method with the same name as the event on the listener object; the
method is called when the event is triggered. When the event is triggered, it automatically
passes an event object (eventObject) to the listener object method. Each event object has
properties that contain information about the event. You can use these properties to write
code that handles the event. Finally, you call the EventDispatcher.addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
1016 ProgressBar component

The second usage example uses an on() handler and must be attached directly to a
ProgressBar instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the instance progressBarInstance, sends “_level0.progressBarInstance” to the
Output panel:
on (progress) {

trace(this);
}

Example

This example loads an image into a loader with an associated progress bar and creates a
listener for the progress event. When the progress event occurs, the example displays the
value property, which is a value between ProgressBar.minimum and
ProgressBar.maximum.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Drag an instance of the Loader component onto the Stage,
and enter the instance name my_ldr in the Property inspector. Add the following code to
Frame 1 of the timeline:
/**
 Requires:
 - Loader component instance on Stage (instance name: my_ldr)
 - Progress component instance on Stage (instance name: my_pb)
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_ldr:mx.controls.Loader;
var my_pb:mx.controls.ProgressBar;

my_pb.mode = "polled";
my_pb.source = my_ldr;
my_ldr.autoLoad = false;

//Create Listener Object
var pbListener:Object = new Object();
pbListener.progress = function(evt_obj:Object) {
 // evt_obj.target is the component that generated the progress event,
 // i.e., the progress bar.
 trace("Current progress value = " + evt_obj.target.value);
};
//Add Listener
my_pb.addEventListener("progress", pbListener);

// when autoLoad is false loading does not start until load() is invoked
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");
ProgressBar.progress 1017

See also

EventDispatcher.addEventListener()

ProgressBar.setProgress()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.setProgress(completed, total)

Parameters

completed A number indicating the amount of progress that has been made. You can use
the ProgressBar.label and ProgressBar.conversion properties to display the number in
percentage form or any units you choose, depending on the source of the progress bar.

total A number indicating the total progress that must be made to reach 100%.

Returns

A number indicating the amount of progress that has been made.

Description

Method; sets the state of the progress bar to reflect the amount of progress made when the
ProgressBar.mode property is set to "manual". You can call this method to make the bar
reflect the state of a process other than loading. For example, you might want to explicitly set
the progress bar to zero progress.

The completed parameter is assigned to the value property and the total parameter is
assigned to the maximum property. The minimum property is not altered.
1018 ProgressBar component

Example

The following example sets the progress bar mode to manual and calls setProgress() from
the onEnterFrame() function, which is invoked repeatedly at the frame rate of the SWF file.
The example sets the minimum value for the progress bar to 100 and the maximum to 200
and marks the progress in increments of 1.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Add the following code to Frame 1 of the timeline:
/**
 Requires:
 - ProgressBar on Stage (instance name: my_pb)
*/

var my_pb:mx.controls.ProgressBar;

//Set progress bar mode
my_pb.mode = "manual";
my_pb.label = "%1 out of %2 loaded";

//minimum numerical value before progress bar increments
my_pb.minimum = 100;

//maximum value of progress bar before it stops
my_pb.maximum = 200;

var increment_num:Number = my_pb.minimum;
this.onEnterFrame = function() {
 if (increment_num < my_pb.maximum) {
 increment_num++;
 //update progress of number incrementing
 my_pb.setProgress(increment_num, my_pb.maximum);
 trace(increment_num);
 } else {
 delete this.onEnterFrame;
 }
};
ProgressBar.setProgress() 1019

ProgressBar.source
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.source

Description

Property; a reference to the instance to be loaded whose loading process will be displayed. The
loading content should emit a progress event from which the current and total values are
retrieved. This property is used only when ProgressBar.mode is set to "event" or
"polled". The default value is undefined.

The ProgressBar component can be used with content within an application, including
_root.

Example

The following example loads an image into a loader and marks the progress with a progress
bar. The example sets the source property to the name of the Loader component (my_ldr) to
associate the content with the progress bar.
1020 ProgressBar component

You must first drag a Loader component and a ProgressBar component from the Components
panel to the current document’s library; then add the following code to Frame 1 of the main
timeline:
/**
 Requires:
 - ProgressBar component in library
 - Loader component in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.ProgressBar, "my_pb", 10);
this.createClassObject(mx.controls.Loader, "my_ldr", 20);

//Create Listener Object
var pbListener:Object = new Object();
pbListener.complete = function(evt_obj:Object) {
 evt_obj.target.visible = false;
};
//Add Listener
my_pb.addEventListener("complete", pbListener);

//Set progress bar settings
my_pb.mode = "polled";
my_pb.indeterminate = true;
my_pb.source = my_ldr;

//Set loader settings
my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");

See also

ProgressBar.mode

ProgressBar.value
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
progressBarInstance.value
ProgressBar.value 1021

Description

Property (read-only); indicates the amount of progress that has been made. This property is a
number between the value of ProgressBar.minimum and ProgressBar.maximum. The
default value is 0.

Example

The following example loads an image into a Loader component and marks the progress with
the a progress bar. When the loading is complete, the example displays the minimum,
maximum, and current values for the progress bar.

Drag an instance of the ProgressBar component onto the Stage, and enter the instance name
my_pb in the Property inspector. Drag an instance of the Loader component onto the Stage,
and enter the instance name my_ldr in the Property inspector. Add the following code to
Frame 1 of the timeline:
/**
 Requires:
 - Loader component instance on Stage (instance name: my_ldr)
 - Progress component instance on Stage (instance name: my_pb)
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_ldr:mx.controls.Loader;
var my_pb:mx.controls.ProgressBar;

my_pb.mode = "polled";
my_pb.source = my_ldr;
my_ldr.autoLoad = false;

//Create Listener Object
var pbListener:Object = new Object();
pbListener.complete = function(evt_obj:Object){
 // event_obj.target is the component that generated the complete event,
 // i.e., the progress bar.

trace("Minimum value is: " + evt_obj.target.minimum + " bytes");
trace("Maximum value is: " + evt_obj.target.maximum + " bytes");
trace("Current ProgressBar value = " + evt_obj.target.value + " bytes");

}
//Add Listener
my_pb.addEventListener("complete", pbListener);

// when autoLoad is false loading does not start until load() is invoked
my_ldr.load("http://www.helpexamples.com/flash/images/image1.jpg");
1022 ProgressBar component

35

CHAPTER 35

RadioButton component
The RadioButton component lets you force a user to make a single choice within a set of
choices. This component must be used in a group of at least two RadioButton instances. Only
one member of the group can be selected at any given time. Selecting one radio button in a
group deselects the currently selected radio button in the group. You set the groupName
parameter to indicate which group a radio button belongs to.

A radio button can be enabled or disabled. A disabled radio button doesn’t receive mouse or
keyboard input. When the user clicks or tabs into a RadioButton component group, only the
selected radio button receives focus. The user can then use the following keys control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each RadioButton instance on the Stage reflects changes made to parameters
in the Property inspector or Component inspector during authoring. However, the mutual
exclusion of selection does not display in the live preview. If you set the selected parameter to
true for two radio buttons in the same group, they both appear selected even though only the
last instance created appears selected at runtime. For more information, see “RadioButton
parameters” on page 1024.

When you add the RadioButton component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.RadioButtonAccImpl.enableAccessibility();

Key Description

Up Arrow/Left
Arrow

The selection moves to the previous radio button within the radio
button group.

Down Arrow/
Right Arrow

The selection moves to the next radio button within the radio button group.

Tab Moves focus from the radio button group to the next component.
1023

You enable accessibility for a component only once, regardless of how many instances you
have of the component. For more information, see Chapter 19, “Creating Accessible
Content,” in Using Flash.

Using the RadioButton component
A radio button is a fundamental part of any form or web application. You can use radio
buttons wherever you want a user to make one choice from a group of options. For example,
you would use radio buttons in a form to ask which credit card a customer wants to use.

RadioButton parameters
You can set the following authoring parameters for each RadioButton component instance in
the Property inspector or in the Component inspector:

data is the value associated with the radio button. There is no default value.

groupName is the group name of the radio button. The default value is radioGroup.

label sets the value of the text on the button. The default value is Radio Button.

labelPlacement orients the label text on the button. This parameter can be one of four
values: left, right, top, or bottom. The default value is right. For more information, see
RadioButton.labelPlacement.

selected sets the initial value of the radio button to selected (true) or unselected (false). A
selected radio button displays a dot inside it. Only one radio button in a group can have a
selected value of true. If more than one radio button in a group is set to true, the radio
button that is instantiated last is selected. The default value is false.

You can write ActionScript to set additional options for RadioButton instances using the
methods, properties, and events of the RadioButton class. For more information, see
“RadioButton class” on page 1029.

Creating an application with the RadioButton
component
The following procedure explains how to add RadioButton components to an application
while authoring. In this example, the radio buttons are used to present the yes-or-no question
“Are you a Flashist?”. The data from the radio group is displayed in a TextArea component
with the instance name theVerdict.
1024 RadioButton component

To create an application with the RadioButton component:

1. Drag two RadioButton components from the Components panel to the Stage.

2. Select one of the radio buttons. In the Component inspector, do the following:

■ Enter Yes for the label parameter.
■ Enter Flashist for the data parameter.

3. Select the other radio button. In the Component inspector, do the following:

■ Enter No for the label parameter.
■ Enter Anti-Flashist for the data parameter.

4. Drag a TextArea component from the Components panel to the Stage and give it an
instance name of theVerdict.

5. Select Frame 1 in the main Timeline, open the Actions panel, and enter the following code:
flashistListener = new Object();
flashistListener.click = function (evt){

theVerdict.text = evt.target.selection.data
}
radioGroup.addEventListener("click", flashistListener);

The last line of code adds a click event handler to the radioGroup radio button group.
The handler sets the text property of theVerdict (a TextArea instance) to the value of
the data property of the selected radio button in the radioGroup radio button group. For
more information, see RadioButton.click.

Customizing the RadioButton
component
You can transform a RadioButton component horizontally and vertically while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method
(see UIObject.setSize()).

The bounding box of a RadioButton component is invisible and also designates the hit area
for the component. If you increase the size of the component, you also increase the size of the
hit area.

If the component’s bounding box is too small to fit the component label, the label is clipped
to fit.
Customizing the RadioButton component 1025

Using styles with the RadioButton component
You can set style properties to change the appearance of a RadioButton. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and
text” in Using Components.

A RadioButton component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component.
Possible values are "haloGreen", "haloBlue",
and "haloOrange". The default value is
"haloGreen".

color Both The text color. The default value is 0x0B333C
for the Halo theme and blank for the Sample
theme.

disabledColor Both The color for text when the component is
disabled. The default color is 0x848384
(dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font.
This style must be set to true if fontFamily
refers to an embedded font. Otherwise, the
embedded font is not used. If this style is set to
true and fontFamily does not refer to an
embedded font, no text is displayed. The default
value is false.

fontFamily Both The font name for text. The default value is
"_sans".

fontSize Both The point size for the font. The default value is
10.

fontStyle Both The font style: either "normal" or "italic". The
default value is "normal".

fontWeight Both The font weight: either "none" or "bold". The
default value is "none". All components can also
accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to
getStyle() return "none".

textDecoration Both The text decoration: either "none" or
"underline". The default value is "none".
1026 RadioButton component

Using skins with the RadioButton component
You can skin the RadioButton component while authoring by modifying the component’s
symbols in the library. The skins for the RadioButton component are located in the following
folder in the library of HaloTheme.fla or SampleTheme.fla: Flash UI Components 2/
Themes/MMDefault/RadioButton Assets/States. For more information, see “About skinning
components” in Using Components.

If a radio button is enabled and unselected, it displays its rollover state when a user moves the
pointer over it. When a user clicks an unselected radio button, the radio button receives input
focus and displays its false pressed state. When a user releases the mouse, the radio button
displays its true state and the previously selected radio button in the group returns to its false
state. If a user moves the pointer off a radio button while pressing the mouse, the radio
button’s appearance returns to its false state and it retains input focus.

If a radio button or radio button group is disabled, it displays its disabled state, regardless of
user interaction.

A RadioButton component uses the following skin properties:

symbolBackgroundColor Sample The background color of the radio button. The
default value is 0xFFFFFF (white).

symbolBackgroundDisabledColor Sample The background color of the radio button when
disabled. The default value is 0xEFEEEF (light
gray).

symbolBackgroundPressedColor Sample The background color of the radio button when
pressed. The default value is 0xFFFFFF
(white).

symbolColor Sample The color of the dot in the radio button. The
default value is 0x000000 (black).

symbolDisabledColor Sample The color of the dot in the radio button when the
component is disabled. The default value is
0x848384 (dark gray).

Name Description

falseUpIcon The unselected state. The default value is RadioFalseUp.

falseDownIcon The pressed-unselected state. The default value is
RadioFalseDown.

falseOverIcon The over-unselected state. The default value is RadioFalseOver.

Style Theme Description
Customizing the RadioButton component 1027

Each of these skins corresponds to the icon indicating the RadioButton state. The
RadioButton does not have a border or background.

To create movie clip symbols for RadioButton skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library and then select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the RadioButton Assets folder to the library of your document.

4. Expand the RadioButton Assets/States folder in the library of your document.

5. Open the symbols that you want to customize for editing.

For example, open the RadioFalseDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white circle to a light gray.
7. Repeat steps 5-6 for all symbols that you want to customize.

For example, repeat the color change for the inner circle of the RadioTrueDisabled
symbol.

8. Click the Back button to return to the main timeline.

9. Drag a RadioButton component to the Stage.

For this example, drag two instances to show the two new skin symbols.
10. Set the RadioButton instance properties as desired.

For this example, set one RadioButton to selected, and use ActionScript to set both
RadioButton instances to disabled.

11. Select Control > Test Movie.

falseDisabledIcon The disabled-unselected state. The default value is
RadioFalseDisabled.

trueUpIcon The selected state. The default value is RadioTrueUp.

trueDisabledIcon The disabled-selected state. The default value is
RadioTrueDisabled.

Name Description
1028 RadioButton component

RadioButton class
Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton class >
Button component > RadioButton

ActionScript Package Name mx.controls.RadioButton

The properties of the RadioButton class allow you at runtime to create a text label and
position it in relation to the radio button. You can also assign data values to radio buttons,
assign them to groups, and select them based on data value or instance name.

Setting a property of the RadioButton class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

The RadioButton component uses the Focus Manager to override the default Flash Player
focus rectangle and draw a custom focus rectangle with rounded corners. For information
about creating focus navigation, see “Creating custom focus navigation” in Using Components.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.RadioButton.version);

Method summary for the RadioButton class
There are no methods exclusive to the RadioButton class.

Methods inherited from the UIObject class
The following table lists the methods the RadioButton class inherits from the UIObject class.
When calling these methods from the RadioButton object, use the form
RadioButtonInstance.methodName.

N
O

T
E

The code trace(myRadioButtonInstance.version); returns undefined.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.
RadioButton class 1029

Methods inherited from the UIComponent class
The following table lists the methods the RadioButton class inherits from the UIComponent
class. When calling these methods from the RadioButton object, use the form
RadioButtonInstance.methodName.

Property summary for the RadioButton class
The following table lists properties of the RadioButton class.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

RadioButton.data The value associated with a radio button instance.

RadioButton.groupName The group name for a radio button group instance or a radio
button instance.

RadioButton.label The text that appears next to a radio button.

RadioButton.labelPlacement The orientation of the label text in relation to a radio button or
a radio button group.

RadioButton.selected Selects the radio button, and deselects the previously
selected radio button. This property can be used with a
RadioButton instance or a RadioButtonGroup instance.

Method Description
1030 RadioButton component

Properties inherited from the UIObject class
The following table lists the properties the RadioButton class inherits from the UIObject
class. When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

RadioButton.selectedData Selects the radio button with the specified data value in a
radio button group.

RadioButton.selection A reference to the currently selected radio button in a radio
button group. This property can be used with a RadioButton
instance or a RadioButtonGroup instance.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description
RadioButton class 1031

Properties inherited from the UIComponent class
The following table lists the properties the RadioButton class inherits from the
UIComponent class. When accessing these properties from the RadioButton object, use the
form RadioButtonInstance.propertyName.

Properties inherited from the SimpleButton class
The following table lists the properties RadioButton class inherits from the SimpleButton
class. When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance
of a default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized
property is set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false).
The default value is false.
1032 RadioButton component

Properties inherited from the Button class
The following table lists the properties the RadioButton class inherits from the Button class.
When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Event summary for the RadioButton class
The following table lists the event of the RadioButton class.

Events inherited from the UIObject class
The following table lists the events the RadioButton class inherits from the UIObject class.

Property Description

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Event Description

RadioButton.click Triggered when the mouse button is pressed over a radio
button or radio button group.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
RadioButton class 1033

Events inherited from the UIComponent class
The following table lists the events the RadioButton class inherits from the
UIComponent class.

Events inherited from the SimpleButton class
The following table lists the event the RadioButton class inherits from the
SimpleButton class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

SimpleButton.click Broadcast when the mouse is clicked (released) over a
button or if the button has focus and the Spacebar is pressed.
1034 RadioButton component

RadioButton.click
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.click = function(eventObj:Object) {

// ...
};
radioButtonGroup.addEventListener("click", listenerObject);

Usage 2:
on (click) {

// ...
}

Description

Event; broadcast to all registered listeners when the mouse is clicked (pressed and released)
over the radio button or if the radio button is selected by means of the arrow keys. The event
is also broadcast if the Spacebar or arrow keys are pressed when a radio button group has
focus, but none of the radio buttons in the group are selected.

The first usage example uses a dispatcher/listener event model. A component instance
(radioButtonInstance) dispatches an event (in this case, click) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. The event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
RadioButton.click 1035

The second usage example uses an on() handler and must be attached directly to a
RadioButton instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the radio button myRadioButton, sends “_level0.myRadioButton” to the Output panel:
on (click) {

trace(this);
}

Example

The following example creates three radio buttons, positions them on the Stage, and creates a
listener for the click event. When a user clicks one of the three radio buttons, the listener
displays the instance name of the selected radio button.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline:
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
groupName:"radioGroup"});

// Position RadioButtons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);

// Create listener object.
var rbListener:Object = new Object();
rbListener.click = function(evt_obj:Object){
 trace("The selected radio instance is " + evt_obj.target.selection);
}
// Add listener.
radioGroup.addEventListener("click", rbListener);
1036 RadioButton component

RadioButton.data
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.data

Description

Property; specifies the data to associate with a RadioButton instance. Setting this property
overrides the data parameter value set during authoring. The data property can be of any
data type.

Example

The following example assigns the data value 0xFF00FF and the label #FF00FF to the radio
button instance my_rb. It then creates a listener for a click event and displays the button’s data
value when a user clicks the button.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline:
/**
 Requires:
 - RadioButton component in library
*/

this.createClassObject(mx.controls.RadioButton, "my_rb", 10,
{label:"first", groupName:"radioGroup"});

my_rb.data = 0xFF00FF;
my_rb.label = "#FF00FF";

var rbListener:Object = new Object();
rbListener.click = function(evt_obj:Object){
 trace("The data value for my_rb is " + my_rb.data);
}
// Add listener.
my_rb.addEventListener("click", rbListener);
RadioButton.data 1037

RadioButton.groupName
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.groupName

radioButtonGroup.groupName

Description

Property; sets the group name for a radio button instance or group. You can use this property
to get or set a group name for a radio button instance or for a radio button group. Calling this
method overrides the groupName parameter value set during authoring. The default value is
"radioGroup".

Example

The following example sets the group name for a group of three radio buttons to myrbGroup.
It positions the buttons and then creates a listener for a click event on the radio button group.
When the user clicks a radio button, the example displays the groupName property for the
button that was clicked.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline:
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first",
groupName:"myrbGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
groupName:"myrbGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
groupName:"myrbGroup"});

// Position radio buttons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);
1038 RadioButton component

// Create listener object.
var rbListener:Object = new Object();
rbListener.click = function(evt_obj:Object){
 trace("The selected radio button group name is " +

evt_obj.target.groupName);
}
// Add listener.
myrbGroup.addEventListener("click", rbListener);

RadioButton.label
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.label

Description

Property; specifies the text label for the radio button. By default, the label appears to the right
of the radio button. Calling this method overrides the label parameter specified during
authoring. If the label text is too long to fit within the bounding box of the component, the
text is clipped. You can call RadioButton.setSize() to increase the size of the label area, but
text does not wrap to the next line.

To provide a label with text that wraps, you can combine a RadioButton with no label and a
TextArea to act as a single RadioButton with wrapping text. The following example creates
such a radio button. It assumes that you have a RadioButton component and a TextArea
component in the library and turns off the border for the TextArea. The label property
would be undefined in this case, if you accessed it.
this.createClassObject(mx.controls.RadioButton, "sameas_rb", 1,

{groupName:"myGroup"});
sameas_rb.move(0,30)
this.createClassObject(mx.controls.TextArea, "message_ta", 2);
message_ta.setSize(200, 60);
// Turn off the border for the TextArea.
message_ta.borderStyle = "none";
message_ta.wordWrap = true;
message_ta.text = "Click here if your shipping information is the same as

your billing information.";
message_ta.move(20, 30);
RadioButton.label 1039

Example

The following example creates a radio button and assigns it a label of “Remove from list.”

You first add a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline.
/**
 Requires:
 - RadioButton component in library
*/

this.createClassObject(mx.controls.RadioButton, "my_rb", 10);

// Resize RadioButton component.
my_rb.setSize(200, my_rb.height);
my_rb.label = "Remove from list";

RadioButton.labelPlacement
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.labelPlacement

radioButtonGroup.labelPlacement

Description

Property; a string that indicates the position of the label in relation to a radio button. You can
set this property for an individual instance or for a radio button group. If you set the property
for a group, the label is placed in the appropriate position for each radio button in the group.

The following are the four possible values:

■ "right" The radio button is pinned to the upper left corner of the bounding area. The
label is placed to the right of the radio button.

■ "left" The radio button is pinned to the upper right corner of the bounding area. The
label is placed to the left of the radio button.

■ "bottom" The label is placed below the radio button. The radio button and label
grouping are centered horizontally and vertically. If the bounding box of the radio button
isn’t large enough, the label is clipped.
1040 RadioButton component

■ "top" The label is placed above the radio button. The radio button and label grouping
are centered horizontally and vertically. If the bounding box of the radio button isn’t large
enough, the label is clipped.

Example

The following code creates three radio buttons and uses the labelPlacement property to
place the label for the second button on the left of the button.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline.
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
groupName:"radioGroup"});

// Position radio buttons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);

second_rb.labelPlacement = "left";

RadioButton.selected
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.selected

radioButtonGroup.selected
RadioButton.selected 1041

Description

Property; a Boolean value that sets the state of the radio button to selected (true) and
deselects the previously selected radio button, or sets the radio button to deselected (false).

Example

The following example creates three radio buttons in a radio group, positions the buttons, and
sets the selected property to true to put it in the selected state.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline.
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
groupName:"radioGroup"});

// Position radio buttons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);

first_rb.selected = true;

RadioButton.selectedData
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonGroup.selectedData
1042 RadioButton component

Description

Property; selects the radio button with the specified data value and deselects the previously
selected radio button. If the data property is not specified for a selected instance, the label
value of the selected instance is selected and returned. The selectedData property can be of
any data type.

Example

The following example creates three radio buttons in a radio group, positions the buttons, and
selects the button that has a data value of 10, which is the second button.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline.
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first", data:5,
groupName:"radioGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
data:10, groupName:"radioGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
data:15, groupName:"radioGroup"});

// Position radio buttons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);

radioGroup.selectedData = 10;

RadioButton.selection
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
radioButtonInstance.selection

radioButtonGroup.selection
RadioButton.selection 1043

Description

Property; behaves differently depending on whether you get or set the property. If you get the
property, it returns the object reference of the currently selected radio button in a radio button
group. If you set the property, it selects the specified radio button (passed as an object
reference) in a radio button group and deselects the previously selected radio button.

Example

The following example creates three radio buttons in a radio group, positions the buttons, and
creates a listener for a click event on the radio group. When the user clicks a radio button, the
listener uses the selection property to display the instance name of the button that was
clicked.

You first drag a RadioButton component from the Components panel to the current
document’s library, and then add the following code to Frame 1 of the main timeline.
/**
 Requires:
 - RadioButton component in library
*/

import mx.controls.RadioButton;

this.createClassObject(RadioButton, "first_rb", 10, {label:"first",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "second_rb", 20, {label:"second",
groupName:"radioGroup"});

this.createClassObject(RadioButton, "third_rb", 30, {label:"third",
groupName:"radioGroup"});

// Position radio buttons on Stage.
second_rb.move(0, first_rb.y + first_rb.height);
third_rb.move(0, second_rb.y + second_rb.height);

// Create listener object.
var rbListener:Object = new Object();
rbListener.click = function(evt_obj:Object){
 trace("The selected radio instance is " + radioGroup.selection);
}
// Add listener.ll
radioGroup.addEventListener("click", rbListener);
1044 RadioButton component

36

CHAPTER 36

RadioButtonGroup
component
For information about the RadioButtonGroup class, see RadioButton component.
1045

1046 RadioButtonGroup component

37

CHAPTER 37

RDBMSResolver component (Flash
Professional only)
Resolver components are used with the DataSet component (part of the data management
functionality in the Flash data architecture) to save changes to an external data source.
Resolvers include both the RDBMSResolver component and the XUpdateResolver
component. Resolvers take a delta packet (returned by DataSet.deltaPacket) and convert it
to an update packet in a format appropriate to the type of resolver. The update packet can
then be transmitted to the external data source by one of the connector components. Resolver
components have no visual appearance at runtime.

The RDBMSResolver component creates an XML update packet that can be easily parsed
into SQL statements for updating a relational database. The RDBMSResolver component is
connected to the DeltaPacket property of a DataSet component, sends its own update
packet to a connector, receives server errors back from the connector, and communicates them
back to the DataSet component—all using bindable properties.

For more information about the Flash data architecture, see “Data resolution (Flash
Professional only)” in Using Flash. For more information about relational databases, see
“Resolving data to a relational database (Flash Professional only)” in Using Flash. For a
complete example of an application that updates data using the RDBMSResolver component,
see www.macromedia.com/devnet/mx/flash/articles/delta_packet.html.

N
O

T
E

You can use the RDBMSResolver component to send data updates to any object you
write that can parse XML and generate SQL statements against a database—for
example, an ASP page, a Java servlet, or a ColdFusion component.
1047

http://www.macromedia.com/devnet/mx/flash/articles/delta_packet.html

Using the RDBMSResolver component
(Flash Professional only)
You use the RDBMSResolver component only when your Flash application contains a
DataSet component and must send an update back to the data source. This component
resolves data that you want to return to a relational database.

RDBMSResolver parameters
You can set the following authoring parameters for each RDBMSResolver instance by using
the Parameters tab of the Component inspector:

TableName is a string representing the name (in the XML) of the database table to be
updated. This string should match the name of the RDBMSResolver.fieldInfo item to be
updated. If there are no updates to this field, this parameter should be blank, which is the
default value.

UpdateMode is an enumerator that determines the way key fields are identified when the
XML update packet is generated. Possible values are as follows:

■ umUsingAll Uses the old values of all of the modified fields to identify the record to be
updated. This is the safest value to use for updating, because it guarantees that another
user has not modified the record since you retrieved it. However, this approach is time
consuming and generates a larger update packet.

■ umUsingModified Uses the old values of all of the fields modified to identify the record
to be updated. This value guarantees that another user has not modified the same fields in
the record since you retrieved it.

■ umUsingKey The default value. This setting uses the old value of the key fields. This
implies an “optimistic concurrency” model, which most database systems today employ,
and guarantees that you are modifying the same record that you retrieved from the
database. Your changes overwrites any other user’s changes to the same data.

NullValue is a string representing a null field value. You can customize this parameter to
prevent it from being confused with an empty string ("") or another valid value. The default
value is {_NULL_}.

FieldInfo is a collection representing one or more key fields that uniquely identify the records.
If your data source is a database table, the table should have one or more fields that uniquely
key the records within it. Additionally, some fields may have been calculated or joined from
other tables. Those fields must be identified so that the key fields can be set within the XML
update packet, and so that any fields that should not be updated are omitted from the XML
update packet.
1048 RDBMSResolver component (Flash Professional only)

The FieldInfo parameter lets you use properties to designate fields that require special
handling. Each item in the collection contains three properties:

■ FieldName Name of a field. This should match a field name in the DataSet component.
■ OwnerName Optional value used to identify fields not “owned” by the same table defined

in the RDBMSResolver component’s TableName parameter. If this property has the same
value as the TableName parameter or is blank, usually the field is included in the XML
update packet. If it has a different value, this field is excluded from the update packet.

■ IsKey Boolean property that you should set to true so that all key fields for the table
are updated.

The following example shows FieldInfo items that are created to update fields in a customer
table. You must identify the key fields in the customer table. The customer table has a single
key field, id; therefore, you should create a field item with the following values:
FieldName = "id"
OwnerName = <--! leave this value blank -->
IsKey = "true"

Also, the custType field is added by means of a join in the query. Because this field should be
excluded from the update, you create a field item with the following values:
FieldName = "custType"
OwnerName = "JoinedField"
IsKey = "false"

When the field items are defined, Flash Player can use them to automatically generate the
complete XML, which is used to update a table.

N
O

T
E

The FieldInfo parameter makes use of a Flash feature called the Collection Editor. When
you select the FieldInfo parameter, you can use the Collection Editor dialog box to add
new FieldInfo items and set their fieldName, ownerName, and isKey properties from
one location.
Using the RDBMSResolver component (Flash Professional only) 1049

Common workflow for the RDBMSResolver
component
The following steps describe the typical workflow for the RDBMSResolver component.

To use an RDBMSResolver component:

1. Add two instances of the WebServiceConnector component and one instance of the
DataSet and RDBMSResolver components to your application, and give them
instance names.

2. Select the first WebServiceConnector component. Then use the Parameters tab of the
Component inspector to enter the Web Service Definition Language (WSDL) URL for a
web service that exposes data from an external data source.

3. Use the Bindings tab of the Component inspector to bind the first WebServiceConnector
component’s results property to the DataSet component’s dataProvider property.

4. Select the DataSet component, and use the Bindings tab of the Component inspector to
bind data elements (DataSet fields) to the visual components in your application.

5. Bind the DataSet’s deltaPacket property to the RDBMSResolver’s deltaPacket
property.

The update instructions are sent from the DataSet component to the RDBMSResolver
component when the DataSet.applyUpdates() method is called.

6. Bind the RDBMSResolver updatePacket property to the second WebServiceConnector
params property to send data back to a method that parses the XML update packet. Set the
kind of that params property to auto-trigger so that the connector sends the update packet
as soon as data binding copies it over.

7. Add a trigger to initiate the data binding operation: use the Trigger Data Source behavior
attached to a button, or add ActionScript.

In addition to these steps, you can also use the RDBMSResolver component to create
bindings to apply the result packet sent back from the server to the data set.

For a step-by-step example that resolves data to a relational database using the
RDBMSResolver component, see the tutorials on DevNet at http://www.macromedia.com/
devnet/mx/flash/data_integration.html.

N
O

T
E

The web service must return an array of records to be bound to the data set.
1050 RDBMSResolver component (Flash Professional only)

http://www.macromedia.com/devnet/mx/flash/data_integration.html
http://www.macromedia.com/devnet/mx/flash/data_integration.html

RDBMSResolver class (Flash
Professional only)
Inheritance MovieClip > RDBMSResolver

ActionScript Package Name mx.data.components.RDBMSResolver

The methods, properties, and events of the RDBMSResolver class allow you to connect to a
DataSet component and make changes to external data sources.

Method summary for the RDBMSResolver
component
The following table lists the method of the RDBMSResolver class.

Property summary for the RDBMSResolver
component
The following table lists properties of the RDBMSResolver class.

Method Description

RDBMSResolver.addFieldInfo() Adds a new item to the fieldInfo collection, which is
used for setting up an RDBMSResolver component
dynamically at runtime.

Property Description

RDBMSResolver.deltaPacket The deltaPacket property of the DataSet object should
be bound to this property so that when
DataSet.applyUpdates() is called, the binding copies it
across and the resolver creates the update packet.

RDBMSResolver.fieldInfo A collection of fields with properties that identify
DataSet fields that require special handling, either
because they are key fields or because they cannot
be updated.

RDBMSResolver.nullValue A string that is placed in the update packet to indicate
that the value of a field is null.

RDBMSResolver.tableName Identifies the database table that is to be updated.

RDBMSResolver.updateMode Values that determine how key fields are identified when
the XML update packet is generated.
RDBMSResolver class (Flash Professional only) 1051

Event summary for the RDBMSResolver component
The following table lists the events of the RDBMSResolver class.

RDBMSResolver.updatePacket The XML packet produced by this resolver that contains
the changes from the data set’s delta packet.

RDBMSResolver.updateResults A delta packet that contains the results of an update
returned from the server through a connector.

Event Description

RDBMSResolver.beforeApplyUpdates Defined in your application; called by the
RDBMSResolver component to make custom
modifications to the XML of the updatePacket property
before it is bound to the connector.

RDBMSResolver.reconcileResults Defined in your application; called by the
RDBMSResolver component to compare two packets
after results have been received from the server and
applied to the delta packet.

RDBMSResolver.reconcileUpdates Defined in your application; called by the
RDBMSResolver component when results have been
received from the server after the updates from a delta
packet were applied.

Property Description
1052 RDBMSResolver component (Flash Professional only)

RDBMSResolver.addFieldInfo()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.addFieldInfo("fieldName", "ownerName", "isKey")

Parameters

fieldName String; provides the name of the field that this information object describes.

ownerName String; provides the name of the table that owns this field. If this name is the
same as the RDBMSResolver instance’s tableName property, you can leave this parameter
blank ("").

isKey Boolean; indicates whether this field is a key field.

Returns

Nothing.

Description

Method; adds a new item to the XML fieldInfo collection in the update packet. Use this
method if you must set up an RDBMSResolver component dynamically at runtime, rather
than using the Component inspector in the authoring environment.

Example

The following example creates an RDBMSResolver component and provides the name of the
table, provides the name of the key field, and prevents the personTypeName field from
being updated:
var myResolver:RDBMSResolver = new RDBMSResolver();
myResolver.tableName = "Customers";
// Sets up the id field as a key field
// and the personTypeName field so it won't be updated.
myResolver.addFieldInfo("id", "", true);
myResolver.addFieldInfo("personTypeName", "JoinedField", false);
// Sets up the data bindings
//...
RDBMSResolver.addFieldInfo() 1053

RDBMSResolver.beforeApplyUpdates
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.beforeApplyUpdates(eventObject)

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before
the update is sent though the connector to the database. This event object should contain the
following properties:

Returns

Nothing.

Description

Property; a property of type deltaPacket. It receives a delta packet to be translated into an
update packet, and outputs a delta packet from any server results placed in the
updateResults property. This event handler provides a way for you to make custom
modifications to the XML before sending the updated data to a connector.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the delta packet again so it can be re-sent the next time the delta packet is
sent to the server. You must write code to handle deltas that have messages so that the
messages are presented to the user and the deltas can be modified before being added to the
next delta packet.

Property Description

target Object; the resolver producing this event.

type String; the name of the event.

updatePacket XML object; the XML object about to be applied.
1054 RDBMSResolver component (Flash Professional only)

Example

The following example adds the user authentication data to the XML packet:
on (beforeApplyUpdates) {

 // Add user authentication data.
 var userInfo = new XML("" + getUserId() + ""+getPassword() + "");
 updatePacket.firstChild.appendChild(userInfo);

}

RDBMSResolver.deltaPacket
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.deltaPacket

Description

Property; a property of type deltaPacket. It receives a delta packet to be translated into an
update packet, and outputs a delta packet from any server results placed in the
updateResults property.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the delta packet again so it can be re-sent the next time the delta packet is
sent to the server. You must write code to handle deltas that have messages so that the
messages are presented to the user and the deltas can be modified before being added to the
next delta packet.

RDBMSResolver.fieldInfo
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.fieldInfo
RDBMSResolver.fieldInfo 1055

Description

Property; specifies a collection of an unlimited number of fields with properties that identify
DataSet fields that require special handling, either because they are key fields or because they
cannot be updated (for information about adding a field, see
RDBMSResolver.addFieldInfo()). Each fieldInfo item in the collection contains
three properties:

RDBMSResolver.nullValue
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.nullValue

Description

Property; a string used to provide a null value for a field’s value. You can customize this
property to prevent it from being confused with an empty string ("") or another valid value.
The default string is {_NULL_}.

Property Description

fieldName Name of the special-case field. This field name should match a field
name in the DataSet component.

ownerName An optional property. If this field is not “owned” by the table defined in the
RDBMSResolver.tableName property, OwnerName is the name of the owner of
this field. If OwnerName has the same value as RDBMSResolver.tableName or
is blank, usually the field is included in the XML update packet. If
OwnerName doesn’t have any of these values, this field is excluded from the
update packet.

isKey A Boolean value; if true, all key fields for the table are updated.
1056 RDBMSResolver component (Flash Professional only)

RDBMSResolver.reconcileResults
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.reconcileResults(eventObject)

Parameters

eventObject Resolver event object; describes the event object used to compare two update
packets. This event object should contain the following properties:

Returns

Nothing.

Description

Event; broadcast by the RDBMSResolver component to compare two packets after results
have been received from the server and applied to the delta packet.

A single updateResults packet can contain results of operations that were in the delta
packet, as well as information about updates performed by other clients. When a new update
packet is received, the operation results and database updates are split into two update packets
and placed separately in the deltaPacket property. The reconcileResults event is
broadcast just before the delta packet containing the operation results is sent using
data binding.

Property Description

target Object; the resolver broadcasting this event.

type String; the name of the event.
RDBMSResolver.reconcileResults 1057

Example

The following example reconciles two update packets and returns and clears the updates
on success:
on (reconcileResults) {

// Examine results.
if (examine(updateResults)) {

myDataSet.purgeUpdates();
} else {

displayErrors(results);
}

}

RDBMSResolver.reconcileUpdates
Availability

Flash Player 7.

Edition

Flash Professional 8.

Usage
resolveData.reconcileUpdates(eventObject)

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before
the update is sent through the connector to the database. This event object should contain the
following properties:

Returns

None.

Property Description

target Object; the resolver broadcasting this event.

type String; the name of the event.
1058 RDBMSResolver component (Flash Professional only)

Description

Event; broadcast by the RDBMSResolver component when results have been received from
the server after the updates from a delta packet were applied. A single updateResults packet
can contain results of operations that were in the delta packet, as well as information about
updates that were performed by other clients. When a new update packet is received, the
operation results and database updates are split into two delta packets, which are placed
separately in the deltaPacket property. The reconcileUpdates event is broadcast just
before the delta packet containing any database updates is sent using data binding.

Example

The following example reconciles two results and clears the updates on success:
on (reconcileUpdates) {

// Examine results.
if (examine(updateResults)) {

myDataSet.purgeUpdates();
} else {

displayErrors(results);
}

}

RDBMSResolver.tableName
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.tableName
RDBMSResolver.tableName 1059

Description

Property; a string that represents the table name in the XML for the database table to be
updated. This property also determines which fields to send in the update packet. To make
this determination, the RDBMSResolver component compares the value of this property with
the value provided for the fieldInfo.ownerName property. If a field has no entry in the
fieldInfo collection property, the field is placed in the update packet. If a field has an entry
in the fieldInfo collection property, and its ownerName value is blank or identical to the
RDBMSResolver component’s tableName property, the field is placed in the update packet. If
a field has an entry in the fieldInfo collection property, and its ownerName value is not
blank and is different from the RDBMSResolver component’s tableName property, the field
is not placed in the update packet.

RDBMSResolver.updateMode
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.updateMode

Description

Property; contains several values that determine how key fields are identified when the XML
update packet is generated. This property can have the following strings as values:

Value Description

"umUsingAll" Uses the old values of all of the modified fields to identify the record to be
updated. This is the safest value to use for updating, because it
guarantees that another user has not modified any field of the record
since you retrieved it. However, this approach is more time consuming
and generates a larger update packet.
1060 RDBMSResolver component (Flash Professional only)

RDBMSResolver.updatePacket
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.updatePacket

Description

Property; property of type XML, containing an XML packet used to bind to a connector
property that transmits the translated update packet of changes back to the server so the
source of the data can be updated. This is an XML document containing the packet of
DataSet changes.

"umUsingModified" Uses the old values of all of the fields modified to identify the record to be
updated. This value guarantees that another user has not modified the
same fields in the record since you retrieved it.

"umUsingKey" The default value. This setting uses the old value of the key fields. This
implies an “optimistic concurrency” model, which most database
systems today employ, and guarantees that you are modifying the same
record that you retrieved from the database. Your changes overwrite any
other user’s changes to the same data.

Value Description
RDBMSResolver.updatePacket 1061

RDBMSResolver.updateResults
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.updateResults

Description

Property; a delta packet that contains the results of an update returned from the server
through a connector. Use this property to transmit errors and updated data from the server to
a data set—for example, when the server assigns new IDs for an auto-assigned field. Bind this
property to a connector’s results property so that it can receive the results of an update and
transmit the results back to the data set.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the delta packet again so it can be re-sent the next time the delta packet is
sent to the server. You must write code to handle deltas that have messages so that the
messages are presented to the user and the deltas can be modified before being added to the
next delta packet.
1062 RDBMSResolver component (Flash Professional only)

38

CHAPTER 38

RectBorder class
The RectBorder class is used as the border of most components. A separate implementation of
this class is provided by each theme, which has its own set of border styles and properties that
it supports.

You interact with the RectBorder class primarily by setting styles on other components. For
example, when you include a List component in a document and set the borderStyle style
property, the List component creates a RectBorder instance that uses the list’s borderStyle
setting. You can also create a custom RectBorder implementation to skin the border of all
components that use RectBorder.

The RectBorder class has four standard display styles: none, inset, outset, and solid.

The Halo theme also adds four special display styles, which are used by specific components.

The RectBorder behavior and style properties described here are consistent for all components
that use the RectBorder class.

Special style Component that uses it

default Window

alert Alert

dropDown ComboBox and DateField

menuBorder Menu and MenuBar
1063

Using styles with the RectBorder class
You can set style properties to change the appearance of a RectBorder instance. A RectBorder
instance uses the following styles:

■ borderCapColor
■ borderColor
■ buttonColor
■ highlightColor
■ shadowCapColor
■ shadowColor
■ themeColor

The styles available on a particular RectBorder instance depend on the theme in use and the
border style set on the component. For an interactive demonstration that shows the
relationship between theme, border style, and available color style properties, see Using
Components Help.

The four special Halo styles—default, alert, dropDown, and menuBorder—have some lines
whose colors cannot be set through styles. You can modify these colors only by creating a
custom theme and modifying the appropriate ActionScript within the custom RectBorder
implementation.

To set a border style using setStyle:

1. Select File > New and create a new Flash document.

2. Drag a TextArea component to the Stage and give it the instance name my_ta.

3. In the first frame of the main timeline, add the following ActionScript to the Actions panel:
my_ta.setStyle("borderStyle", "alert");

4. Select Control > Test Movie to test the SWF file.

N
O

T
E

You can set the borderStyle to "alert" because you are using the default theme
(Halo). If you are using a different theme, then the four “special” Halo styles,
including "alert", may not be available.
1064 RectBorder class

To set multiple border styles as parameters of the createClassObject method:

1. Select File > New and create a new Flash document.

2. In the first frame of the main timeline, add the following ActionScript to the Actions panel:
createClassObject(mx.controls.TextArea, "my_ta", 1, {borderStyle:

"menuBorder", themeColor: "0x990000"});

For more information, see UIObject.createClassObject(). Or, if you want to set
multiple styles and apply them to more than one component instance, you can establish a
new style declaration containing the style settings, and then attach that style declaration to
the component instances (see “Setting custom styles for groups of components” in Using
Components).

3. Select Control > Test Movie to test the SWF file.

To set a border style using the Sample theme:

1. Select File > New and create a new Flash document.

2. Drag a Button component to the Stage, and give it the instance name my_btn.

You can also create the instance by using ActionScript, as follows (be sure to drag a Button
component to the library first):
createClassObject(mx.controls.Button, "my_btn", 1);

3. Select File > Import > Open External Library.

4. Open the SampleTheme.fla file, located in:

■ Windows: \Program Files\Macromedia\Flash 8\
language\Configuration\ComponentFLA\

■ Macintosh: HD/Applications/Macromedia Flash 8/Configuration/ComponentFLA/
5. In the SampleTheme.fla library, find the Button assets movie clip in Flash UI Components

> Themes > MMDefault > Button Assets > Button Skin and drag it to the library of your
current document.
Using styles with the RectBorder class 1065

6. In the first frame of the main timeline, add the following ActionScript to the Actions panel:
my_btn.setStyle("buttonColor", "0xFFFFFF");
my_btn.setStyle("borderStyle", "solid");
my_btn.setStyle("borderColor", "none");

Or you can append these settings to createClassObject, as follows:
createClassObject(mx.controls.Button, "my_btn", 1, {buttonColor:

"0xFFFFFF", borderStyle: "solid", borderColor: "none"});

7. Select Control > Test Movie to test the SWF file.

Notice that even with a "borderColor" of "none", the button has a gray border. In this
case, "none" does not mean transparent, it means a neutral gray.

N
O

T
E

If you plan to set multiple styles and need to improve the performance of the
component at runtime, you can set a custom style declaration containing those styles
and then attach the custom style declaration to the component instance (see
“Setting custom styles for groups of components” in Using Components).
1066 RectBorder class

Creating a custom RectBorder
implementation
The RectBorder class is used as a border skin in most ActionScript 2.0 components. The
default implementations in both the Halo and Sample themes use ActionScript to draw the
border. A custom implementation must use ActionScript to register itself as the RectBorder
implementation and provide sizing functionality, but can use either ActionScript or graphic
elements to represent the visuals.

Each RectBorder implementation must comply with the following requirements:

■ It must extend mx.skins.RectBorder or one of its subclasses.
■ It must provide an offset property value or implement the getBorderMetrics method

to return sizing information.
■ It must implement the drawBorder() method to draw or size the border.
■ It must support all four standard styles, as well as the four special styles.

The implementation can reuse standard borders for special borders, as the Sample
theme does.

■ It must register itself as the RectBorder implementation.

RectBorder global registration
All components look to a central location for a reference to the RectBorder class in use for the
document, _global.styles.rectBorderClass. You cannot specify that an individual
component should use a different RectBorder implementation. To customize RectBorder for a
component, you must rely on the borderStyle style property.

Custom RectBorder example
The RectBorder implementations provided by the Halo theme and the Sample theme use the
ActionScript drawing API to draw the borders for different styles. The following example
demonstrates how to create a custom RectBorder implementation that uses graphic symbols
for its display.
Creating a custom RectBorder implementation 1067

To create a custom RectBorder implementation:

1. Create a new folder in the Classes/mx/skins folder corresponding to the custom package
name that you will use for the custom border.

For this example, use myTheme.
2. Create a new AS file in the new folder and save it as RectBorder.as.

3. Copy the following ActionScript code to the new AS file:
import mx.core.ext.UIObjectExtensions;

class mx.skins.myTheme.RectBorder extends mx.skins.RectBorder
{

static var symbolName:String = "RectBorder";
static var symbolOwner:Object = RectBorder;
var className:String = "RectBorder";

#include "../../core/ComponentVersion.as"

 // All of these borders have the same size edges, 1 pixel.
var offset:Number = 4;

function init(Void):Void
{

super.init();
}

function drawBorder(Void):Void
{
 // The graphics are on the symbol's timeline,
 // so all you need to do here is size the border.
 _width = __width;
 _height = __height;
}

// Register the class as the RectBorder for all components to use.
static function classConstruct():Boolean
{

UIObjectExtensions.Extensions();
_global.styles.rectBorderClass = RectBorder;
_global.skinRegistry["RectBorder"] = true;
return true;

}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

}

If you’re not using the myTheme package, change the class declaration as needed.
4. Save the AS file.
1068 RectBorder class

5. Create a new FLA file.

6. Use Insert > New Symbol to create a new movie clip symbol.

7. Set the name to RectBorder.

8. If the advanced fields are not displayed, click Advanced.

9. Select Export for ActionScript

The identifier is automatically filled in as RectBorder.
10. Set the AS 2.0 class to the full class name of the custom border implementation.

This example uses mx.skins.myTheme.RectBorder.
11. Make sure that Export in First Frame is selected and then click OK.

12. Open the RectBorder symbol for editing.

13. Draw the graphics for the symbol.

For example, draw a hairline square with no fill. To make the custom border easy to see,
set the line color to bright red.

14. Make sure that the graphics are flush against the upper-left corner with the x and y
coordinates set to (0,0).

Your custom drawBorder implementation sets the width and height according to the
component requirements.

15. Click Back to return to the main timeline.

16. Drag several components that use RectBorder to the Stage.

For example, drag a List, TextArea, and TextInput component to the Stage.
17. Select Control > Test Movie.

This example creates a very simple border implementation with static color and graphics. It
doesn’t respond to different borderStyle settings; it always uses the same graphics regardless
of borderStyle. For examples of more complete border implementations, review the
examples provided for the Halo and Sample themes.
Creating a custom RectBorder implementation 1069

1070 RectBorder class

39

CHAPTER 39

Screen class (Flash
Professional only)
The Screen class is the base class for screens that you create in the Screen Outline pane in
Flash Professional 8. Screens are high-level containers for creating applications and
presentations. For an overview of working with screens, see Chapter 14, “Working with
Screens (Flash Professional Only),” in Using Flash.

The Screen class has two primary subclasses: Slide and Form.

The Slide class provides the runtime behavior for slide presentations. The Slide class provides
built-in navigation and sequencing capabilities, and lets you easily attach transitions between
slides using behaviors. Slide objects maintain “state,” and allow the user to advance to the next
or previous slide/state: when the next slide is shown, the previous slide is hidden. For more
information about using the Slide class to control slide presentations, see “Slide class (Flash
Professional only)” on page 1135.

The Form class provides the runtime environment for form applications. Forms can overlay
and contain, or be contained by, other components. Unlike slides, forms don’t provide any
sequencing or navigation capabilities. For more information, see “Form class (Flash
Professional only)” on page 735.

The Screen class provides functionality common to both slides and forms.

Screens know how to manage their children Every screen includes a built-in property
that contains a list of that screen’s child screens, known as a collection. This collection is
determined by the screen hierarchy in the Screen Outline pane. Screens can have any number
of children (or none), which themselves can have children.

Screens can hide and show their children Because a screen is, essentially, a collection of
nested movie clips, a screen can control the visibility of its children. For form applications, all
of a screen’s children are visible by default at the same time; for slide presentations, individual
screens are typically shown one at a time.

Screens broadcast events You can, for example, trigger a sound to play, or start playing
some video, when a particular screen becomes visible.
1071

Loading external content into screens
(Flash Professional only)
The Screen class extends the Loader class (see “Loader component” on page 813), which lets
you easily manage and load external SWF and JPEG files. The Loader class contains a
contentPath property, which specifies the URL of an external SWF or JPEG file, or the
linkage identifier of a movie clip in the library.

Using this feature, you can load an external screen tree (or any external SWF file) as a child of
any screen node. This provides a useful way to make your screen-based media modular and
divide it into separate SWF files.

For example, suppose you have a slide presentation in which three people are each
contributing a single section. You could ask each presenter to create a separate slide
presentation (SWF file). You would then create a “master slide presentation” that contains
three placeholder slides, one for each slide presentation being created by the presenters. For
each placeholder slide, you could point its contentPath property to one of the SWF files.
The master slide presentation could be arranged as shown in the following illustration:

“Master” SWF file slide presentation structure

Suppose presenters provide you with three SWF files, speaker_1.swf, speaker_2.swf, and
speaker_3.swf. You could easily assemble the overall presentation by setting the contentPath
property of each placeholder slide, either using the Property inspector or ActionScript, as
shown in the following code:
Speaker_1.contentPath = speaker_1.swf;
Speaker_2.contentPath = speaker_2.swf;
Speaker_3.contentPath = speaker_3.swf;

Opening statement slide

Presenter placeholder slides
1072 Screen class (Flash Professional only)

By default, when you set a slide’s contentPath property while authoring in the Property
inspector, or using ActionScript (as shown above), the specified SWF file loads as soon as the
“master presentation” SWF file has loaded. To reduce initial load time, consider setting the
contentPath property in an on(reveal) handler attached to each slide.
// Attached to Speaker_1 slide
on(reveal) {

this.contentPath="speaker_1.swf";
}

Alternatively, you could set the slide’s autoLoad property to false. Then you could call the
load() method on the slide when the slide has been revealed. (The autoLoad property and
the load() method are inherited from the Loader class.)
// Attached to Speaker_1 slide
on(reveal) {

this.load();
}

Referencing loaded screens with ActionScript
The Loader class creates an internal movie clip named contentNode into which it loads the
SWF or JPEG file specified by the contentPath property. This movie clip, in effect, adds an
extra screen node between the “placeholder” slide (that you created in the “master”
presentation above) and the first slide in the loaded slide presentation.

For example, suppose the SWF file created for the Speaker_1 slide placeholder (see above
illustration) had the following structure, as shown in the Screen Outline pane:

“Speaker 1” SWF file slide presentation structure
Loading external content into screens (Flash Professional only) 1073

At runtime, when the Speaker 1 SWF file is loaded into the placeholder slide, the overall slide
presentation would have the following structure:

Structure of “master” and “speaker” presentation (runtime)

The properties and methods of the Screen, Slide, and Form classes “ignore” this
contentHolder node as much as possible. That is, the slide named MyPresentation (along
with its subslides) is part of the contiguous slide tree rooted at the Presentation slide, and is
not treated as a separate subtree.

Screen class (API) (Flash Professional
only)
Inheritance MovieClip > UIObject class > UIComponent class > View > Loader
component > Screen

ActionScript Class Name mx.screens.Screen

The methods, properties, and events of the Screen class allow you to create and manipulate
screens at runtime.

Method summary for the Screen class
The following table lists the method of the Screen class.

Method Description

Screen.getChildScreen() Returns the child screen of this screen at a particular index.

Inserted at runtime by Loader class
1074 Screen class (Flash Professional only)

Methods inherited from the UIObject class
The following table lists the methods the Screen class inherits from the UIObject class. When
calling these methods from the Screen object, use the form ScreenInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the Screen class inherits from the UIComponent class.
When calling these methods from the Screen object, use the form
ScreenInstance.methodName.

Methods inherited from the Loader class
The following table lists the method the Screen class inherits from the Loader class. When
calling this method from the Screen object, use the form ScreenInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

Loader.load() Loads the content specified by the contentPath property.
Screen class (API) (Flash Professional only) 1075

Property summary for the Screen class
The following table lists properties of the Screen class.

Properties inherited from the UIObject class
The following table lists the properties the Screen class inherits from the UIObject class.
When accessing these properties from the Screen object, use the form
ScreenInstance.propertyName.

Property Description

Screen.currentFocusedScreen Read-only; returns the screen that contains the global
current focus.

Screen.indexInParent Read-only; returns the screen’s index (zero-based) in its
parent screen’s list of child screens.

Screen.numChildScreens Read-only; returns the number of child screens contained by
the screen.

Screen.parentIsScreen Read-only; returns a Boolean (true or false) value that
indicates whether the screen’s parent object is itself a
screen.

Screen.parentScreen Read-only; returns the screen that contains the specified
screen.

Screen.rootScreen Read-only; returns the root screen of the tree or subtree that
contains the screen.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.
1076 Screen class (Flash Professional only)

Properties inherited from the UIComponent class
The following table lists the properties the Screen class inherits from the UIComponent class.
When accessing these properties from the Screen object, use the form
ScreenInstance.propertyName.

Properties inherited from the Loader class
The following table lists the properties the Screen class inherits from the Loader class. When
accessing these properties from the Screen object, use the form
ScreenInstance.propertyName.

UIObject.visible A Boolean value indicating whether the object is visible
(true) or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads
automatically (true) or you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that
have been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes
in the content.

Loader.content A reference to the content of the loader. This property is
read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Property Description
Screen class (API) (Flash Professional only) 1077

Event summary for the Screen class
The following table lists events of the Screen class.

Loader.percentLoaded A number that indicates the percentage of loaded content.
This property is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to
fit the loader (true), or the loader scales to fit the content
(false).

Event Description

Screen.allTransitionsInDone Broadcast when all “in” transitions applied to a screen
have finished.

Screen.allTransitionsOutDone Broadcast when all “out” transitions applied to a screen
have finished.

Screen.mouseDown Broadcast when the mouse button was pressed over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseDownSomewhere Broadcast when the mouse button was pressed somewhere
on the Stage, but not necessarily on an object owned by this
screen.

Screen.mouseMove Broadcast when the mouse is moved while over a screen.

Screen.mouseOut Broadcast when the mouse is moved from inside the screen
to outside it.

Screen.mouseOver Broadcast when the mouse is moved from outside this
screen to inside it.

Screen.mouseUp Broadcast when the mouse button was released over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseUpSomewhere Broadcast when the mouse button was released somewhere
on the Stage, but not necessarily over an object owned by
this screen.

Property Description
1078 Screen class (Flash Professional only)

Events inherited from the UIObject class
The following table lists the events the Screen class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Screen class inherits from the UIComponent class.

Events inherited from the Loader class
The following table lists the events the Screen class inherits from the Loader class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.
Screen class (API) (Flash Professional only) 1079

Screen.allTransitionsInDone
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(allTransitionsInDone) {

// Your code here.
}
listenerObject = new Object();
listenerObject.allTransitionsInDone = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("allTransitionsInDone", listenerObject)

Description

Event; broadcast when all “in” transitions applied to this screen have finished. The
allTransitionsInDone event is broadcast by the Transition Manager associated with
screenObj.

Example

In the following example, a button (nextSlide_btn) that’s contained by the slide named
mySlide is made visible when all the “in” transitions applied to mySlide have finished.
// Attached to mySlide:
on(allTransitionsInDone) {

this.nextSlide_btn._visible = true;
}

See also

Screen.allTransitionsOutDone
1080 Screen class (Flash Professional only)

Screen.allTransitionsOutDone
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(allTransitionsOutDone) {

// Your code here.
}
listenerObject = new Object();
listenerObject.allTransitionsOutDone = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("allTransitionsOutDone", listenerObject)

Description

Event; broadcast when all “out” transitions applied to the screen have finished. The
allTransitionsOutDone event is broadcast by the Transition Manager associated with
screenObj.

See also

Screen.currentFocusedScreen

Screen.currentFocusedScreen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.currentFocusedScreen
Screen.currentFocusedScreen 1081

Description

Static property (read-only); returns a reference to the “leafmost” Screen object that contains
the global current focus. Leafmost refers to the screen that is furthest away from the root screen
in the screen hierarchy. The focus may be on the screen itself, or on a movie clip, text object,
or component inside that screen. This property defaults to null if there is no current focus.

For example, assume you have a runtime screen hierarchy that looks like this:
presentation

screen1
subscreen1_1

mymovieclip
myUIButton

screen2
subscreen1_2

If myUIButton has focus, the leafmost screen containing the focus is subscreen1_1, which is
what currentFocusedScreen would return. In this case, presentation, screen1, and
subscreen1_1 all contain the focus but the one that is “closest” (in the screen hierarchy) to
the leaves of the tree (that is, farthest away from the root) is subscreen1_1.

Example

The following example displays the name of the currently focused screen in the Output panel.
var currentFocus:mx.screens.Screen =

mx.screens.Screen.currentFocusedScreen;
trace("Current screen is: " + currentFocus._name);

Screen.getChildScreen()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.getChildScreen(childIndex)

Parameters

childIndex A number that indicates the zero-based index of the child screen to return.

Returns

A Screen object.
1082 Screen class (Flash Professional only)

Description

Method; returns the child screen of myScreen whose index is childIndex.

Example

The following example sends the names of all the child screens belonging to the root screen
named Presentation to the Output panel.
for (var i:Number = 0; i < _root.Presentation.numChildScreens; i++) {
 var childScreen:mx.screens.Screen =

_root.Presentation.getChildScreen(i);
 trace(childScreen._name);
}

Screen.indexInParent
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.indexInParent

Description

Property (read-only); contains the zero-based index of myScreen in its parent’s list of
child screens.

Example

The following example displays the relative position of the screen myScreen in its parent
screen’s list of child screens.
var numChildren:Number = myScreen._parent.numChildScreens;
var myIndex:Number = myScreen.indexInParent;
trace("I’m child slide # " + myIndex + " out of " + numChildren + "

screens.");
Screen.indexInParent 1083

Screen.mouseDown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseDown) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseDown = function(eventObj){

// Insert your code here.
}
screenObj.addEventListener("mouseDown", listenerObject)

Description

Event; broadcast when the mouse button is pressed over an object (for example, a shape or a
movie clip) directly owned by the screen.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Example

The following code displays the name of the screen that captured the mouse event in the
Output panel.
on(mouseDown) {

trace("Mouse down event on: " + eventObj.target._name);
}

1084 Screen class (Flash Professional only)

Screen.mouseDownSomewhere
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseDownSomewhere) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseDownSomewhere = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseDownSomewhere", listenerObject)

Description

Event; broadcast when the mouse button is pressed, but not necessarily over the
specified screen.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Screen.mouseMove
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
Screen.mouseMove 1085

Usage
on(mouseMove) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseMove = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseMove", listenerObject)

Description

Event; broadcast when the mouse moves while over the screen. This event is sent only when
the mouse is over the bounding box of this screen.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Screen.mouseOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseOut) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseOut = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseOut", listenerObject)

N
O

T
E

This event may affect system performance and should be used judiciously.
1086 Screen class (Flash Professional only)

Description

Event; broadcast when the mouse moves from inside the screen’s bounding box to outside its
bounding box.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Screen.mouseOver
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseOver) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseOver = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseOver", listenerObject)

Description

Event; broadcast when the mouse moves from outside the screen’s bounding box to inside its
bounding box.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

N
O

T
E

This event may affect system performance and should be used judiciously.

N
O

T
E

This event may affect system performance and should be used judiciously.
Screen.mouseOver 1087

Screen.mouseUp
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseUp) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseUp = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseUp", listenerObject)

Description

Event; broadcast when the mouse is released over the screen.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Screen.mouseUpSomewhere
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(mouseUpSomewhere) {

// Your code here.
}
listenerObject = new Object();
listenerObject.mouseUpSomewhere = function(eventObject){

// Insert your code here.
}
screenObj.addEventListener("mouseUpSomewhere", listenerObject)
1088 Screen class (Flash Professional only)

Description

Event; broadcast when the mouse button is released, but not necessarily over the
specified screen.

When the event is triggered, it automatically passes an event object (eventObj) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

Screen.numChildScreens
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.numChildScreens

Description

Property (read-only); returns the number of child screens contained by myScreen.

Example

The following example displays the names of all the child screens that belong to myScreen.
var howManyKids:Number = myScreen.numChildScreens;
for(i=0; i<howManyKids; i++) {

var childScreen = myScreen.getChildScreen(i);
trace(childScreen._name);

}

See also

Screen.getChildScreen()
Screen.numChildScreens 1089

Screen.parentIsScreen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.parentIsScreen

Description

Property (read-only): returns a Boolean value indicating whether the specified screen’s parent
object is also a screen (true) or not (false). If this property is false, myScreen is at the root
of its screen hierarchy.

Example

The following code determines if the parent object of the screen myScreen is also a screen. If
myScreen.parentIsScreen is true, a trace() statement displays the number of sibling
slides of myScreen in the Output panel. If the parent screen of myScreen is not also a screen,
Flash assumes that myScreen is the root (master) slide in the presentation and therefore has
no sibling slides.
if (myScreen.parentIsScreen) {

trace("I have "+myScreen._parent.numChildScreens+" sibling screens");
} else {

trace("I am the root screen and have no siblings");
}

1090 Screen class (Flash Professional only)

Screen.parentScreen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.parentScreen

Description

Property (read-only); returns the screen that contains myScreen. Returns null if myScreen is
the root screen.

Example

The following example displays the name of the screen that contains the screen myScreen.
var myParent:mx.screens.Screen = myScreen.rootScreen;

Screen.rootScreen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myScreen.rootScreen

Description

Property (read-only); returns the screen at the top of the screen hierarchy that contains
myScreen.

Example

The following example displays the name of the root screen that contains the screen
myScreen.
var myRoot:mx.screens.Screen = myScreen.rootScreen;
Screen.rootScreen 1091

1092 Screen class (Flash Professional only)

40

CHAPTER 40

ScrollPane component
The ScrollPane component displays movie clips, JPEG files, and SWF files in a scrollable area.
By using a scroll pane, you can limit the amount of screen area occupied by these media types.
The scroll pane can display content that is loaded from a local disk or from the Internet. You
can set this content while authoring and at runtime by using ActionScript.

Once the scroll pane has focus, if its content has valid tab stops, those markers receive focus.
After the last tab stop in the content, focus shifts to the next component. The vertical and
horizontal scroll bars in the scroll pane never receive focus.

A ScrollPane instance receives focus if a user clicks it or tabs to it. When a ScrollPane instance
has focus, you can use the following keys to control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each ScrollPane instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

Key Description

Down Arrow Content moves up one vertical line scroll.

End Content moves to the bottom of the scroll pane.

Left Arrow Content moves right one horizontal line scroll.

Home Content moves to the top of the scroll pane.

Page Down Content moves up one vertical page scroll.

Page Up Content moves down one vertical page scroll.

Right Arrow Content moves left one horizontal line scroll.

Up Arrow Content moves down one vertical line scroll.
1093

Using the ScrollPane component
You can use a scroll pane to display any content that is too large for the area into which it is
loaded. For example, if you have a large image and only a small space for it in an application,
you could load it into a scroll pane.

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag parameter to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue
broadcasting until the button is released. If the contents of a scroll pane have valid tab stops,
you must set scrollDrag to false; otherwise each mouse interaction with the contents will
invoke scroll dragging.

Components such as Loader, ScrollPane, and Window have events to determine when
content has finished loading. So, if you want to set properties on the content of a Loader,
ScrollPane, or Window component, add the property statement within a “complete” event
handler. Consider the following example:
loadtest = new Object();
loadtest.complete = function(eventObject){
 content_mc._width= 100;
}
my_scrollpane.addEventListener("complete", loadtest)

For more information, see “ScrollPane.content” on page 1104.

ScrollPane parameters
You can set the following authoring parameters for each ScrollPane instance in the Property
inspector or in the Component inspector (Window > Component Inspector menu option):

contentPath indicates the content to load into the scroll pane. This value can be a relative
path to a local SWF or JPEG file, or a relative or absolute path to a file on the Internet. It can
also be the linkage identifier of a movie clip symbol in the library that is set to Export for
ActionScript.

hLineScrollSize indicates the number of units a horizontal scroll bar moves each time an
arrow button is clicked. The default value is 5.

hPageScrollSize indicates the number of units a horizontal scroll bar moves each time the
track is clicked. The default value is 20.

hScrollPolicy displays the horizontal scroll bars. The value can be on, off, or auto. The
default value is auto.

scrollDrag is a Boolean value that determines whether scrolling occurs (true) or not (false)
when a user drags on the content within the scroll pane. The default value is false.
1094 ScrollPane component

vLineScrollSize indicates the number of units a vertical scroll bar moves each time a scroll
arrow is clicked. The default value is 5.

vPageScrollSize indicates the number of units a vertical scroll bar moves each time the scroll
bar track is clicked. The default value is 20.

vScrollPolicy displays the vertical scroll bars. The value can be on, off, or auto. The default
value is auto.

You can set the following additional parameters for each ScrollPane component instance in
the Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for a ScrollPane
component using its properties, methods, and events. For more information, see “ScrollPane
class” on page 1098.

Creating an application with the ScrollPane
component
The following procedure explains how to add a ScrollPane component to an application while
authoring. In this example, the scroll pane loads a picture from a path specified by the
contentPath property.

To create an application with the ScrollPane component:

1. Drag the ScrollPane component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name my_sp.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
Using the ScrollPane component 1095

3. Select Frame 1 in the main Timeline, open the Actions panel, and enter the following code:
/**
 Requires:
 - ScrollPane in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(320, 240);

// Create listener object for scroll vertical position.
var scrollListener:Object = new Object();
scrollListener.scroll = function(evt_obj:Object) {
 trace("hPosition: " + my_sp.hPosition + ", vPosition = " +

my_sp.vPosition);
};
// Add listener.
my_sp.addEventListener("scroll", scrollListener);

// Create listener object for completed loading.
var completeListener:Object = new Object();
completeListener.complete = function(evt_obj:Object) {
 trace(evt_obj.target.contentPath + " has completed loading.");
};
// Add listener.
my_sp.addEventListener("complete", completeListener);

my_sp.contentPath = "http://www.helpexamples.com/flash/images/
image1.jpg";

The examples creates a scroll pane, sets its size, and loads an image to it using the
contentPath property. It also creates two listeners. The first one listens for a scroll event
and displays the image’s position as the user scrolls vertically or horizontally. The second
one listens for a complete event and displays a message in the Output panel that says the
image has completed loading.

Customizing the ScrollPane component
You can transform a ScrollPane component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the ScrollPane class.
1096 ScrollPane component

Bear in mind these points about the ScrollPane component:

■ The ScrollPane places the registration point of its content in the upper-left corner of
the pane.

■ When the horizontal scroll bar is turned off, the vertical scroll bar is displayed from top to
bottom along the right side of the scroll pane. When the vertical scroll bar is turned off,
the horizontal scroll bar is displayed from left to right along the bottom of the scroll pane.
You can also turn off both scroll bars.

■ If the scroll pane is too small, the content may not display correctly.
■ When the scroll pane is resized, the buttons remain the same size. The scroll track and

scroll box (thumb) expand or contract, and their hit areas are resized.

Using styles with the ScrollPane component
The ScrollPane supports the following styles:

Using skins with the ScrollPane component
The ScrollPane component uses an instance of RectBorder for its border and scroll bars for
scroll assets. For more information about skinning these visual elements, see “RectBorder
class” on page 1063 and “Using skins with the UIScrollBar component” on page 1394.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

borderStyle Both The ScrollPane component uses a RectBorder
instance as its border and responds to the styles
defined on that class. See “RectBorder class”
on page 1063.

The default border style is "inset".

scrollTrackColor Sample The background color for the scroll track. The default
value is 0xCCCCCC (light gray).

symbolColor Sample The color of the arrows on the scrollbar buttons. The
default value is 0x000000 (black).

symbolDisabledColor Sample The color of disabled arrows on the scrollbar buttons.
The default value is 0x848384 (dark gray).
Customizing the ScrollPane component 1097

ScrollPane class
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollPane

ActionScript Class Name mx.containers.ScrollPane

The properties of the ScrollPane class let you do the following at runtime: set the content,
monitor the loading progress, and adjust the scroll amount.

Setting a property of the ScrollPane class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

You can set up a scroll pane so that users can drag the content within the pane. To do this, set
the scrollDrag property to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue
broadcasting until the button is released. If the contents of a scroll pane have valid tab stops,
you must set scrollDrag to false; otherwise, each mouse interaction with the contents will
invoke scroll dragging.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.containers.ScrollPane.version);

Method summary for the ScrollPane class
The following table lists methods of the ScrollPane class.

N
O

T
E

The code trace(myScrollPaneInstance.version); returns undefined.

Method Description

ScrollPane.getBytesLoaded() Returns the number of bytes of content loaded.

ScrollPane.getBytesTotal() Returns the total number of bytes of content to be loaded.

ScrollPane.refreshPane() Reloads the contents of the scroll pane (but does not redraw
the scroll bar).
1098 ScrollPane component

Methods inherited from the UIObject class
The following table lists the methods the ScrollPane class inherits from the UIObject class.
When calling these methods from the ScrollPane object, use the form
ScrollPaneInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the ScrollPane class inherits from the UIComponent
class. When calling these methods from the ScrollPane object, use the form
ScrollPaneInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
ScrollPane class 1099

Property summary for the ScrollPane class
The following table lists properties of the ScrollPane class.

Method Description

ScrollPane.content A reference to the content loaded into the scroll pane (read-
only).

ScrollPane.contentPath A string that indicates an absolute or relative URL of the
SWF or JPEG file to load into the scroll pane, or that is the
linkage identifier of a movie clip in the current document’s
library panel.

ScrollPane.hLineScrollSize The amount of content to scroll horizontally when a scroll
arrow is clicked.

ScrollPane.hPageScrollSize The amount of content to scroll horizontally when the scroll
track is clicked.

ScrollPane.hPosition The horizontal pixel position of the scroll pane’s horizontal
scroll bar.

ScrollPane.hScrollPolicy The status of the horizontal scroll bar. It can be always on
("on"), always off ("off"), or on when needed ("auto"). The
default value is "auto".

ScrollPane.scrollDrag Indicates whether scrolling occurs (true) or not (false) when
a user drags on content within the scroll pane. The default
value is false.

ScrollPane.vLineScrollSize The amount of content to scroll vertically when a scroll arrow
is clicked.

ScrollPane.vPageScrollSize The amount of content to scroll vertically when the scroll
track is clicked.

ScrollPane.vPosition The pixel position of the scroll pane’s vertical scroll bar.

ScrollPane.vScrollPolicy The status of the vertical scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default
value is "auto".
1100 ScrollPane component

Properties inherited from the UIObject class
The following table lists the properties the ScrollPane class inherits from the UIObject class.
When accessing these properties from the ScrollPane object, use the form
ScrollPaneInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the ScrollPane class inherits from the UIComponent
class. When accessing these properties from the ScrollPane object, use the form
ScrollPaneInstance.propertyName.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
ScrollPane class 1101

Event summary for the ScrollPane class
The following table lists events of the ScrollPane class.

Events inherited from the UIObject class
The following table lists the events the ScrollPane class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the ScrollPane class inherits from the UIComponent class.

Event Description

ScrollPane.complete Broadcast when the scroll pane content is loaded.

ScrollPane.progress Broadcast while the scroll pane content is loading.

ScrollPane.scroll Broadcast when the scroll bar is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible
to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible
to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
1102 ScrollPane component

ScrollPane.complete
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.complete = function(eventObject:Object) {

// ...
};
scrollPaneInstance.addEventListener("complete", listenerObject);

Usage 2:
on (complete) {

//...
}

Description

Event; broadcast to all registered listeners when the content finishes loading.

The first usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, complete) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create.
You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an
event object (eventObject) to the listener object method. Each event object has properties
that contain information about the event. You can use these properties to write code that
handles the event. Finally, you call the EventDispatcher.addEventListener() method on
the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
ScrollPane.complete 1103

The second usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the ScrollPane instance
myScrollPaneComponent, sends “_level0.myScrollPaneComponent” to the Output panel:
on (complete) {

trace(this);
}

Example

The following example creates a listener object with a complete event handler for the
scrollPane instance. When the scroll pane’s content is loaded, the listener displays a message
in the Output panel.

You first drag the ScrollPane component from the Components panel to the library and then
add the following code to Frame 1:
/**
 Requires:
 - ScrollPane in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(320, 240);

// Create listener object for completed loading.
var completeListener:Object = new Object();
completeListener.complete = function(evt_obj:Object) {
 trace(evt_obj.target.contentPath + " has completed loading.");
};
// Add listener.
my_sp.addEventListener("complete", completeListener);

my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

ScrollPane.content
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
1104 ScrollPane component

Usage
scrollPaneInstance.content

Description

Read-only property; a reference to the content of the scroll pane. The value is undefined
until the load begins.

Example

This example sets the contentPath property to load a scroll pane with a picture (or
technically, a movie clip containing a JPEG image). It also creates a numeric stepper that the
user can increment or decrement by 10, up to a value of 100. When the user changes the value
in the NumericStepper, a listener sets the transparency (content._alpha) of the image to the
specified percentage. Note that _alpha is a MovieClip property.

You first drag ScrollPane and NumericStepper components from the Components panel to
the current document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane in library
 - NumericStepper in library
*/

System.security.allowDomain("http://www.helpexamples.com");

this.createClassObject(mx.controls.NumericStepper, "my_nstep", 10,
{minimum:10, maximum:100, stepSize:10});

my_nstep.value = my_nstep.maximum;

this.createClassObject(mx.containers.ScrollPane, "my_sp", 20);
my_sp.move(0, 30);
my_sp.setSize(180, 160);
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image2.jpg";

var nstepListener:Object = new Object();
nstepListener.change = function(evt_obj:Object) {
 my_sp.content._alpha = my_nstep.value;
}
my_nstep.addEventListener("change", nstepListener);

See also

ScrollPane.contentPath
ScrollPane.content 1105

ScrollPane.contentPath
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the SWF or JPEG file to load
into the scroll pane. A relative path must be relative to the SWF file that loads the content.

If you load content using a relative URL, the loaded content must be relative to the location
of the SWF file that contains the scroll pane. For example, an application using a ScrollPane
component that resides in the directory /scrollpane/nav/example.swf could load contents
from the directory /scrollpane/content/flash/logo.swf by using the following contentPath
property: "../content/flash/logo.swf"

Example

The following example shows how to set the contentPath property to load a ScrollPane from
three different sources: 1) an image on the Internet; 2) a movie clip in the library; 3) a SWF
file from the current working directory. Use only one source at a time.

You first drag the ScrollPane component from the Components panel to the current
document’s library. To try option 2, you must create a movie clip in the library and reference
its name. To try option 3, create a SWF file in the current working directory and specify its
name. Then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane on Stage (instance name: my_sp)
 - Symbol with Linkage ID of "movieClip_Name" in the library ** optional
 - logo.swf file in the working directory ** optional
*/

System.security.allowDomain("http://www.helpexamples.com");

var my_sp:mx.containers.ScrollPane;

// method 1: JPEG image
my_sp.contentPath ="http://www.helpexamples.com/flash/images/image1.jpg";
1106 ScrollPane component

// method 2: Symbol in library
my_sp.contentPath ="movieClip_Name";

// method 3: SWF file
my_sp.contentPath ="logo.swf";

See also

ScrollPane.content

ScrollPane.getBytesLoaded()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.getBytesLoaded()

Parameters

None.

Returns

The number of bytes loaded in the scroll pane.

Description

Method; returns the number of bytes loaded in the ScrollPane instance. You can call this
method at regular intervals while loading content to check its progress.

Example

This example creates a ScrollPane instance called my_sp and defines a listener object called
loadListener with a progress event handler. The event handler calls the
getBytesLoaded() and getBytesTotal() functions to display the progress of the load in
the Output panel.
ScrollPane.getBytesLoaded() 1107

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

var loadListener:Object = new Object();
loadListener.progress = function(evt_obj:Object) {
 trace(my_sp.getBytesLoaded() + " of " + my_sp.getBytesTotal() + " bytes

loaded.");
};
my_sp.addEventListener("progress", loadListener);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

ScrollPane.getBytesTotal()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.getBytesTotal()

Parameters

None.

Returns

A number.

Description

Method; returns the total number of bytes to be loaded into the ScrollPane instance.
1108 ScrollPane component

Example

This example creates a ScrollPane instance called my_sp and defines a listener object called
loadListener with a progress event handler. The event handler calls the
getBytesLoaded() getBytesTotal() functions to display the progress of the load in the
Output panel.

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

var loadListener:Object = new Object();
loadListener.progress = function(evt_obj:Object) {
 trace(my_sp.getBytesLoaded() + " of " + my_sp.getBytesTotal() + " bytes

loaded.");
};
my_sp.addEventListener("progress", loadListener);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

See also

ScrollPane.getBytesLoaded()

ScrollPane.hLineScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.hLineScrollSize

Description

Property; the number of pixels to move the content when an arrow in the horizontal scroll bar
is clicked. The default value is 5.
ScrollPane.hLineScrollSize 1109

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and sets the
hLineScrollSize property to scroll 100 pixels when the user clicks an arrow on the
horizontal scroll bar.

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
// Scroll 100 pixels when clicking on horizontal bar arrows.
my_sp.hLineScrollSize = 100;

ScrollPane.hPageScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.hPageScrollSize

Description

Property; the number of pixels to move the content when the track in the horizontal scroll bar
is clicked. The default value is 20.

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and sets the
hPageScrollSize property to scroll 100 pixels when the user clicks the track in the
horizontal scroll bar.
1110 ScrollPane component

You first drag the ScrollPane component from the Components panel to the current
document’s library and add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

// Scroll 100 pixels when clicking on horizontal bar.
my_sp.hPageScrollSize = 100;

ScrollPane.hPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.hPosition

Description

Property; orients the scroll pane’s contents in pixels, and adjusts the horizontal scroll box
(thumb) proportionally. The 0 position is at the left end of the scroll track, which causes the
left edge of the scroll pane content to be visible in the scroll pane.

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and creates a
listener to handle the scroll event and display the horizontal (hPosition) and vertical
(vPosition) scroll positions as the user clicks the scroll bar.
ScrollPane.hPosition 1111

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
// Scroll 100 pixels when clicking on horizontal bar.
my_sp.hPageScrollSize = 100;

// Create Listener Object.
var spListener:Object = new Object();
spListener.scroll = function(evt_obj:Object) {
 trace("hPosition = " + my_sp.hPosition + ", vPosition = " +

my_sp.vPosition);
}
// Add listener.
my_sp.addEventListener("scroll", spListener);

ScrollPane.hScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), is never
present ("off"), or appears automatically according to the size of the image ("auto"). The
default value is "auto".

Example

The following example creates an instance of a ScrollPane called my_sp, sets hScrollPolicy
to off to prevent a horizontal scroll bar from appearing, and loads it with an image.
1112 ScrollPane component

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);
my_sp.hScrollPolicy = "off";

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

ScrollPane.progress
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.progress = function(eventObject:Object) {

// ...
};
scrollPaneInstance.addEventListener("progress", listenerObject);

Usage 2:
on (progress) {

// ...
}

Description

Event; broadcast to all registered listeners while content is loading. The progress event is not
always broadcast; the complete event may be broadcast without any progress events being
dispatched. This can happen especially if the loaded content is a local file. Your application
triggers the progress event when the content starts loading by setting the value of the
contentPath property.
ScrollPane.progress 1113

The first usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, progress) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create.
You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an
event object (eventObject) to the listener object method. Each event object has properties
that contain information about the event. You can use these properties to write code that
handles the event. Finally, you call the EventDispatcher.addEventListener() method on
the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.
For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the ScrollPane
component instance mySPComponent, sends “_level0.mySPComponent” to the Output panel:
on (progress) {

trace(this);
}

Example

This example creates a ScrollPane instance called my_sp and defines a listener object called
spListener with a progress event handler. The event handler calls the getBytesLoaded()
getBytesTotal() functions to display the progress of the load in the Output panel.

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

var spListener:Object = new Object();
spListener.progress = function(evt_obj:Object):Void {
 trace("Loading " + my_sp.contentPath);
 trace(my_sp.getBytesLoaded() + " of " + my_sp.getBytesTotal() + " bytes

loaded");
};
my_sp.addEventListener("progress", spListener);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
1114 ScrollPane component

ScrollPane.refreshPane()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.refreshPane()

Parameters

None.

Returns

Nothing.

Description

Method; refreshes the scroll pane after content is loaded. This method reloads the content,
but does not reset the scroll bar. You could use this method if, for example, you’ve loaded a
form into a scroll pane and an input property (for example, a text field) has been changed by
ActionScript. In this case, you would call refreshPane() to reload the same form with the
new values for the input properties.

Example

This example creates a Refresh button and a ScrollPane instance called my_sp. It loads the
ScrollPane with an image and creates a listener for a click event on the button. When a click
event occurs, the example calls the refreshPane() function, which reloads the content of the
scroll pane.
ScrollPane.refreshPane() 1115

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.controls.Button, "my_button", 10,
{label:"Refresh"});

this.createClassObject(mx.containers.ScrollPane, "my_sp", 20);
my_sp.move(0, 30);
my_sp.setSize(360, 280);

var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 my_sp.refreshPane();
}
my_button.addEventListener("click", buttonListener);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

ScrollPane.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object):Void {

// ...
};
scrollPaneInstance.addEventListener("scroll", listenerObject);

Usage 2:
on (scroll) {

// ...
}

1116 ScrollPane component

Event object

In addition to the standard event object properties, there are two additional properties defined
for the scroll event: a type property whose value is "scroll", and a direction property
whose value can be "vertical" or "horizontal".

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total
(the total value).

Description

Event; broadcast to all registered listeners when a user clicks the scroll bar buttons, scroll box
(thumb), or scroll track. Unlike other events, the scroll event is broadcast when a user
presses the mouse button on the scroll bar and continues broadcasting until the button
is released.

The first usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, scroll) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the instance my_sp,
sends “_level0.my_sp” to the Output panel:
on (scroll) {

trace(this);
}

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and creates a
listener for the scroll event. When a scroll event occurs, the example displays the horizontal
(hPosition) and vertical (vPosition) scroll positions in the Output panel.
ScrollPane.scroll 1117

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
// Scroll 100 pixels when clicking on horizontal bar.
my_sp.hPageScrollSize = 100;

// Create listener object.
var spListener:Object = new Object();
spListener.scroll = function(evt_obj:Object):Void {
 trace("hPosition = " + my_sp.hPosition + ", vPosition = " +

my_sp.vPosition);
};
// Add listener.
my_sp.addEventListener("scroll", spListener);

See also

EventDispatcher.addEventListener()

ScrollPane.scrollDrag
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.scrollDrag

Description

Property; a Boolean value that indicates whether scrolling occurs (true) or not (false) when
a user drags within the scroll pane. The default value is false.
1118 ScrollPane component

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and sets the
scrollDrag property to true, allowing the user to scroll by dragging the image within the
scroll pane.

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

// Enable scrolling by dragging scroll pane.
my_sp.scrollDrag = true;

ScrollPane.vLineScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.vLineScrollSize

Description

Property; the number of pixels to move the content in the display area when the user clicks a
scroll arrow in a vertical scroll bar. The default value is 5.

Example

The following example creates a ScrollPane instance called my_sp, loads it with an image, and
sets the vLineScrollSize property to scroll 20 pixels when the user clicks an arrow on the
vertical scroll bar.
ScrollPane.vLineScrollSize 1119

You first drag the ScrollPane component from the Components panel to the current
document’s panel and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

// Scroll 20 pixels when clicking on vertical bar arrows.
my_sp.vLineScrollSize = 20;

ScrollPane.vPageScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.vPageScrollSize

Description

Property; the number of pixels to move the content in the display area when the user clicks
the track in a vertical scroll bar. The default value is 20.

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and sets the
vPageScrollSize property to scroll 30 pixels when the user clicks the track in the vertical
scroll bar.
1120 ScrollPane component

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";

// Scroll 30 pixels when clicking on vertical bar.
my_sp.vPageScrollSize = 30;

ScrollPane.vPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.vPosition

Description

Property; orients the scroll pane’s contents in pixels, and adjusts the vertical scroll box
(thumb) proportionally. The 0 position is at the top end of the scroll track, which causes the
top edge of the scroll pane content to be visible in the scroll pane. The default value is 0.

Example

This example creates a ScrollPane instance called my_sp, loads it with an image, and creates a
listener to handle the scroll event and display the horizontal (hPosition) and vertical
(vPosition) scroll positions as the user clicks the scroll bar.
ScrollPane.vPosition 1121

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/

this.createClassObject(mx.containers.ScrollPane, "my_sp", 10);
my_sp.setSize(360, 280);

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
// Scroll 100 pixels when clicking on horizontal bar.
my_sp.hPageScrollSize = 100;

// Create listener object.
var spListener:Object = new Object();
spListener.scroll = function(evt_obj:Object):Void {
 trace("hPosition = " + my_sp.hPosition + ", vPosition = " +

my_sp.vPosition);
};
// Add listener.
my_sp.addEventListener("scroll", spListener);

ScrollPane.vScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollPaneInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the image ("auto"). The default
value is "auto".
1122 ScrollPane component

Example

The following example creates an instance of a ScrollPane called my_sp, sets vScrollPolicy
to off to prevent a vertical scroll bar from appearing, and loads the ScrollPane with an image.

You first drag the ScrollPane component from the Components panel to the current
document’s library and then add the following code to Frame 1:
/**
 Requires:
 - ScrollPane component in library
*/
import mx.containers.ScrollPane;

this.createClassObject(ScrollPane, "my_sp", 30);
my_sp.setSize(360, 280);
my_sp.vScrollPolicy = "off";

System.security.allowDomain("http://www.helpexamples.com");
my_sp.contentPath = "http://www.helpexamples.com/flash/images/image1.jpg";
ScrollPane.vScrollPolicy 1123

1124 ScrollPane component

41

CHAPTER 41

SimpleButton class
Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton

ActionScript Class Name mx.controls.SimpleButton

The properties of the SimpleButton class let you control the following at runtime:

■ Whether a button has the emphasized look of a default push button
■ Whether the button acts as a push button or as a toggle switch
■ Whether a button is selected

Method summary for the SimpleButton class
There are no methods exclusive to the SimpleButton class.

Methods inherited from the UIObject class
The following table lists the methods the SimpleButton class inherits from the UIObject class.
When calling these methods from the SimpleButton class, use the form
buttonInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.
1125

Methods inherited from the UIComponent class
The following table lists the methods the SimpleButton class inherits from the UIComponent
class. When calling these methods from the SimpleButton object, use the form
buttonInstance.methodName.

Property summary for the SimpleButton class
The following table lists properties of the SimpleButton class.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance of
a default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized
property is set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value
is false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false).
The default value is false.

Method Description
1126 SimpleButton class

Properties inherited from the UIObject class
The following table lists the properties the SimpleButton class inherits from the UIObject
class. When accessing these properties from the SimpleButton object, use the form
buttonInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the SimpleButton class inherits from the
UIComponent class. When accessing these properties from the SimpleButton object, use the
form buttonInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.
1127

Event summary for the SimpleButton class
The following table lists the event of the SimpleButton class.

Events inherited from the UIObject class
The following table lists the events the SimpleButton class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the SimpleButton class inherits from the UIComponent
class.

Event Description

SimpleButton.click Broadcast when a button is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible
to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible
to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
1128 SimpleButton class

SimpleButton.click
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.click = function(eventObj:Object){

// ...
};
buttonInstance.addEventListener("click", listenerObject);

Usage 2:
on (click) {

// ...
}

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the button
or if the button has focus and the Spacebar is pressed.

The first usage example uses a dispatcher/listener event model. A component instance
(buttonInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event occurs. When the event occurs, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the
event. Finally, you call addEventListener() (see EventDispatcher.addEventListener())
on the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
SimpleButton.click 1129

The second usage example uses an on() handler and must be attached directly to a Button
component instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the Button component instance myButtonComponent, sends “_level0.myButtonComponent”
to the Output panel:
on (click) {

trace(this);
}

The behavior of this is different when used inside an on() handler that is attached to a
regular Flash button symbol; in this instance, this refers to the that contains the button. For
example, the following code, attached to the button symbol instance myButton, sends
“_level0” to the Output panel:
on (release) {

trace(this);
}

Example

This example, written on a frame of the timeline, sends a message to the Output panel when a
button called buttonInstance is clicked. The first line specifies that the button act like a
toggle switch. The second line creates a listener object called form. The third line defines a
function for the click event on the listener object. Inside the function is a trace() statement
that uses the event object that is automatically passed to the function (in this example,
eventObj) to generate a message. The target property of an event object is the component
that generated the event (in this example, buttonInstance). The SimpleButton.selected
property is accessed from the event object’s target property. The last line calls
addEventListener() from buttonInstance and passes it the click event and the form
listener object as parameters.
buttonInstance.toggle = true;
var form:Object = new Object();
form.click = function(eventObj:Object) {

trace("The selected property has changed to " +
eventObj.target.selected);

};
buttonInstance.addEventListener("click", form);

N
O

T
E

The built-in ActionScript Button object doesn’t have a click event; the closest event
is release.
1130 SimpleButton class

The following code also sends a message to the Output panel when buttonInstance is
clicked. The on() handler must be attached directly to buttonInstance.
on (click) {

trace("button component was clicked");
}

SimpleButton.emphasized
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.emphasized

Description

Property; indicates whether the button is in an emphasized state (true) or not (false). The
emphasized state is equivalent to the appearance of a default push button. In general, use the
FocusManager.defaultPushButton property instead of setting the emphasized property
directly. The default value is false.

If you aren’t using FocusManager.defaultPushButton, you might just want to set a button
to the emphasized state, or use the emphasized state to change text from one color to another.
The following example sets the emphasized property for the button instance myButton:
_global.styles.foo = new CSSStyleDeclaration();
_global.styles.foo.color = 0xFF0000;
SimpleButton.emphasizedStyleDeclaration = "neutralStyle";
myButton.emphasized = true;

See also

SimpleButton.emphasizedStyleDeclaration
SimpleButton.emphasized 1131

SimpleButton.emphasizedStyleDeclaration
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.emphasizedStyleDeclaraion

Description

Property (static); a string indicating the style declaration that formats a button when the
emphasized property is set to true.

The emphasizedStyleDeclaration property is a static property of the SimpleButton class.
Therefore, you must access it directly from SimpleButton, rather than from a
buttonInstance, as in the following:
SimpleButton.emphasizedStyleDeclaration = "3dEmphStyle";

See also

SimpleButton.emphasized

SimpleButton.selected
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.selected

Description

Property; a Boolean value that indicates whether the button is selected (true) or not (false).
The default value is false.
1132 SimpleButton class

SimpleButton.toggle
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
buttonInstance.toggle

Description

Property; a Boolean value that indicates whether the button acts as a toggle switch (true) or
not (false). The default value is false.

If a button acts as a toggle switch, it stays pressed until you click it again to release it.
SimpleButton.toggle 1133

1134 SimpleButton class

42

CHAPTER 42

Slide class (Flash
Professional only)
The Slide class corresponds to a node in a hierarchical slide presentation. In Flash Professional
8, you can create slide presentations using the Screen Outline pane. For an overview of
working with screens, see Chapter 14, “Working with Screens (Flash Professional Only),” in
Using Flash.

The Slide class extends the Screen class (see “Screen class (Flash Professional only)”
on page 1071), and provides built-in navigation and sequencing capabilities between slides, as
well as the ability to easily attach transitions between slides using behaviors. Slides maintain
“state,” so that when a user advances to an adjacent slide, the previous slide is hidden.

Note that you can only navigate to (“stop on”) slides that don’t contain any child slides (“leaf”
slides). For example, consider the following illustration, which shows the contents of the
Screen Outline pane for a sample slide presentation:

When this presentation starts, it will, by default, “stop” on the slide named Finance, which is
the first slide in the presentation that doesn’t contain any child slides.
1135

Also note that child slides “inherit” the visual appearance (graphics and other content) of their
parent slides. For example, in the above illustration, in addition to the content on the Finance
slide, the user would also see any content on the Intro and Presentation slides.

Using the Slide class (Flash Professional
only)
You use the methods and properties of the Slide class to control slide presentations you create
using the Screen Outline pane for a Flash Slide Presentation, to get information about a slide
presentation (for example, to determine the number of child slides contained by parent slide),
or to navigate between slides in a slide presentation (for example, to create “Next slide” and
“Previous slide” buttons).

You can also use the built-in behaviors that are available in the Behaviors panel to control slide
presentations. For more information, see “Adding controls to screens using behaviors (Flash
Professional only)” in Using Flash.

Slide parameters
You can set the following authoring parameters for each slide in the Property inspector or the
Component inspector:

autoKeyNav determines how, or if, the slide responds to the default keyboard navigation. For
more information, see Slide.autoKeyNav.

autoload indicates whether the content specified by the contentPath parameter should load
automatically (true), or wait to load until the Loader.load() method is called (false). The
default value is true.

contentPath specifies the contents of the slide. This can be the linkage identifier of a movie
clip or an absolute or relative URL of a SWF or JPEG file to load into the slide. By default,
loaded content is clipped to fit the slide.

overlayChildren specifies whether the slide’s child slides remain visible (true) or not (false)
when you navigate from one child slide to the next.

playHidden specifies whether the slide continues to play (true) or not (false) when hidden.

N
O

T
E

The Slide class inherits from the Loader class, which lets you easily load external SWF
or JPEG files into a given slide. This provides a way to make your slide presentations
modular and reduce initial download time. For more information, see “Loading external
content into screens (Flash Professional only)” on page 1072.
1136 Slide class (Flash Professional only)

Using the Slide class to create a slide presentation
You use the methods and properties of the Slide class to control slide presentations you create
in the Screen Outline pane for a Flash Slide Presentation in the Flash authoring environment.
(The Behaviors panel also contains several behaviors for creating slide navigation.) In this
example, you write your own ActionScript to create Next and Previous buttons for a slide
presentation.

To create a slide presentation with navigation:

1. In Flash, select File > New.

2. On the General tab, select Flash Slide Presentation.

3. In the Screen Outline pane, click the Insert Screen (+) button twice to create two new slides
beneath the Presentation slide.

The Screen Outline pane should look like the following:

4. Select Slide1 in the Screen Outline pane and, using the Text tool, add a text field that reads
This is slide one.

5. Repeat the previous step for Slide2 and Slide3, creating text fields on each slide that read
This is slide two and This is slide three, respectively.

6. Select the Presentation slide and open the Components panel.

7. Drag a Button component from the Components panel to the bottom of the Stage.

8. In the Property inspector, type Next Slide for the Button component’s Label property.

9. In the Actions panel, type the following code:
on(click) {

_parent.currentSlide.gotoNextSlide();
}

10. Test the SWF file (Control > Test Movie) and click the Next Slide button to advance to
the next slide.
Using the Slide class (Flash Professional only) 1137

Slide class (API) (Flash Professional
only)
Inheritance MovieClip > UIObject class > UIComponent class > View > Loader
component > Screen class (Flash Professional only) > Slide

ActionScript Class Name mx.screens.Slide

The methods, properties, and events of the Slide class allow you to manage and
manipulate slides.

Method summary for the Slide class
The following table lists methods of the Slide class:

Methods inherited from the UIObject class
The following table lists the methods the Slide class inherits from the UIObject class. When
calling these methods from the Slide object, use the form SlideInstance.methodName.

Method Description

Slide.getChildSlide() Returns the specified child slide.

Slide.gotoFirstSlide() Navigates to the first leaf slide in the slide’s hierarchy of
subslides.

Slide.gotoLastSlide() Navigates to the last leaf slide in the slide’s hierarchy of
subslides.

Slide.gotoNextSlide() Navigates to the next slide.

Slide.gotoPreviousSlide() Navigates to the previous slide.

Slide.gotoSlide() Navigates to an specified slide.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.
1138 Slide class (Flash Professional only)

Methods inherited from the UIComponent class
The following table lists the methods the Slide class inherits from the UIComponent class.
When calling these methods from the Slide object, use the form
SlideInstance.methodName.

Methods inherited from the Loader class
The following table lists the method the Slide class inherits from the Loader class. When
calling this method from the Slide object, use the form SlideInstance.methodName.

Methods inherited from the Screen class
The following table lists the method the Slide class inherits from the Screen class. When
calling this method from the Slide object, use the form SlideInstance.methodName.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

Loader.load() Loads the content specified by the contentPath property.

Method Description

Screen.getChildScreen() Returns the child screen of this screen at a particular index.

Method Description
Slide class (API) (Flash Professional only) 1139

Property summary for the Slide class
The following table lists properties of the Slide class:

Property Description

Slide.autoKeyNav Determines whether the slide uses default keyboard
handling to navigate to the next/previous slide.

Slide.currentChildSlide Read-only; returns the immediate child of the specified slide
that contains the currently active slide.

Slide.currentFocusedSlide Read-only; returns the “leafmost” slide (the slide farthest
from the root of the slide tree) that contains the global
current focus.

Slide.currentSlide Read-only; returns the currently active slide.

Slide.defaultKeydownHandler Callback function that overrides the default keyboard
navigation (Left and Right Arrow keys).

Slide.firstSlide Read-only; returns the slide’s first child slide that has no
children.

Slide.indexInParentSlide Read-only; returns the slide’s index (zero-based) in its
parent’s list of subslides.

Slide.lastSlide Read-only; returns the slide’s last child slide that has no
children.

Slide.nextSlide Read-only; returns the slide you would reach if you called
mySlide.gotoNextSlide(), but does not actually navigate to
that slide.

Slide.numChildSlides Read-only; returns the number of child slides the slide
contains.

Slide.overlayChildren Determines whether the slide’s child slides are visible when
control flows from one child slide to the next.

Slide.parentIsSlide Read-only; returns a Boolean value indicating whether the
parent object of the slide is also a slide (true) or not (false).

Slide.parentSlide Read-only; slide containing the current slide. May be null for
the root slide.

Slide.playHidden Determines whether the slide continues to play when hidden.

Slide.previousSlide Read-only; returns the slide you would reach if you called
mySlide.gotoPreviousSlide(), but does not actually navigate
to that slide.

Slide.rootSlide Read-only; returns the root of the slide tree that contains the
slide.
1140 Slide class (Flash Professional only)

Properties inherited from the UIObject class
The following table lists the properties the Slide class inherits from the UIObject class. When
accessing these properties from the Slide object, use the form
SlideInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the Slide class inherits from the UIComponent class.
When accessing these properties from the Slide object, use the form
SlideInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible
(true) or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.
Slide class (API) (Flash Professional only) 1141

Properties inherited from the Loader class
The following table lists the properties the Slide class inherits from the Loader class. When
accessing these properties from the Slide object, use the form
SlideInstance.propertyName.

Properties inherited from the Screen class
The following table lists the properties the Slide class inherits from the Screen class. When
accessing these properties from the Slide object, use the form
SlideInstance.propertyName.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads
automatically (true) or you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that
have been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes
in the content.

Loader.content A reference to the content of the loader. This property is
read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content.
This property is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to
fit the loader (true), or the loader scales to fit the content
(false).

Property Description

Screen.currentFocusedScreen Read-only; returns the screen that contains the global
current focus.

Screen.indexInParent Read-only; returns the screen’s index (zero-based) in its
parent screen’s list of child screens.

Screen.numChildScreens Read-only; returns the number of child screens contained by
the screen.
1142 Slide class (Flash Professional only)

Event summary for the Slide class
The following table lists events of the Slide class.

Events inherited from the UIObject class
The following table lists the events the Slide class inherits from the UIObject class.

Screen.parentIsScreen Read-only; returns a Boolean (true or false) value that
indicates whether the screen’s parent object is itself a
screen.

Screen.rootScreen Read-only; returns the root screen of the tree or subtree that
contains the screen.

Event Description

Slide.hideChild Broadcast each time a child of a slide changes from visible to
invisible.

Slide.revealChild Broadcast each time a child slide of a slide object changes
from invisible to visible.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
Slide class (API) (Flash Professional only) 1143

Events inherited from the UIComponent class
The following table lists the events the Slide class inherits from the UIComponent class.

Events inherited from the Loader class
The following table lists the events the Slide class inherits from the Loader class.

Events inherited from the Screen class
The following table lists the events the Slide class inherits from the Screen class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.

Event Description

Screen.allTransitionsInDone Broadcast when all “in” transitions applied to a screen
have finished.

Screen.allTransitionsOutDone Broadcast when all “out” transitions applied to a screen
have finished.

Screen.mouseDown Broadcast when the mouse button was pressed over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseDownSomewhere Broadcast when the mouse button was pressed somewhere
on the Stage, but not necessarily on an object owned by this
screen.

Screen.mouseMove Broadcast when the mouse is moved while over a screen.

Screen.mouseOut Broadcast when the mouse is moved from inside the screen
to outside it.

Screen.mouseOver Broadcast when the mouse is moved from outside this
screen to inside it.
1144 Slide class (Flash Professional only)

Slide.autoKeyNav
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.autoKeyNav

Description

Property; determines whether the slide uses default keyboard handling to navigate to the next/
previous slide when mySlide has focus. This property accepts the string values "true",
"false", and "inherit". You can override this default keyboard handling behavior by using
the Slide.defaultKeydownHandler property.

When the value of this property is "true", pressing the Right Arrow key (Key.RIGHT) or the
Spacebar (Key.SPACE) when mySlide has focus advances to the next slide; pressing the Left
Arrow key (Key.Left) moves to the previous slide.

When this property is set to "false", no default keyboard handling takes place when
mySlide has focus.

When this property is set to "inherit", mySlide checks the autoKeyNav property of its
parent slide. If it is also set to "inherit", Flash looks up the slide inheritance chain until it
finds a parent slide whose autoKeyNav property is set to "true" or "false".

If mySlide has no parent slide (that is, if the statement (mySlide.parentIsSlide ==
false) is true), it behaves as if autoKeyNav had been set to "true".

Screen.mouseUp Broadcast when the mouse button was released over an
object (shape or movie clip) directly owned by the screen.

Screen.mouseUpSomewhere Broadcast when the mouse button was released somewhere
on the Stage, but not necessarily over an object owned by
this screen.

Event Description
Slide.autoKeyNav 1145

Example

This example turns off automatic keyboard navigation for the slide named loginSlide.
_root.Presentation.loginSlide.autoKeyNav = "false";

See also

Slide.defaultKeydownHandler

Slide.currentChildSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.currentChildSlide

Description

Property (read-only); returns the immediate child of mySlide that contains the currently
active slide; returns null if no child slide contained by mySlide has the current focus.

Example

Consider the following screen outline:
Presentation
 Slide_1
 Bullet1_1
 SubBullet1_1_1
 Bullet1_2
 SubBullet1_2_1
 Slide_2

Assuming that SubBullet1_1_1 is the current slide, then the following statements are
all true:
Presentation.currentChildSlide == Slide_1;
Slide_1.currentChildSlide == Bullet_1_1;
SubBullet_1_1_1.currentChildSlide == null;
Slide_2.currentChildSlide == null;

See also

Slide.currentSlide
1146 Slide class (Flash Professional only)

Slide.currentFocusedSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mx.screens.Slide.currentFocusedSlide

Description

Property (read-only); returns the “leafmost” slide (the slide farthest from the root of the slide
tree) that contains the current global focus. The actual focus may be on the slide itself, or on a
movie clip, text object, or component inside that slide; the method returns null if there is no
current focus.

Example
var focusedSlide = mx.screens.Slide.currentFocusedSlide;

Slide.currentSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.currentSlide

Description

Property (read-only); returns the currently active slide. This is always a “leaf” slide—that is, a
slide that contains no child slides.
Slide.currentSlide 1147

Example

The following code, attached to a button on the root presentation slide, advances the slide
presentation to the next slide each time the button is clicked.
// Attached to button instance contained by presentation slide:
on(press) {

_parent.currentSlide.gotoNextSlide();
}

See also

Slide.gotoNextSlide()

Slide.defaultKeydownHandler
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.defaultKeyDownHandler = function (eventObj) {

// Your code here.
}

Parameters

eventObj An event object with the following properties:

■ type A string indicating the type of event. Possible values are "keyUp" and "keyDown".
■ ascii An integer that represents the ASCII value of the last key pressed; corresponds to

the value returned by Key.getAscii().
■ code An integer that represents the key code of the last key pressed; corresponds to the

value returned by Key.getCode().
■ shiftKey A Boolean value indicating if the Shift key is currently being pressed (true)

or not (false).
■ ctrlKey A Boolean value indicating if the Control key is currently being pressed (true)

or not (false).

Returns

Nothing.
1148 Slide class (Flash Professional only)

Description

Callback function; lets you override the default keyboard navigation with a custom keyboard
handler that you create. For example, instead of having the Left and Right Arrow keys
navigate to the previous and next slides in a presentation, respectively, you could have the Up
and Down Arrow keys perform those functions. For a discussion of the default keyboard
handling behavior, see Slide.autoKeyNav.

Example

In that example, the default keyboard handling is altered for child slides of the slide to which
the on(load) handler is attached. This handler uses the Up and Down Arrow keys for
navigation instead of the Left and Right Arrow keys.
on (load) {

this.defaultKeyDownHandler = function(eventObj:Object) {
switch (eventObj.code) {
case Key.DOWN :

this.currentSlide.gotoNextSlide();
break;

case Key.UP :
this.currentSlide.gotoPreviousSlide();
break;

default :
break;

}
};

}

See also

Slide.autoKeyNav

Slide.firstSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.firstSlide

Description

Property (read-only); returns the first child slide of mySlide that has no child slides.
Slide.firstSlide 1149

Example

In the hierarchy of slides shown below, the following statements are both true:
Presentation.Intro.firstSlide == Intro_bullet_1_1;
Presentation.Intro_bullet_1.firstSlide == Intro_bullet_1_1;

Slide.getChildSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.getChildSlide(childIndex)

Parameters

childIndex The zero-based index of the child slide to return.

Returns

A slide object.

Description

Method; returns the child slide of mySlide whose index is childIndex. You can use this
method to iterate over a set of child slides whose indices are known.
1150 Slide class (Flash Professional only)

Example

The following code causes the Output panel to display the names of all the child slides of the
root presentation slide.
var numSlides = _root.Presentation.numChildSlides;
for(var slideIndex=0; slideIndex < numSlides; slideIndex++) {

var childSlide = _root.Presentation.getChildSlide(slideIndex);
trace(childSlide._name);

}

See also

Slide.numChildSlides

Slide.gotoFirstSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.gotoFirstSlide()

Parameters

None.

Returns

Nothing.

Description

Method; navigates to the first leaf slide in the tree of child slides beneath mySlide. This
method is ignored when called from within a slide’s on(hide) or on(reveal) event handler if
that event was a result of a slide navigation.

To go to the first slide in a presentation, call mySlide.rootSlide.gotoFirstSlide(). (For
more information on rootSlide, see Slide.revealChild.)
Slide.gotoFirstSlide() 1151

Example

In the slide hierarchy illustrated below, the following method calls would all navigate to the
slide named Intro_bullet_1_1:
Presentation.gotoFirstSlide();
Presentation.Intro.gotoFirstSlide();
Presentation.Intro.Intro_bullet_1.gotoFirstSlide();

This method call would navigate to the slide named Intro_bullet_2_1:
Presentation.Intro.Intro_bullet_2.gotoFirstSlide();

See also

Slide.firstSlide, Slide.revealChild

Slide.gotoLastSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.gotoLastSlide()

Parameters

None.
1152 Slide class (Flash Professional only)

Returns

Nothing.

Description

Method; navigates to the last leaf slide in the tree of child slides beneath mySlide. This
method is ignored when called from within a slide’s on(hide) or on(reveal) event handler if
that event was a result of another slide navigation.

Example

In the slide hierarchy illustrated below, the following method calls would navigate to the slide
named Intro_bullet_1_2:
Presentation.Intro.gotoLastSlide();
Presentation.Intro.Intro_bullet_1.gotoLastSlide();

These method calls would navigate to the slide named Intro_bullet_2_1:
Presentation.gotoLastSlide();
Presentation.Intro.gotoLastSlide();

See also

Slide.gotoSlide(), Slide.lastSlide
Slide.gotoLastSlide() 1153

Slide.gotoNextSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.gotoNextSlide()

Parameters

None.

Returns

A Boolean value, or null. The method returns true if it successfully navigated to the next
slide; it returns false if the presentation is already at the last slide when the method is
invoked (that is, if currentSlide.nextSlide is null). The method returns null if invoked
on a slide that doesn’t contain the current slide.

Description

Method; navigates to the next slide in the slide presentation. As control passes from one slide
to the next, the outgoing slide is hidden and the incoming slide is revealed. If the outgoing
and incoming slides are in different slide subtrees, then all ancestor slides, starting with the
outgoing slide and up to the common ancestor of the incoming and outgoing slides, are
hidden and receive a hide event. Immediately following, all ancestor slides of the incoming
slide, up to the common ancestor of the outgoing and incoming slide, are made visible and
receive a reveal event.

Typically, gotoNextSlide() is called on the leaf node that represents the current slide. If
called on a nonleaf node, someNode, then someNode.gotoNextSlide() advances to the first
leaf node in the next slide or “section.”

This method has no effect when invoked on a slide that does not contain the current slide.
This method also has no effect when called from within an on(hide) or on(reveal) event
handler attached to a slide, if that handler was invoked as a result of slide navigation.
1154 Slide class (Flash Professional only)

Example

Suppose that, in the following slide hierarchy, the slide named Intro_bullet_1_1 is the
current slide being viewed (that is, _root.Presentation.currentSlide._name ==
Intro_bullet_1_1).

In this case, calling Intro_bullet_1_1.gotoNextSlide() would navigate to
Intro_bullet_1_2, which is a sibling slide of Intro_bullet_1_1.

However, calling Intro_bullet_1.gotoNextSlide() would navigate to
Intro_bullet_2_1, the first leaf slide contained by Intro_bullet_2, which is the next
sibling slide of Intro_bullet_1. Similarly, calling Intro.gotoNextSlide() would navigate
to Results_bullet_1, the first leaf slide contained by the Results slide.

Also, still assuming that the current slide is Intro_bullet_1_1, calling
Results.gotoNextSlide() would have no effect, because Results does not contain the
current slide (that is, Results.currentSlide is null).

See also

Slide.currentSlide, Slide.gotoPreviousSlide(), Slide.nextSlide
Slide.gotoNextSlide() 1155

Slide.gotoPreviousSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.gotoPreviousSlide()

Parameters

None.

Returns

A Boolean value, or null. The method returns true if it successfully navigated to the
previous slide; it returns false if the presentation is at the first slide when the method is
invoked (that is, if currentSlide.nextSlide is null). The method returns null if invoked
on a slide that doesn’t contain the current slide.

Description

Method; navigates to the previous slide in the slide presentation. As control passes from one
slide to the previous slide, the outgoing slide is hidden and the incoming slide is revealed. If
the outgoing and incoming slides are in different slide subtrees, then all ancestor slides,
starting with the outgoing slide and up to the common ancestor of the incoming and
outgoing slides, are hidden and receive a hide event. Immediately following, all ancestors
slides of the incoming slide, up to the common ancestor of the outgoing and incoming slide,
are made visible and receive a reveal event.

Typically, gotoPreviousSlide() is called on the leaf node that represents the current slide. If
called on a nonleaf node, someNode, then someNode.gotoPreviousSlide() advances to the
first leaf node in the previous slide or “section.”

This method has no effect when invoked on a slide that does not contain the current slide.
This method also has no effect when called from within an on(hide) or on(reveal) event
handler attached to a slide, if that handler was invoked as a result of slide navigation.
1156 Slide class (Flash Professional only)

Example

Suppose that, in the following slide hierarchy, the slide named Intro_bullet_1_2 is the
current slide being viewed (that is, _root.Presentation.currentSlide._name ==
Intro_bullet_1_2).

In this case, calling Intro_bullet_1_2.gotoPreviousSlide() would navigate to
Intro_bullet_1_1, which is the previous sibling slide of Intro_bullet_1_2.

However, calling Intro_bullet_2.gotoPreviousSlide() would navigate to
Intro_bullet_1_1, the first leaf slide contained by Intro_bullet_1, which is the previous
sibling slide of Intro_bullet_2. Similarly, calling Results.gotoPreviousSlide() would
navigate to Intro_bullet_1_1, the first leaf slide contained by the Intro slide.

Also, if the current slide is Intro_bullet_1_1, then calling Results.gotoPreviousSlide()
would have no effect, since Results does not contain the current slide (that is,
Results.currentSlide is null).

See also

Slide.currentSlide, Slide.gotoNextSlide(), Slide.previousSlide
Slide.gotoPreviousSlide() 1157

Slide.gotoSlide()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.gotoSlide(newSlide)

Parameters

newSlide The slide to navigate to.

Returns

A Boolean value indicating if the navigation succeeded (true) or not (false).

Description

Method; navigates to the slide specified by newSlide. For the navigation to succeed, the
following must be true:

■ The current slide must be a child slide of mySlide.
■ The slide specified by newSlide and the current slide must share a common ancestor

slide—that is, the current slide and newSlide must reside in the same slide subtree.

If either of these conditions isn’t met, the navigation fails and the method returns false;
otherwise, the method navigates to the specified slide and returns true.

For example, consider the following slide hierarchy:
Presentation
 Slide1
 Slide1_1
 Slide1_2
 Slide2
 Slide2_1
 Slide2_2

If the current slide is Slide1_2, the following gotoSlide() call fails, because the current
slide is not a descendant of Slide2:
Slide2.gotoSlide(Slide2_1);
1158 Slide class (Flash Professional only)

Also consider the following screen hierarchy, where a form object is the parent screen of two
separate slide trees:
Form_1

Slide1
Slide1_1
Slide1_2

Slide2
Slide2_1
Slide2_2

If the current slide is Slide1_2, the following method call also fails, because Slide1 and
Slide2 are in different slide subtrees:
Slide1_2.gotoSlide(Slide2_2);

Example

The following code, attached to a Button component, uses the Slide.currentSlide
property and the gotoSlide() method to display the next slide in the presentation.
on(click) {

_parent.gotoSlide(_parent.currentSlide.nextSlide);
}

This is equivalent to the following code, which uses the Slide.gotoNextSlide() method:
on(click) {

_parent.currentSlide.gotoNextSlide();
}

See also

Slide.currentSlide, Slide.gotoNextSlide()

Slide.hideChild
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(hideChild) {

// Your code here.
}

Slide.hideChild 1159

Description

Event; broadcast each time a child of a slide changes from visible to invisible. This event is
broadcast only by slides, not forms. The main use of the hideChild event is to apply “out”
transitions to all the children of a slide.

Example

When attached to the root slide (for example, the presentation slide), this code displays the
name of each child slide that belongs to the root slide, as the child slide is hidden.
on(hideChild) {

var child = eventObj.target._name;
trace(child + " has just been hidden");

}

See also

Slide.revealChild

Slide.indexInParentSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.indexInParent

Description

Property (read-only); returns the zero-based index of mySlide in its parent’s list of child slides.
1160 Slide class (Flash Professional only)

Example

The following code uses the indexInParentSlide and Slide.numChildSlides properties
to display the index of the current slide being viewed and the total number of slides contained
by its parent slide. To use this code, attach it to a parent slide that contains one or more
child slides.
on (revealChild) {

trace("Displaying "+(currentSlide.indexInParentSlide+1)+" of
"+currentSlide._parent.numChildSlides);

}

Note that because this property is a zero-based index, its value is incremented by 1
(currentSlide.indexInParent+1) to display more meaningful values.

See also

Slide.numChildSlides, Slide.revealChild

Slide.lastSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.lastSlide

Description

Property (read-only); returns the last child slide of mySlide that has no child slides.
Slide.lastSlide 1161

Example

The following statements are all true concerning the slide hierarchy shown below:
Presentation.lastSlide._name == Results_bullet_1;
Intro.lastSlide._name == Intro_bullet_1_2;
Intro_bullet_1.lastSlide._name == Intro_bullet_1_2;
Results.lastSlide._name = Results_bullet_1;
1162 Slide class (Flash Professional only)

Slide.nextSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.nextSlide

Description

Property (read-only); returns the slide you would reach if you called
mySlide.gotoNextSlide(), but does not actually navigate to that slide. For example, you
can use this property to display the name of the next slide in a presentation and let users select
whether they want to navigate to that slide.

Example

In this example, the label of a Button component named nextButton displays the name of
the next slide in the presentation. If there is no next slide—that is, if mySlide.nextSlide is
null—then the button’s label is updated to indicate that the user is at the end of this slide
presentation.
if (mySlide.nextSlide != null) {

nextButton.label = "Next slide: " + mySlide.nextSlide._name + " > ";
} else {

nextButton.label = "End of this slide presentation.";
}

See also

Slide.gotoNextSlide(), Slide.previousSlide
Slide.nextSlide 1163

Slide.numChildSlides
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.numChildSlides

Description

Property (read-only); returns the number of child slides that mySlide contains. A slide can
contain either forms or other slides; if mySlide contains both slides and forms, this property
only returns the number of slides, and does not count forms.

Example

This example uses Slide.numChildSlides and the Slide.getChildSlide() method to
iterate over all the child slides of the root presentation slide. It then displays their names in the
Output panel.
var numSlides = _root.Presentation.numChildSlides;
for(var slideIndex=0; slideIndex < numSlides; slideIndex++) {

var childSlide = _root.Presentation.getChildSlide(slideIndex);
trace(childSlide._name);

}

See also

Slide.getChildSlide()
1164 Slide class (Flash Professional only)

Slide.overlayChildren
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.overlayChildren

Description

Property; determines whether child slides of mySlide remain visible when navigating from
one child slide to the next. When this property is true, the previous slide remains visible
when control passes to its next sibling slide; when this property is false, the previous slide is
invisible when control passes to its next sibling slide.

Setting this property to true is useful, for example, when a given slide contains several child
“bullet point” slides that are revealed separately (using transitions, perhaps), but all need to
remain visible as new bullet points appear.

Example

The Intro_bullets slide in the following illustration contains three child slides (Finance,
Human_resources, and Operations) that each display a separate bullet point. By setting
Intro_bullets.overlayChildren to true, each bullet slide remains on the Stage as the
other bullet points appear.

N
O

T
E

This property applies only to the immediate descendants of mySlide, not to all (nested)
child slides.
Slide.overlayChildren 1165

Slide.parentIsSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.parentIsSlide

Description

Property (read-only); a Boolean value indicating whether the parent object of mySlide is also
a slide. If the parent object of mySlide is a slide, or belongs to a subclass of Slide, this property
returns true; otherwise, it returns false.

If mySlide is the root slide in a presentation, this property returns false, because the
presentation slide’s parent is the main (_level0), not a slide. This property also returns false
if a form is the parent of mySlide.

Example

The following code determines whether the parent object of the slide mySlide is itself a slide.
If mySlide.parentIsSlide is true, the number of mySlide’s sibling slides is displayed in the
Output panel. If the parent object is not a slide, Flash assumes that mySlide is the root
(master) slide in the presentation and therefore has no sibling slides.
if (mySlide.parentIsSlide) {

trace("I have " + mySlide._parent.numChildSlides+" sibling slides");
} else {

trace("I am the root slide and have no siblings");
}

See also

Slide.numChildSlides

Slide.parentSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
1166 Slide class (Flash Professional only)

Usage
mySlide.parentSlide

Description

Property (read-only); a reference to the slide containing the current slide.

Slide.playHidden
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.playHidden

Description

Property; a Boolean value that specifies whether mySlide should continue to play when it is
hidden. When this property is true, mySlide continues to play when hidden. When set to
false, mySlide is stopped upon being hidden; upon being revealed, play restarts at Frame 1
of mySlide.

Slide.previousSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.previousSlide

Description

Property (read-only); returns the slide you would reach if you called
mySlide.gotoPreviousSlide(), but does not actually navigate to that slide. For example,
you can use this property to display the name of the previous slide in a presentation and let
users select whether they want to navigate to that slide.
Slide.previousSlide 1167

Example

In this example, the label of a Button component named previousButton displays the name
of the previous slide in the presentation. If there is no previous slide—that is, if
mySlide.previousSlide is null—the button’s label is updated to indicate that the user is at
the beginning of this slide presentation.
if (mySlide.previousSlide != null) {

previousButton.label = "Previous slide: " + mySlide.previous._name + "
> ";

} else {
previousButton.label = "You’re at the beginning of this slide

presentation.";
}

See also

Slide.gotoPreviousSlide(), Slide.nextSlide

Slide.revealChild
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
on(revealChild) {

// Your code here.
}

Description

Event; broadcast each time a child slide of a slide object changes from invisible to visible. This
event is used primarily to attach “in” transitions to all the child slides of a given slide.

Example

When attached to the root slide (for example, the presentation slide), this code displays the
name of each child slide as it appears.
on(revealChild) {

var child = eventObj.target._name;
trace(child + " has just appeared");

}

1168 Slide class (Flash Professional only)

See also

Slide.hideChild

Slide.rootSlide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
mySlide.rootSlide

Description

Property (read-only); returns the root slide of the slide tree, or slide subtree, that contains
mySlide.

Example

Suppose you have a movie clip on a slide that, when clicked, goes to the first slide in the
presentation. To accomplish this, you would attach the following code to the movie clip:
on(press) {

_parent.rootSlide.gotoFirstSlide();
}

In this case, _parent refers to the slide that contains the movie clip object.
Slide.rootSlide 1169

1170 Slide class (Flash Professional only)

43

CHAPTER 43

StyleManager class
ActionScript Class Name mx.styles.StyleManager

The StyleManager class keeps track of known inheriting styles and colors. You need to use this
class only if you are creating components and want to add a new inheriting style or color.

To determine which styles are inheriting, see the W3C web site at www.w3.org/Style/CSS/.

Method summary for the StyleManager class
The following table lists methods of the StyleManager class.

Method Description

StyleManager.registerColorName() Registers a new color name with the
Style Manager.

StyleManager.registerColorStyle() Adds a new color style to the Style Manager.

StyleManager.registerInheritingStyle() Registers a new inheriting style with the
Style Manager.
1171

http://www.w3.org/Style/CSS/

StyleManager.registerColorName()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
StyleManager.registerColorName(colorName, value)

Parameters

colorName A string indicating the name of the color (for example, "gray", "darkGrey",
and so on).

value A hexadecimal number indicating the color (for example, 0x808080, 0x404040, and
so on).

Returns

Nothing.

Description

Method; associates a color name with a hexadecimal value and registers it with the
Style Manager.

Example

The following example registers "gray" as the color name for the color represented by the
hexadecimal value 0x808080:
StyleManager.registerColorName("gray", 0x808080);
1172 StyleManager class

StyleManager.registerColorStyle()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
StyleManager.registerColorStyle(colorStyle)

Parameters

colorStyle A string indicating the name of the color (for example, "highlightColor",
"shadowColor", "disabledColor", and so on).

Returns

Nothing.

Description

Method; adds a new color style to the Style Manager.

Example

The following example registers "highlightColor" as a color style:
StyleManager.registerColorStyle("highlightColor");
StyleManager.registerColorStyle() 1173

StyleManager.registerInheritingStyle()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
StyleManager.registerInheritingStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example,
"newProp1", "newProp2", and so on).

Returns

Nothing.

Description

Method; marks this style property as inheriting. Use this method to register style properties
that aren’t listed in the CSS specification. Do not use this method to change non-inheriting
style properties to inheriting.

When a style’s value is not inherited, you can set its style only on an instance, not on a custom
or global style sheet. A style that doesn’t inherit its value is set on the class style sheet, and
therefore, setting it on a custom or global style sheet does not work.

Example

The following example registers newProp1 as an inheriting style:
StyleManager.registerInheritingStyle("newProp1");
1174 StyleManager class

44

CHAPTER 44

SystemManager class
ActionScript Class Name mx.managers.SystemManager

The SystemManager class works automatically with the FocusManager class to handle which
top-level window is activated in an application that contains version 2 components. It also
provides a screen property that allows components and movie clips to access Stage
coordinates.

Property summary for the SystemManager class
The following table lists the property of the SystemManager class.

Property Description

SystemManager.screen Read-only; an object containing the size and
position of the Stage.
1175

SystemManager.screen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
SystemManager.screen

Description

Property; an object with x, y, width, and height properties that indicate the size and position
of the Stage.

Example

If Stage.align is set to something other than "LT", it is difficult to know what coordinates
are actually viewable.

Suppose you want to place a watermark movie clip in the lower-right corner of the Stage
(similar to the watermarks many television channels use). The following code would work in
all Stage alignments for a movie clip instance watermark:
import mx.managers.SystemManager;

var p1:Number = SystemManager.screen.width + SystemManager.screen.x -
watermark._width;

var p2:Number = SystemManager.screen.height + SystemManager.screen.y -
watermark._height;

watermark._x = p1;
watermark._y = p2;
1176 SystemManager class

45

CHAPTER 45

TextArea component
The TextArea component wraps the native ActionScript TextField object. You can use styles to
customize the TextArea component; when an instance is disabled, its contents display in a
color represented by the disabledColor style. A TextArea component can also be formatted
with HTML, or as a password field that disguises the text. See “Applying a style sheet to a
TextArea component” in Learning ActionScript 2.0 in Flash.

A TextArea component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection,
and navigation rules as an ActionScript TextField object. When a TextArea instance has focus,
you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in
Using Components or “FocusManager class” on page 721.

A live preview of each TextArea instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. If a scroll bar is needed, it appears in the
live preview, but it does not function. Text is not selectable in the live preview, and you cannot
enter text in the component instance on the Stage.

When you add the TextArea component to an application, you can use the Accessibility panel
to make it accessible to screen readers.

Key Description

Arrow keys Move the insertion point one line up, down, left, or right.

Page Down Moves one screen down.

Page Up Moves one screen up.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.
1177

Using the TextArea component
You can use a TextArea component wherever you need a multiline text field. If you need a
single-line text field, use the TextInput component. For example, you could use a TextArea
component as a comment field in a form. You could set up a listener that checks if the field is
empty when a user tabs out of the field. That listener could display an error message
indicating that a comment must be entered in the field.

TextArea parameters
You can set the following authoring parameters for each TextArea component instance in the
Property inspector or the Component inspector (Window > Component Inspector menu
option):

editable indicates whether the TextArea component is editable (true) or not (false). The
default value is true.

html indicates whether the text is formatted with HTML (true) or not (false). If HTML is
set to true, you can format the text using the font tag. The default value is false.

text indicates the contents of the TextArea component. You cannot enter carriage returns in
the Property inspector or the Component inspector. The default value is "" (an empty string).

wordWrap indicates whether the text wraps (true) or not (false). The default value is true.

You can set the following additional parameters for each TextArea component instance in the
Component inspector (Window > Component Inspector):

maxChars is the maximum number of characters that the text area can contain. The default
value is null (meaning unlimited).

restrict indicates the set of characters that a user can enter in the text area. The default value is
undefined. See “TextArea.restrict” on page 1199.

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

password is a Boolean value that indicates whether the input is a password or other text that
should be hidden from view as it is typed. Flash hides the input characters with asterisks. The
default value is false.

N
O

T
E

If you create a TextArea using the createClassObject() method, the default value for
wordWrap is false.
1178 TextArea component

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the TextArea
component using its properties, methods, and events. For more information, see “TextArea
class” on page 1182.

Creating an application with the TextArea component
The following procedure explains how to add a TextArea component to an application while
authoring. The example sets up a focusOut event handler on the TextArea instance that
verifies that the user typed something in the text area before giving focus to a different part of
the interface.

To create an application with the TextArea component:

1. Drag a TextArea component from the Components panel to the Stage and give it an
instance name of my_ta.

2. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

var taListener:Object = new Object();
taListener.focusOut = function(evt_obj:Object) {
 if (my_ta.length < 1) {
 trace("Please enter a comment");
 }
};
my_ta.addEventListener("focusOut", taListener);

This code sets up a focusOut event handler on the TextArea component instance that
verifies that the user typed something in the text area.

You can get the value of text that is entered in the TextArea instance, as follows:
var ta_text:String = my_ta.text;

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
Using the TextArea component 1179

Customizing the TextArea component
You can transform a TextArea component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use UIObject.setSize() or any
applicable properties and methods of the TextArea class.

When a TextArea component is resized, the border is resized to the new bounding box. The
scroll bars are placed on the bottom and right edges if they are required. The text area is then
resized within the remaining area; there are no fixed-size elements in a TextArea component.
If the TextArea component is too small to display the text, the text is clipped.

Using styles with the TextArea component
The TextArea component has its backgroundColor and borderStyle style properties
defined on a class style declaration. Class styles override global styles; therefore, if you want to
set the backgroundColor and borderStyle style properties, you must create a different
custom style declaration on the instance.

If the name of a style property ends in “Color”, it is a color style property and behaves
differently than noncolor style properties. For more information, see “Using styles to
customize component color and text” in Using Components.

A TextArea component supports the following styles:

Style Theme Description

backgroundColor Both The background color. The default color is white.

borderStyle Both The TextArea component uses a RectBorder instance
as its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.

The default border style is "inset".

marginLeft Both A number indicating the left margin for text. The default
value is 0.

marginRight Both A number indicating the right margin for text. The
default value is 0.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).
1180 TextArea component

The TextArea and TextInput components use exactly the same styles and are often used in the
same manner. Thus, by default they share the same class-level style declaration.

For example, the following code sets a style on the TextInput declaration, but it affects both
TextInput and TextArea components.
_global.styles.TextInput.setStyle("disabledColor", 0xBBBBFF);

To separate the components and provide class-level styles for one and not the other, create a
new style declaration.
import mx.styles.CSSStyleDeclaration;
_global.styles.TextArea = new CSSStyleDeclaration();
_global.styles.TextArea.setStyle("disabledColor", 0xFFBBBB);

This example does not check if _global.styles.TextArea existed before overwriting it; it
assumes you know it exists and want to overwrite it.

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", "center", or
"justify". (The "justify" parameter is supported only
in Flash Player 8). The default value is "left".

textIndent Both A number indicating the text indent. The default value is
0.

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

Style Theme Description
Customizing the TextArea component 1181

You can make the background of TextArea components transparent by setting the
backgroundColor style globally to a value of undefined. You then need to set the
backgroundColor style to a color individually for all TextArea components that you do not
want to be transparent.
// Give all TextArea components transparent backgrounds.
_global.styles.TextArea.backgroundColor = undefined;

//Make this specific component instance have a white background.
myTextArea2.setStyle("backgroundColor", "white");

The TextArea component supports one set of component styles for all text in the field.
However, you can also display HTML that is compatible with Flash Player HTML rendering.
To display HTML text, set TextArea.html to true.

If you do set the TextArea to display HTML text, the text style is set using the
TextField.StyleSheet class (see details for this class in the ActionScript 2.0 Language Reference).
For example:

1. Drag a TextArea component to the Stage, and give it the instance name my_ta.

2. Enter this code in Actions panel for Frame 1 of the timeline:
var my_styles = new TextField.StyleSheet();
my_styles.setStyle("p", {fontFamily:'Arial,Helvetica,sans-serif',

fontSize:'12px', color:'#CC6699'});
my_ta.styleSheet = my_styles;
my_ta.html = true;
my_ta.text = "<p>This is some text</p>";

Using skins with the TextArea component
The TextArea component uses an instance of RectBorder for its border and scroll bars for
scrolling images. For more information about skinning these visual elements, see “RectBorder
class” on page 1063 and “Using skins with the UIScrollBar component” on page 1394.

TextArea class
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
TextArea

ActionScript Class Name mx.controls.TextArea

The properties of the TextArea class let you set the text content, formatting, and horizontal
and vertical position at runtime. You can also indicate whether the field is editable, and
whether it is a “password” field. You can also restrict the characters that a user can enter.
1182 TextArea component

Setting a property of the TextArea class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The TextArea component overrides the default Flash Player focus rectangle and draws a
custom focus rectangle with rounded corners.

The TextArea component supports CSS styles and any additional HTML styles supported by
Flash Player.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.TextArea.version);

Method summary for the TextArea class
There are no methods exclusive to the TextArea class.

Methods inherited from the UIObject class
The following table lists the methods the TextArea class inherits from the UIObject class.
When calling these methods from the TextArea object, use the form
TextAreaInstance.methodName.

N
O

T
E

The code trace(myTextAreaInstance.version); returns undefined.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.
TextArea class 1183

Methods inherited from the UIComponent class
The following table lists the methods the TextArea class inherits from the UIComponent
class. When calling these methods from the TextArea object, use the form
TextAreaInstance.methodName.

Property summary for the TextArea class
The following table lists properties of the TextArea class.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

TextArea.editable A Boolean value indicating whether the field is editable (true)
or not (false).

TextArea.hPosition Defines the horizontal position of the text in the field.

TextArea.hScrollPolicy Indicates whether the horizontal scroll bar is always on ("on"),
is never on ("off"), or turns on when needed ("auto").

TextArea.html A Boolean value that indicates whether the text area contents
can be formatted with HTML.

TextArea.length Read-only; the number of characters in the text area.

TextArea.maxChars The maximum number of characters that the text area can
contain.

TextArea.maxHPosition Read-only; the maximum value of TextArea.hPosition.

TextArea.maxVPosition Read-only; the maximum value of TextArea.vPosition.

TextArea.password A Boolean value indicating whether the field is a password
field (true) or not (false).

TextArea.restrict The set of characters that a user can enter in the text area.

TextArea.styleSheet Attaches a style sheet to the specified TextArea component.

TextArea.text The text contents of a TextArea component.

Method Description
1184 TextArea component

Properties inherited from the UIObject class
The following table lists the properties the TextArea class inherits from the UIObject class.
When accessing these properties from the TextArea object, use the form
TextAreaInstance.propertyName.

TextArea.vPosition A number indicating the vertical scrolling position.

TextArea.vScrollPolicy Indicates whether the vertical scroll bar is always on ("on"), is
never on ("off"), or turns on when needed ("auto").

TextArea.wordWrap A Boolean value indicating whether the text wraps (true) or
not (false).

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX Read-only; a number indicating the scaling factor in the x
direction of the object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description
TextArea class 1185

Properties inherited from the UIComponent class
The following table lists the properties the TextArea class inherits from the UIComponent
class. When accessing these properties from the TextArea object, use the form
TextAreaInstance.propertyName.

Event summary for the TextArea class
The following table lists the event of the TextArea class.

Events inherited from the UIObject class
The following table lists the events the TextArea class inherits from the UIObject class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

TextArea.change Notifies listeners that text has changed.

TextArea.scroll Notifies listeners that text has scrolled.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
1186 TextArea component

Events inherited from the UIComponent class
The following table lists the events the TextArea class inherits from the UIComponent class.

TextArea.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

// ...
};
textAreaInstance.addEventListener("change", listenerObject);

Usage 2:
on (change) {

// ...
}

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has
changed. This event cannot be used to prevent certain characters from being added to the
component’s text area; for this purpose, use TextArea.restrict.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
TextArea.change 1187

The first usage example uses a dispatcher/listener event model. A component instance
(textAreaInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a TextArea
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the instance
myTextArea, sends “_level0.myTextArea” to the Output panel:
on (change) {

trace(this);
}

Example

This example uses the dispatcher/listener event model to track the total of number of times
the text area changes in a TextArea component named my_ta.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

// Create a Number variable to track the number of changes to the TextArea.
var changeCount_num:Number = 0;
1188 TextArea component

// Define a listener object.
var taListener:Object = new Object();
// Define a function that is executed whenever the listener receives
// notification of a change in the TextArea component.
taListener.change = function(evt_obj:Object) {
 changeCount_num++;
 trace("Text has changed " + changeCount_num + " times now!");
 trace("It now contains: " + evt_obj.target.text);
 trace("");
};
// Register the listener object with the TextArea component instance.
my_ta.addEventListener("change", taListener);

See also

EventDispatcher.addEventListener()

TextArea.editable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

Example

The following example sets the editable property to false to prevent the user from editing
the text that it loads into the TextArea instance called my_ta.
TextArea.editable 1189

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.editable = false;

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

TextArea.hPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.hPosition

Description

Property; defines the horizontal position in pixels of the text in the field. The default value
is 0.

Example

The following example uses a listener to display the current horizontal position in the Output
panel as the user scrolls back and forth through the text that it has loaded into the TextArea
instance called my_ta.
1190 TextArea component

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = false;

var taListener:Object = new Object();
taListener.scroll = function(evt_obj:Object) {
 trace("hPosition = " + my_ta.hPosition);
}
my_ta.addEventListener("scroll", taListener);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 my_ta.hPosition = 200;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

TextArea.hScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), is never
present ("off"), or appears automatically according to the size of the field ("auto"). The
default value is "auto".
TextArea.hScrollPolicy 1191

Example

The following example turns off the hScrollPolicy property, causing the TextArea instance
to not have a scroll bar.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = false;
my_ta.hScrollPolicy = "off";

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

TextArea.html
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.html

Description

Property; a Boolean value that indicates whether the text area contents are formatted with
HTML (true) or not (false). If the html property is true, the text area contents are in
HTML. If html is false, the text area is a non-HTML text area. The default value is false.
1192 TextArea component

Example

The following example makes the TextArea called my_ta an HTML text area and then
formats the text with HTML tags.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1:
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.html = true;
my_ta.text = "The Royal Nonesuch";

TextArea.length
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.length

Description

Property (read-only); indicates the number of characters in a text area. This property returns
the same value as the ActionScript text.length property, but is faster. A character such as
tab ("\t") counts as one character. The default value is 0.

Example

The following example accesses the length property to display the number of characters that
the user types in the TextArea called my_ta.
TextArea.length 1193

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

// Define a listener object.
var taListener:Object = new Object();
taListener.change = function(evt_obj:Object) {
 trace("my_ta.length is now: " + my_ta.length + " characters");
};
my_ta.addEventListener("change", taListener);

TextArea.maxChars
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.maxChars

Description

Property; the maximum number of characters that the text area can contain. A script may
insert more text than the maxChars property allows; the property indicates only how much
text a user can enter. If the value of this property is null, there is no limit to the amount of
text a user can enter. The default value is null.

Example

The following example sets the maxchars property to limit the number of characters a user
can enter to 24.
1194 TextArea component

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.maxChars = 24;

// Define a listener object.
var taListener:Object = new Object();
taListener.change = function(evt_obj:Object) {
 trace("my_ta.length is now: " + my_ta.length + " characters");
};
my_ta.addEventListener("change", taListener);

TextArea.maxHPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.maxHPosition

Description

Read-only property; the maximum value of TextArea.hPosition. The default value is 0.

Example

The following example accesses the maxHPosition property to set the initial position in the
TextArea called my_ta to the farthest right position.
TextArea.maxHPosition 1195

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = false;

var taListener:Object = new Object();
taListener.scroll = function(evt_obj:Object) {
 trace("hPosition = " + my_ta.hPosition);
}
my_ta.addEventListener("scroll", taListener);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 my_ta.hPosition = my_ta.maxHPosition;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

See also

TextArea.vPosition

TextArea.maxVPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.maxVPosition
1196 TextArea component

Description

Read-only property; indicates the maximum value of TextArea.vPosition. The default
value is 0.

Example

The following example accesses the maxVPosition property to set the initial vertical position
of the TextArea called my_ta to the bottom. It also traces the current vertical position as the
user scrolls up and down.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = true;

var taListener:Object = new Object();
taListener.scroll = function(evt_obj:Object) {
 trace("vPosition = " + my_ta.vPosition);
}
my_ta.addEventListener("scroll", taListener);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 my_ta.vPosition = my_ta.maxVPosition;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

See also

TextArea.hPosition
TextArea.maxVPosition 1197

TextArea.password
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.password

Description

Property; a Boolean value indicating whether the text area is a password field (true) or not
(false). If password is true, the text area is a password text area and hides the input
characters with asterisks. If password is false, the text area is not a password text area. The
default value is false.

Example

The following example treats the text in the TextArea called my_ta as a password field if the
check box called my_ch is checked. Otherwise it treats it as ordinary text.

You must first add an instance of the TextArea component to the Stage and name it my_ta
and also add a check box and name it my_ch; then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
 - CheckBox instance on Stage (instance name: my_ch)
*/
var my_ta:mx.controls.TextArea;
var my_ch:mx.controls.CheckBox;

my_ta.wordWrap = false;
my_ta.password = true;
my_ch.selected = my_ta.password;

var chListener:Object = new Object();
chListener.click = function(evt_obj:Object) {
 my_ta.password = my_ch.selected;
}
my_ch.addEventListener("click", chListener);
1198 TextArea component

TextArea.restrict
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.restrict

Description

Property; indicates the set of characters that users can enter in the text area. The default value
is undefined. If this property is null, users can enter any character. If this property is an
empty string, no characters can be entered. If this property is a string of characters, users can
enter only characters in the string; the string is scanned from left to right. You can specify a
range by using a dash (-).

If the string begins with ^, all characters that follow the ^ are considered unacceptable
characters. If the string does not begin with ^, the characters in the string are considered
acceptable. The ̂ can also be used as a toggle between acceptable and unacceptable characters.

For example, the following code allows A-Z except X and Q:
Ta.restrict = "A-Z^XQ";

Restricting input to uppercase characters converts alphabetic characters entered in lowercase
to uppercase. Likewise, restricting input to lowercase characters converts characters entered in
uppercase to lowercase.

The restrict property only restricts user interaction; a script may put any text into the text
area. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

Example

The following example first sets the restrict property to limit the text area to uppercase letters,
numbers, and spaces, and then sets it to allow all characters except lowercase letters.
TextArea.restrict 1199

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1. Use only one setting for the restrict property at
a time.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/
var my_ta:mx.controls.TextArea;

my_ta.wordWrap = true;

// Limit control to uppercase letters, numbers, and spaces.
my_ta.restrict = "A-Z 0-9";

// Allow all characters, except lowercase letters
// characters to uppercase
my_ta.restrict = "^a-z";

TextArea.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

// ...
};
textAreaInstance.addEventListener("scroll", listenerObject);

Usage 2:
on (scroll) {

// ...
}

1200 TextArea component

Description

Event; broadcast to all registered listeners when the mouse button is clicked (released) over the
scroll bar. The UIScrollBar.scrollPosition property and the scroll bar’s onscreen image
are updated before this event is broadcast.

The first usage example uses a dispatcher/listener event model, in which the script is placed on
a frame in the that contains the component instance. A component instance
(textAreaInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event occurs. When the event occurs, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the
event. Finally, you call addEventListener() (see EventDispatcher.addEventListener())
on the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

In addition to the normal properties of the event object (type and target), the event object
for the scroll event includes a third property named direction. The direction property
contains a string describing which way the scroll bar is oriented. The possible values for the
direction property are vertical (the default) and horizontal.

For more information about the type and target event object properties, see “Event objects”
on page 499.

The second usage example uses an on() handler and must be attached directly to a TextArea
component instance. The keyword this, used inside an on() handler attached to a
component, refers to the component instance. For example, the following code, attached to
the TextArea component instance myTextAreaComponent, sends
“_level0.myTextAreaComponent” to the Output panel:
on (scroll) {

trace(this);
}

Example

This example uses the dispatcher/listener event model to track when the user scrolls the
TextArea using the TextArea instance’s scroll bars or scroll box.
TextArea.scroll 1201

You first add an instance of the TextArea component to the Stage and name it my_ta; then
add the following code to Frame 1:
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

my_ta.setSize(320, 240);
my_ta.move(10, 10);

var lorem_lv:LoadVars = new LoadVars();
lorem_lv.onData = function(src:String):Void {

my_ta.text = src;
}
lorem_lv.load("http://www.helpexamples.com/flash/lorem.txt");

my_ta.addEventListener("scroll", doScroll);
function doScroll(evt_obj:Object):Void {

trace("target: " + evt_obj.target);
trace("type: " + evt_obj.type);
trace("direction: " + evt_obj.direction);
trace("position: " + evt_obj.position);
trace("");

}

See also

EventDispatcher.addEventListener()

TextArea.styleSheet
Availability

Flash Player 7.

Usage
textAreaInstance.styleSheet = TextFieldStyleSheetObject

Description

Property; attaches a style sheet to the TextArea component specified by TextAreaInstance.
For information on creating style sheets, see “Formatting text with Cascading Style Sheet
styles” in Learning ActionScript 2.0 in Flash.
1202 TextArea component

The style sheet associated with a TextArea component may be changed at any time. If the style
sheet in use is changed, the TextArea component is redrawn with the new style sheet. The
style sheet may be set to null or undefined to remove the style sheet. If the style sheet in use
is removed, the TextArea component is redrawn without a style sheet. The formatting done by
a style sheet is not retained if the style sheet is removed.

Example

The following code creates a new StyleSheet object named my_styles with the new
TextField.StyleSheet constructor. It then defines styles for html and body tags. Next, it
applies the style by assigning my_styles to the styleSheet property of the TextArea instance
my_ta.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);

// Create the new StyleSheet object.
var my_styles:TextField.StyleSheet = new TextField.StyleSheet();
my_styles.setStyle("html", {fontFamily:"Arial,Helvetica,sans-serif",

fontSize:"12px", color:"#0000FF"});
my_styles.setStyle("body", {color:"#00CCFF", textDecoration:"underline"});

// Set the TextAreaInstance.styleSheet property to the newly defined
// styleSheet object named styles.
my_ta.styleSheet = my_styles;
my_ta.html = true;

// Load text to display and define onLoad handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 } else {
 my_ta.text = "Error loading HTML document.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");
TextArea.styleSheet 1203

TextArea.text
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.text

Description

Property; the text contents of a TextArea component. The default value is "" (an
empty string).

Example

The following example places a string in the text property of the my_ta TextArea instance,
and then traces that string to the Output panel.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.text = "The Royal Nonesuch";
trace(my_ta.text); // traces "The Royal Nonesuch"
1204 TextArea component

TextArea.vPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.vPosition

Description

Property; defines the vertical scroll position of text in a text area. This property is useful for
directing users to a specific paragraph in a long passage, or creating scrolling text areas. You
can get and set this property. The default value is 0.

Example

The following example loads text into the TextArea called my_ta and sets the vPosition
property to display the text at the bottom.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 my_ta.vPosition = my_ta.maxVPosition;
 } else {
 trace("Error loading text.");
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt")
TextArea.vPosition 1205

TextArea.vScrollPolicy
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the field ("auto"). The default
value is "auto".

Example

The following example turns off the vertical scroll bar for the TextArea called my_ta so that a
scroll bar is not available to scroll the text that the example loads.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/
var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = true;
my_ta.vScrollPolicy = "off";

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");
1206 TextArea component

TextArea.wordWrap
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textAreaInstance.wordWrap

Description

Property; a Boolean value that indicates whether the text wraps (true) or not (false). The
default value is true.

Example

The following example sets the wordwrap property to false for the TextArea called my_ta,
causing it to have a horizontal scroll bar to access the text beyond the side boundaries.

You must first add an instance of the TextArea component to the Stage and name it my_ta;
then add the following code to Frame 1.
/**
 Requires:
 - TextArea instance on Stage (instance name: my_ta)
*/

var my_ta:mx.controls.TextArea;

my_ta.setSize(320, 240);
my_ta.wordWrap = false;
//my_ta.vScrollPolicy = "off";

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_ta.text = src;
 } else {
 my_ta.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

N
O

T
E

If you create a TextArea instance using the createClassObject() method, the default
for wordWrap is false.
TextArea.wordWrap 1207

1208 TextArea component

46

CHAPTER 46

TextInput component
The TextInput component is a single-line text component that is a wrapper for the native
ActionScript TextField object. You can use styles to customize the TextInput component;
when an instance is disabled, its contents appear in a color represented by the disabledColor
style. A TextInput component can also be formatted with HTML, or as a password field that
disguises the text.

A TextInput component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection,
and navigation rules as an ActionScript TextField object. When a TextInput instance has
focus, you can also use the following keys to control it:

For more information about controlling focus, see “FocusManager class” on page 721 or
“Creating custom focus navigation” in Using Components.

A live preview of each TextInput instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. Text is not selectable in the live preview,
and you cannot enter text in the component instance on the Stage.

When you add the TextInput component to an application, you can use the Accessibility
panel to make it accessible to screen readers.

Key Description

Arrow keys Move the insertion point one character left and right.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.
1209

Using the TextInput component
You can use a TextInput component wherever you need a single-line text field. If you need a
multiline text field, use the TextArea component. For example, you could use a TextInput
component as a password field in a form. You could also set up a listener that checks if the
field has enough characters when a user tabs out of the field. That listener could display an
error message indicating that the proper number of characters must be entered.

TextInput parameters
You can set the following authoring parameters for each TextInput component instance in
the Property inspector or the Component inspector (Window > Component Inspector
menu option):

editable indicates whether the TextInput component is editable (true) or not (false). The
default value is true.

password indicates whether the field is a password field (true) or not (false). The default
value is false.

text specifies the contents of the TextInput component. You cannot enter carriage returns in
the Property inspector or the Component inspector. The default value is "" (an empty string).

You can set the following additional parameters for each TextInput component instance in the
Component inspector (Window > Component Inspector):

maxChars is the maximum number of characters that the text input field can contain. The
default value is null (meaning unlimited).

restrict indicates the set of characters that a user can enter in the text input field. The default
value is undefined. See “TextInput.restrict” on page 1229.

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

You can write ActionScript to control these and additional options for the TextInput
component using its properties, methods, and events. For more information, see “TextInput
class” on page 1214.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
1210 TextInput component

Creating an application with the TextInput component
The following procedure explains how to add a TextInput component to an application while
authoring. In this example, the component is a password field with an event listener that
determines if the proper number of characters has been entered.

To create an application with the TextInput component:

1. Drag a TextInput component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name my_ti.
■ Leave the text parameter blank.
■ Set the editable parameter to true.

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.handleEvent = function (evt_obj:Object){
 if (evt_obj.type == "enter"){
 if (my_ti.length < 8) {
 trace("You must enter at least 8 characters");
 } else {
 trace("Thanks");
 }
 }
}
// Add listener.
my_ti.addEventListener("enter", tiListener);
This code sets up an enter event handler on the TextInput instance called my_ti. If the
user types less than eight characters, the example displays the message: You must enter
at least 8 characters. If the user enters eight or more characters, the example
displays: Thanks.

4. After text is entered in the my_ti instance, you can get its value as follows:
var my_text:String = my_ti.text;
Using the TextInput component 1211

Customizing the TextInput component
You can transform a TextInput component horizontally while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of
the Modify > Transform commands. At runtime, use UIObject.setSize() or any applicable
properties and methods of the TextInput class.

When a TextInput component is resized, the border is resized to the new bounding box. The
TextInput component doesn’t use scroll bars, but the insertion point scrolls automatically as
the user interacts with the text. The text field is then resized within the remaining area; there
are no fixed-size elements in a TextInput component. If the TextInput component is too small
to display the text, the text is clipped.

Using styles with the TextInput component
The TextInput component has its backgroundColor and borderStyle style properties
defined on a class style declaration. Class styles override global styles; therefore, if you want to
set the backgroundColor and borderStyle style properties, you must create a different
custom style declaration or define it on the instance.

A TextInput component supports the following styles:

Style Theme Description

backgroundColor Both The background color. The default color is white.

borderStyle Both The TextInput component uses a RectBorder instance
as its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.

The default border style is "inset".

marginLeft Both A number indicating the left margin for text. The default
value is 0.

marginRight Both A number indicating the right margin for text. The default
value is 0.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).
1212 TextInput component

The TextArea and TextInput components both use the same styles and are often used in the
same manner. Thus, by default they share the same class-level style declaration. For example,
the following code sets a style on the TextArea declaration but it affects both TextArea and
TextInput components.
_global.styles.TextArea.setStyle("disabledColor", 0xBBBBFF);

To separate the components and provide class-level styles for one and not the other, create a
new style declaration.
import mx.styles.CSSStyleDeclaration;
_global.styles.TextInput = new CSSStyleDeclaration();
_global.styles.TextInput.setStyle("disabledColor", 0xFFBBBB);

Notice how this example does not check if _global.styles.TextInput existed before
overwriting it; in this example, you know it exists and you want to overwrite it.

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".

textIndent Both A number indicating the text indent. The default value
is 0.

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

Style Theme Description
Customizing the TextInput component 1213

Using skins with the TextInput component
The TextArea component uses an instance of RectBorder for its border. For more information
about skinning these visual elements, see “RectBorder class” on page 1063.

TextInput class
Inheritance MovieClip > UIObject class > UIComponent class > TextInput

ActionScript Class Name mx.controls.TextInput

The properties of the TextInput class let you set the text content, formatting, and horizontal
position at runtime. You can also indicate whether the field is editable, and whether it is a
“password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextInput class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

The TextInput component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“FocusManager class” on page 721.

The TextInput component supports CSS styles and any additional HTML styles supported
by Flash Player. For information about CSS support, see the W3C specification at
www.w3.org/TR/REC-CSS2/.

You can manipulate the text string by using the string returned by the text object.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.TextInput.version);

N
O

T
E

The code trace(myTextInputInstance.version); returns undefined.
1214 TextInput component

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/

Method summary for the TextInput class
There are no methods exclusive to the TextInput class.

Methods inherited from the UIObject class
The following table lists the methods the TextInput class inherits from the UIObject class.
When calling these methods from the TextInput object, use the form
TextInputInstance.methodName.

Methods inherited from the UIComponent class
The following table lists the methods the TextInput class inherits from the UIComponent
class. When calling these methods from the TextInput object, use the form
TextInputInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
TextInput class 1215

Property summary for the TextInput class
The following table lists properties of the TextInput class.

Property Description

TextInput.editable A Boolean value indicating whether the field is editable (true)
or not (false).

TextInput.hPosition The horizontal scrolling position of the text in the field.

TextInput.length Read-only; the number of characters in a TextInput
component.

TextInput.maxChars The maximum number of characters that a user can enter in
the text field.

TextInput.maxHPosition Read-only; the maximum possible value for
TextField.hPosition.

TextInput.password A Boolean value that indicates whether the text field is a
password field that hides the entered characters.

TextInput.restrict Indicates which characters a user can enter in a text field.

TextInput.text Sets the text content of a TextInput component.
1216 TextInput component

Properties inherited from the UIObject class
The following table lists the properties the TextInput class inherits from the UIObject class.
When accessing these properties from the TextInput object, use the form
TextInputInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the TextInput class inherits from the UIComponent
class. When accessing these properties from the TextInput object, use the form
TextInputInstance.propertyName.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.
TextInput class 1217

Event summary for the TextInput class
The following table lists events of the TextInput class.

Events inherited from the UIObject class
The following table lists the events the TextInput class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the TextInput class inherits from the UIComponent class.

Event Description

TextInput.change Broadcast when the TextInput field changes.

TextInput.enter Broadcast when the Enter key is pressed.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible
to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
1218 TextInput component

TextInput.change
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.change = function(eventObject:Object) {

//...
};
textInputInstance.addEventListener("change", listenerObject)

Usage 2:
on (change){

//...
}

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has
changed. This event cannot be used to prevent certain characters from being added to the
component’s text field; for that purpose, use TextInput.restrict. This event is triggered
only by user input, not by programmatic change.

The first usage example uses an on() handler and must be attached directly to a TextInput
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on (change){

trace(this);
}

TextInput.change 1219

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, change) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

Example

This example creates a listener for a change event on the my_ti TextInput instance. When a
change event occurs, the example displays “Input has changed”.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.change = function(evt_obj:Object) {
 trace("Input has changed");
};
// Add listener.
my_ti.addEventListener("change", tiListener);

See also

EventDispatcher.addEventListener()
1220 TextInput component

TextInput.editable
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

Example

This example sets the editable property to a value of false for the my_ti TextInput
instance. This prevents the user from entering text in the instance. You can set the property to
true to make the make the TextInput instance editable.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

my_ti.editable = false;
TextInput.editable 1221

TextInput.enter
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.enter = function(eventObject:Object) {

//...
};
textInputInstance.addEventListener("enter", listenerObject);

Usage 2:
on (enter) {

//...
}

Description

Event; notifies listeners that the Enter key has been pressed.

The first usage example uses an on() handler and must be attached directly to a TextInput
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on (enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.
1222 TextInput component

For more information, see “EventDispatcher class” on page 499.

Example

This example creates a listener for an enter event on a TextInput instance called my_ti. When
the enter event occurs, if the user entered fewer than eight characters, the example displays:
You must enter at least 8 characters. Otherwise, it displays Thanks!

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.

/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.handleEvent = function (evt_obj:Object){
 if (evt_obj.type == "enter"){
 if (my_ti.length < 8) {
 trace("You must enter at least 8 characters");
 } else {
 trace("Thanks");
 }
 }
}
// Add listener.
my_ti.addEventListener("enter", tiListener);

See also

EventDispatcher.addEventListener()
TextInput.enter 1223

TextInput.hPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.hPosition

Description

Property; specifies how many pixels have been scrolled to accommodate the user’s entry in the
TextInput box. The default value is 0.

Example

The following example creates a listener for a change event on the TextInput instance called
my_ti. The listener accesses the hPosition property to display the current position for each
character the user enters.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.change = function(evt_obj:Object) {
 trace("hPosition = " + my_ti.hPosition);
};
// Add listener.
my_ti.addEventListener("change", tiListener);

N
O

T
E

The value changes for the same text on different computers because of monitor, screen
size, and font characteristics.
1224 TextInput component

TextInput.length
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.length

Description

Read-only property; a number that indicates the number of characters in a TextInput
component. A character such as tab ("\t") counts as one character. The default value is 0.

Example

The following example creates a listener for the change event on the TextInput instance
my_ti. The listener accesses the length property to display the length of the text in my_ti as
the user enters text.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.change = function(evt_obj:Object) {
 trace("Length of text: " + my_ti.length);
};
// Add listener.
my_ti.addEventListener("change", tiListener);
TextInput.length 1225

TextInput.maxChars
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may
insert more text than the maxChars property allows; this property indicates only how much
text a user can enter. If this property is null, there is no limit to the amount of text a user can
enter. The default value is null.

Example

The following example limits to eight the number of characters a user can enter in the
TextInput instance called my_ti. It also sets the password property, which hides the input
characters by displaying an asterisk in place of the character that was entered.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

my_ti.maxChars = 8;
my_ti.password = true;
1226 TextInput component

TextInput.maxHPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.maxHPosition

Description

Read-only property; the value of maxHPosition is the pixel position of the character that is
visible when the pointer has been moved to the very right of the text. It’s not the last
character’s pixel position. Rather, it’s the pixel position all the way to the right of the last
character in the TextInput field. The default value is 0.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.

Example

The following code creates a listener for a change event on the TextInput instance called
my_ti. When the change event occurs, the listener displays the current hPosition and
maxHPosition values for each character that the user enters:
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Create listener object.
var tiListener:Object = new Object();
tiListener.change = function(evt_obj:Object) {
 trace("hPosition: " + my_ti.hPosition + " of " + my_ti.maxHPosition);
};
// Add listener.
my_ti.addEventListener("change", tiListener);
TextInput.maxHPosition 1227

TextInput.password
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If this property is true, the text field is a password text field and hides the input
characters. If this property is false, the text field is not a password text field. The default
value is false.

Example

The following example sets the password property to display an asterisk in place of the
character that the user enters in the TextInput instance called my_ti. It also sets maxChars to
limit the maximum number of characters the user can enter to eight.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

my_ti.maxChars = 8;
my_ti.password = true;
1228 TextInput component

TextInput.restrict
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.restrict

Description

Property; indicates the set of characters that a user can enter in the text field. The default value
is undefined. If this property is null or an empty string (""), a user can enter any character.
If this property is a string of characters, the user can enter only characters in the string; the
string is scanned from left to right. You can specify a range by using a dash (-).

If the string begins with ^, all characters that follow the ^ are considered unacceptable
characters. If the string does not begin with ^, the characters in the string are considered
acceptable. The ^ can also be used as a toggle between acceptable and unacceptable characters.

For example, the following code allows A-Z except X and Q:
Ta.restrict = "A-Z^XQ";

You can use the backslash (\) to enter a hyphen (-), caret (^), or backslash (\) character, as
shown here:
\^
\-
\\

When you enter the \ character in the Actions panel within double quotation marks, it has a
special meaning for the Actions panel’s double-quote interpreter. It signifies that the character
following the \ should be treated as is. For example, you could use the following code to enter
a single quotation mark:
var leftQuote = "\’";

The Actions panel’s restrict interpreter also uses \ as an escape character. Therefore, you may
think that the following should work:
myText.restrict = "0-9\-\^\\";

However, since this expression is surrounded by double quotation marks, the following value
is sent to the restrict interpreter: 0-9-^\, and the restrict interpreter doesn’t understand
this value.
TextInput.restrict 1229

Because you must enter this expression within double quotation marks, you must not only
provide the expression for the restrict interpreter, but you must also escape the Actions panel’s
built-in interpreter for double quotation marks. To send the value 0-9\-\^\\ to the restrict
interpreter, you must enter the following code:
myText.restrict = "0-9\\-\\^\\\\";

The restrict property restricts only user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

Example

The following example provides three different uses of the restrict property. The first usage
restricts input to uppercase characters A through Z, spaces, and numbers. The second usage
allows any characters except the lowercase characters a through z. The third usage allows only
numbers, -, ^, and \.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the code to Frame 1, using only one of the following restrict statements at
a time.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

// Example 1: Allow only uppercase A-Z, spaces, and digits 0-9.
my_ti.restrict = "A-Z 0-9";

// Example 2: Allow everything EXCEPT lowercase a-z.
my_ti.restrict = "^a-z";

// Example 3: Allow only digits 0-9, dash (-), ^, and \
my_ti.restrict = "0-9\\-\\^\\\\";
1230 TextInput component

TextInput.text
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
textInputInstance.text

Description

Property; the text contents of a TextInput component. The default value is "" (an
empty string).

Example

The following code places a string in the TextInput instance called my_ti, and then traces that
string to the Output panel.

You must first drag a TextInput component to the Stage and give it an instance name of
my_ti; then add the following code to Frame 1.
/**
 Requires:
 - TextInput instance on Stage (instance name: my_ti)
*/

var my_ti:mx.controls.TextInput;

my_ti.text = "The Royal Nonesuch";
trace(my_ti.text); // "The Royal Nonesuch"
TextInput.text 1231

1232 TextInput component

47

CHAPTER 47

TransferObject interface
ActionScript Class Name mx.data.to.TransferObject

The TransferObject interface defines a set of methods that items managed by the DataSet
component must implement. The DataSet.itemClassName property specifies the name of
the transfer object class that is instantiated each time a new item is needed. You can also
specify this property for a selected DataSet component using the Property inspector.

Method summary for the TransferObject interface
The following table lists methods of the TransferObject interface.

Method Description

TransferObject.clone() Creates a new instance of the transfer object.

TransferObject.getPropertyData() Returns the data for this transfer object.

TransferObject.setPropertyData() Sets the data for this transfer object.
1233

TransferObject.clone()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
class itemClass implements mx.data.to.TransferObject {

function clone() {
// Your code here.

}
}

Parameters

None.

Returns

A copy of the transfer object.

Description

Method; creates an instance of the transfer object. The implementation of this method creates
a copy of the existing transfer object and its properties and then returns that object.

Example

The following function returns a copy of this transfer object with all of the properties set to
the same values as the original:
class itemClass implements mx.data.to.TransferObject {

function clone():Object {
var copy:itemClass = new itemClass();
for (var p in this) {

copy[p]= this[p];
}
return(copy);

}
}

1234 TransferObject interface

TransferObject.getPropertyData()
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
class itemClass implements mx.data.to.TransferObject {

function getPropertyData() {
// Your code here.
}

}

Parameters

None.

Returns

An object.

Description

Method; returns the data for this transfer object. The implementation of this method can
return an anonymous ActionScript object with properties and corresponding values.

Example

The following function returns an object named internalData that contains the properties
and their values from the Contact object:
class Contact implements mx.data.to.TransferObject {
function getPropertyData():Object {

var internalData:Object = {name:name, readOnly:_readOnly, phone:phone,
zip:zip.zipPlus4};
return(internalData);

}

TransferObject.getPropertyData() 1235

TransferObject.setPropertyData()
Availability

Flash Player 7.

Edition

Flash MX 2004.

Usage
class yourClass implements TransferObject {

function setPropertyData(propData) {
// Your code here.
}

}

Parameters

propData An object that contains the data assigned to this transfer object.

Returns

Nothing.

Description

Method; sets the data for this transfer object. The propData parameter is an object whose
fields contain the data assigned by the DataSet component to this transfer object.

Example

The following function receives a propData parameter and applies the values of its properties
to the properties of the Contact object:
class Contact implements mx.data.to.TransferObject {

function setPropertyData(propData: Object):Void {
_readOnly = propData.readOnly;
phone = propData.phone;
zip = new mx.data.types.ZipCode(data.zip);

}

public var name:String;
public var phone:String;
public var zip:ZipCode;
private var _readOnly:Boolean; // indicates if immutable

}

1236 TransferObject interface

48

CHAPTER 48

TransitionManager class
ActionScript Class Name mx.transitions.TransitionManager

The TransitionManager class and the effect-defining transition-based classes allow you to
quickly apply impressive transition animation effects to slides and movie clips.

As its name implies, the TransitionManager class manages transitions. It allows you to apply
one of ten animation effects to slides and movie clips. When creating custom components of
version 2 of the Macromedia Component Architecture, you can use TransitionManager to
apply animation effects to movie clips in your component’s visual interface. The transition
effects are defined in a set of transition classes that all extend the base class
mx.transitions.Transition. You apply transitions through an instance of a
TransitionManager only; you do not instantiate them directly. The TransitionManager class
implements animation events.

Using the TransitionManager class
To use the methods and properties of the TransitionManager class, you have two options for
creating a new instance. The easiest is to call the TransitionManager.start() method,
which creates a new TransitionManager instance, designates the target object, applies a
transition with an easing method, and starts it in one call. The following code uses the
TransitionManager.start() method:
mx.transitions.TransitionManager.start(myMovieClip_mc,

{type:mx.transitions.Zoom, direction:mx.transitions.Transition.IN,
duration:1, easing:mx.transitions.easing.Bounce.easeOut});

For more information about the TransitionManager.start() method, its use, and
parameters, see TransitionManager.start() on page 1244.
1237

You can also create a new instance of the TransitionManager class by using the new operator.
You then designate the transition properties and start the transition effect in a second step by
calling the TransitionManager.startTransition() method. The following code uses the
TransitionManager.startTransition() method:
var myTransitionManager:mx.transitions.TransitionManager = new

mx.transitions.TransitionManager(myMovieClip_mc);
myTransitionManager.startTransition({type:mx.transitions.Zoom,

direction:Transition.IN, duration:1,
easing:mx.transitions.easing.Bounce.easeOut});

TransitionManager class parameters
When you create a new instance of a TransitionManager class by using the new operator, you
must designate a target movie clip in the content parameter for its constructor. The
constructor for the mx.transitions.TransitionManager class has the following parameter name
and type:
TransitionManager(content:MovieClip)

content is the movie clip object to which the TransitionManager instance applies a transition.

Specifying an easing class and method in a transition
When you create an instance of the TransitionManager class by using the
TransitionManager.start() method, you use the easing property of the transParam
parameter to specify a function or method that provides an easing calculation. For a full
description of the available easing classes and methods see “Specifying an easing class and
method in a transition” on page 1238.

N
O

T
E

If you create a TransitionManager instance by using the new operator, you must then
designate the properties of the transition that you want to apply and follow with a call to
start the transition using the TransitionManager.startTransition() method;
otherwise, the transition is not applied to a movie clip or started. For details about the
TransitionManager.startTransition() method, its use, and parameters, see
TransitionManager.startTransition() on page 1246. A quick alternative to the
two-step process of creating a TransitionManager instance is to simply call the
TransitionManager.start() method; for more information, see
TransitionManager.start() on page 1244. The TransitionManager.start()
method allows you to create a TransitionManager instance, provide the target movie
clip, and specify the transition properties in one call.
1238 TransitionManager class

TransitionManager class summary
The following sections list the methods, properties, and events for the
TransitionManager class.

Method summary for the TransitionManager class
The following table lists the methods of the TransitionManager class.

Property summary for the TransitionManager class
The following table lists the properties of the TransitionManager class.

Event summary for the TransitionManager class
The following table lists the events of the TransitionManager class.

Method Description

TransitionManager.start() Creates a new TransitionManager instance,
designates the target object, applies a transition,
and starts the transition.

TransitionManager.startTransition() Creates a transition instance and starts it.

TransitionManager.toString() Returns the type of the TransitionManager as
a string.

Property Description

TransitionManager.content The movie clip instance to which TransitionManager
is to apply a transition.

TransitionManager.contentAppearance An object that contains the saved visual properties of
the content (target movie clip) to which the
transitions will be applied. This property is read-only.

Event Description

TransitionManager.allTransitionsInDone Broadcast by a TransitionManager instance
when it completes a transition with a direction
property of mx.transitions.Transition.IN.

TransitionManager.allTransitionsOutDone Broadcast by a TransitionManager instance
when it completes a transition with a direction
property of mx.transitions.Transition.OUT.
TransitionManager class summary 1239

TransitionManager.allTransitionsInDone
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.allTransitionsInDone = function(eventObj:Object) {

// ...
};
transitionManagerInstance.addEventListener("allTransitionsInDone",

listenerObject);

Description

Event; notifies listeners that the TransitionManager instance has completed all transitions that
have a direction property of mx.transitions.Transition.IN and has removed them from
the list of transitions it is to apply.

The usage example uses a dispatcher or listener event model. A TransitionManager instance
(transitionManagerInstance) dispatches an event (in this case, allTransitionsInDone),
and the event is handled by a function, also called a handler, on a listener object
(listenerObject) that you create. You define a method with the same name as the event on
the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object
method. Each event object has properties that contain information about the event. In this
case, the allTransitionsInDone event provides a target property that contains the
TransitionManager instance that fired the event, allowing you to use that instance and all its
properties and methods within the code that receives the allTransitionsInDone event. For
more information, see Chapter 21, “EventDispatcher class,” on page 499.
1240 TransitionManager class

Example

The following code assigns an object to listen for the allTransitionsInDone event and
specifies the method to act as the handler for the event. When that method is called to handle
the event, a transition with a direction property of mx.transitions.Transition.IN has
already been completed.
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
myTransitionManager.startTransition({type:Iris, direction:Transition.IN,

duration:1, easing:None.easeNone, startPoint:5, shape:Iris.CIRCLE});

var myListener:Object = new Object();
myListener.allTransitionsInDone = function(eventObj:Object) {

trace("allTransitionsInDone event occurred.");
};
myTransitionManager.addEventListener("allTransitionsInDone", myListener);

See also

Chapter 21, “EventDispatcher class,” on page 499

TransitionManager.allTransitionsOutDone
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.allTransitionsOutDone = function(eventObj:Object) {

// ...
};
transitionManagerInstance.addEventListener("allTransitionsOutDone",

listenerObject);

Description

Event; notifies listeners that the TransitionManager instance has completed all transitions that
have a direction property of “out” and has removed them from the list of transitions it is
to apply.
TransitionManager.allTransitionsOutDone 1241

The usage example uses a dispatcher or listener event model. A TransitionManager instance
(transitionManagerInstance) dispatches an event (in this case, allTransitionsOutDone)
and the event is handled by a function, also called a handler, on a listener object
(listenerObject) that you create. You define a method with the same name as the event on
the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object
method. Each event object has properties that contain information about the event. In this
case, the allTransitionsInDone event provides a target property that contains the instance
of TransitionManager that fired the event, so you can use that instance and all its properties
and methods within the code that receives the allTransitionsInDone event. For more
information, see Chapter 21, “EventDispatcher class,” on page 499.

Example

The following code assigns an object to listen for the allTransitionsOutDone event and
specifies the method to act as the handler for the event. When that method is called to handle
the event, a transition with a direction property of mx.transitions.Transition.IN has
already completed.
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
myTransitionManager.startTransition({type:Iris, direction:Transition.OUT,

duration:1, easing:None.easeNone,startPoint:5, shape:Iris.CIRCLE});

var myListener:Object = new Object();
myListener.allTransitionsOutDone = function(eventObj:Object) {

trace("allTransitionsOutDone event occurred.");
};
myTransitionManager.addEventListener("allTransitionsOutDone", myListener);

See also

Chapter 21, “EventDispatcher class,” on page 499
1242 TransitionManager class

TransitionManager.content
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
transitionManagerInstance.content

Description

Property; the movie clip instance to which TransitionManager is to apply a transition.

Example

The following example returns the movie clip object currently targeted by a
TransitionManager instance:
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
var myMovieClip:MovieClip = myTransitionManager.content;
trace(myMovieClip._name);

TransitionManager.contentAppearance
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
transitionManagerInstance.contentAppearance
TransitionManager.contentAppearance 1243

Description

Property (read-only); an object that contains a snapshot of the properties of the target movie
clip of a TransitionManager instance before the transition is applied. This object is helpful for
obtaining information about what property values you can expect the movie clip to return to
after the transition completes. The object returned from
TransitionManager.contentAppearance contains a recording of the original
corresponding settings of the target movie clips in the following properties: _x, _y, _xscale,
_yscale, _alpha, _rotation, _innerBounds, _outerBounds, _width, _height, and
colorTransform. These properties are saved, and the TransitionManager.start() or
TransitionManager.startTransition() method is called.

Example

The following example calls TransitionManager.contentAppearance() to get the original
property settings of the TransitionManager object’s target movie clip before the transition
is applied:
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
myTransitionManager.startTransition({type:Zoom, direction:Transition.OUT,

duration:3, easing:Bounce.easeOut});

var myMovieClip:MovieClip = myTransitionManager.content;
var myOriginalMovieClipProps:Object =

myTransitionManager.contentAppearance;

for (var prop in myOriginalMovieClipProps) {
 trace(myMovieClip._name + "." +prop+" = "+myOriginalMovieClipProps[prop]);
}

TransitionManager.start()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
transitionManagerInstance.start(content, transParams)

Parameters

content The MovieClip object to which to apply the transition effect.
1244 TransitionManager class

transParams A collection of parameters that are passed within an object.

The transParams object should contain a type parameter that indicates the transition effect
class to be applied, followed by direction, duration, and easing parameters. In addition,
you must include any parameters required by that transition effect class. For example, the
mx.transitions.Iris transition effect class requires additional startPoint and shape
parameters. So, in addition to the type, duration, and easing parameters that every
transition requires, you would also add (to the transParams object) the startPoint and
shape parameters that the mx.transitions.Iris effect requires. The following code adds
startPoint and shape parameters to the mx.transitions.Iris effect:

{type:mx.transitions.Iris, direction:mx.transitions.Transition.IN,
duration:5, easing:mx.transitions.easing.Bounce.easeOut,
startPoint:5, shape:mx.transitions.Iris.CIRCLE}

To verify the additional required parameters for the transition class effect that you are
specifying in the transParam object’s type parameter, see the API for that transition class.
For example, for more information about the Blinds transition class, see “Blinds transition”
on page 1250.

import mx.transitions.*;
import mx.transitions.easing.*;

Returns

An instance of the Transition object that the TransitionManager instance is assigned to apply.

Description

Method; creates an instance of the TransitionManager class if one does not already exist,
creates an instance of the specified transition class designated in the transParams.type
parameter, and then starts the transition. The transition is applied to the slide or movie clip
that is designated in the content parameter.

N
O

T
E

The transParams object’s type parameter should include the full class-package name of
the classes specified for its parameters unless they are already imported by using the
import statement. To avoid having to provide the full class-package name for all the
transParams parameter collection, place the following import statements previously in
your code to import all mx.transitions classes and all mx.transitions.easing
classes:
TransitionManager.start() 1245

Example

The following code uses the TransitionManager.start() method to create an instance of
TransitionManager and assigns an Iris transition to a movie clip called img1_mc. The
TransitionManager.start() method contains two parameters. The first parameter,
content, is the MovieClip object that the transition effect will be applied to. The second
parameter for the TransitionManager.start() method, transParam, contains an object
that holds a parameter collection. This object that contains a parameter collection first
designates the type of transition effect with the type parameter, followed by the direction,
duration, and easing parameters. The type, direction, duration, and easing
parameters are required information for all TransitionManager effects. Following the easing
parameter are any parameters that the transition type specifically requires. In the following
example, the Iris transition is the type of transition, and the Iris transition requires the
startPoint and shape parameters (for more information about the Iris transition
parameters, see “Iris transition” on page 1252):
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Iris, direction:Transition.IN,

duration:5, easing:Bounce.easeOut, startPoint:5, shape:Iris.CIRCLE});

TransitionManager.startTransition()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
transitionManagerInstance.startTransition(transParams)

Parameters

transParams A collection of parameters that are passed within an object.
1246 TransitionManager class

The transParams object should contain a type parameter that indicates the transition effect
class to apply, followed by direction, duration, and easing parameters. In addition, you
must include any parameters required by the specified transition effect class. For example, the
mx.transitions.Iris transition effect class requires additional startPoint and shape
parameters. So, in addition to the type, duration, and easing parameters that every
transition requires, you would also add (to the transParams object) the startPoint and
shape parameters that the mx.transitions.Iris effect requires. The following code adds
startPoint and shape parameters to the mx.transitions.Iris effect:
{type:mx.transitions.Iris, direction:mx.transitions.Transition.IN,

duration:5, easing:mx.transitions.easing.Bounce.easeOut, startPoint:5,
shape:mx.transitions.Iris.CIRCLE}

To verify the additional parameters required for the transition class effect that you are
specifying in the transParam object’s type parameter, see the API for that transition class. For
example, for more information about the Blinds transition class, see “Blinds transition”
on page 1250.

import mx.transitions.*;
import mx.transitions.easing.*;

Returns

An instance of the Transition object that the TransitionManager instance is assigned to apply.

Description

Method; creates and starts an instance of the specified transition class, which is applied to the
slide or movie clip that the TransitionManager instance is assigned to affect. If a matching
transition already exists, that transition is removed and a new transition is created and started.

N
O

T
E

The transParams object’s type parameter should include the full class-package name of
the classes specified for its parameters unless they are already imported by using the
import statement. To avoid having to provide the full class-package name for all the
transParams parameter collection, place the following import statements previously in
your code to import all mx.transitions classes and all mx.transitions.easing
classes:
TransitionManager.startTransition() 1247

Example

The following code imports the TransitionManager class and creates a new
TransitionManager instance. Next, the TransitionManager.startTransition() method
designates a mx.transitions.Zoom transition in its type parameter. The direction
parameter indicates that the transition should move in the out direction by designating
mx.transitions.Transition.OUT. The duration of the transition is 3 seconds. The easing is
calculated by using the mx.transitions.Bounce.easeOut() method of the Bounce class.
This effect causes the img1_mc movie clip to appear to zoom out in a bouncing motion until
it disappears, with the entire effect lasting 3 seconds.
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
myTransitionManager.startTransition({type:Zoom, direction:Transition.OUT,

duration:3, easing:Bounce.easeOut});

TransitionManager.toString()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
transitionManagerInstance.toString()

Returns

The following string is returned: "[TransitionManager]".

Description

Method; returns the TransitionManager object’s type as a string.

Example

The following code instructs the TransitionManager instance to return a string indicating
its type:
import mx.transitions.*;
import mx.transitions.easing.*;
var myTransitionManager:TransitionManager = new TransitionManager(img1_mc);
var myType:String = myTransitionManager.toString();
trace(myType);
1248 TransitionManager class

Transition-based classes
Inheritance (Root class)

ActionScript Class Name mx.transitions.Transition

The Transition class is the base class for all transition classes. You do not use or access this class
directly. It allows transition-based classes to share some common behaviors and properties that
are accessed by an instance of the TransitionManager class. Transition-based classes define an
effect that is applied over time to a movie clip or a slide.

Flash includes ten transitions that you can use to apply effects to movie clip objects. You can
customize all the transitions by including optional easing methods, and most transitions
accept several optional parameters that allow you to control particular aspects of its effect.
Easing refers to gradual acceleration or deceleration during an animation, which makes your
animations appear more realistic. For example, a ball might gradually increase its speed near
the beginning of an animation but slow down before it arrives at a full stop at the end of the
animation. Many equations exist for this acceleration and deceleration, which change the
easing animation.

The transitions are used with the TransitionManager class. See “TransitionManager class”
on page 1237. You use the TransitionManager class to specify a transition and apply it to a
movie clip object rather than calling it directly. For example, to apply a Zoom transition to a
movie clip called img1_mc, you specify the Zoom transition class as the type parameter in
TransitionManager.start():
mx.transitions.TransitionManager.start(myMovieClip_mc,

{type:mx.transitions.Zoom, direction:mx.transitions.Transition.IN,
duration:1, easing:mx.transitions.easing.Bounce.easeOut});
Transition-based classes 1249

Flash includes the following transitions:

Blinds transition
ActionScript Class Name mx.transitions.Blinds

Parameters

numStrips The number of masking strips in the Blinds effect. The recommended range is
1 to 50.

dimension An integer that indicates that the Blinds strips are to be vertical (0) or
horizontal (1).

Description

A transition effect: Reveals the movie clip object by using appearing or disappearing
rectangles.

This class is used by specifying mx.transitions.Blinds as a transObject.type parameter
for the TransitionManager class.

Transition Description

Blinds transition Reveals the movie clip object by using appearing or disappearing
rectangles.

Fade transition Fades the movie clip object in or out.

Fly transition Slides the movie clip object in from a specified direction.

Iris transition Reveals or hides the movie clip object by using an animated mask of a
square shape or a circle shape that zooms in or out.

Photo transition Causes the movie clip object to appear or disappear like a
photographic flash.

PixelDissolve
transition

Reveals or hides the movie clip object by using randomly appearing or
disappearing rectangles in a checkerboard pattern.

Rotate transition Rotates the movie clip object.

Squeeze transition Scales the movie clip object horizontally or vertically.

Wipe transition Reveals or hides the movie clip object by using an animated mask of a
shape that moves horizontally.

Zoom transition Zooms the movie clip object in or out by scaling it in proportion.

N
O

T
E

Transitions are available only in ActionScript 2.0.
1250 TransitionManager class

Example

The following code creates an instance of TransitionManager that applies the Blinds transition
with ten numStrips and a dimension integer specified as vertical (0). The content target of
the transition is the movie clip img1_mc. The TransitionManager instance applies a direction
of mx.transitions.Transition.IN over a duration of 2 seconds with no easing.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Blinds, direction:Transition.IN,

duration:2, easing:None.easeNone, numStrips:10, dimension:0});

Fade transition
ActionScript Class Name mx.transitions.Fade

Description

A transition effect: Fades the movie clip object in or out.

This class is used by specifying mx.transitions.Fade as a transObject.type parameter for
the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the Fade transition.
The content target of the transition is the movie clip img1_mc. The TransitionManager
instance applies a direction of mx.transitions.Transition.IN over a duration of 3 seconds
with no easing.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Fade, direction:Transition.IN,

duration:3, easing:None.easeNone});

Fly transition
ActionScript Class Name mx.transitions.Fly

Parameters

startPoint An integer that indicates a starting position; the range is 1 to 9:

Top Left, 1; Top Center, 2; Top Right, 3; Left Center, 4; Center, 5; Right Center, 6;
Bottom Left, 7; Bottom Center, 8; Bottom Right, 9.
Transition-based classes 1251

Description

A transition effect: Slides the movie clip object in from a specified direction.

This class is used by specifying mx.transitions.Fly as a transObject.type parameter for
the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the Fly transition
with a startPoint set to the bottom right (9). The content target of the transition is the
movie clip img1_mc. The TransitionManager instance applies a direction of
mx.transitions.Transition.IN over a duration of 3 seconds with an Elastic.easeOut
easing effect.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Fly, direction:Transition.IN,

duration:3, easing:Elastic.easeOut, startPoint:9});

Iris transition
ActionScript Class Name mx.transitions.Iris

Parameters

startPoint An integer indicating a starting position; the range is 1 to 9:

Top Left, 1; Top Center: 2, Top Right, 3; Left Center, 4; Center, 5; Right Center, 6; Bottom
Left, 7; Bottom Center, 8, Bottom Right, 9.

shape A mask shape of either mx.transitions.Iris.SQUARE (a square) or
mx.transitions.Iris.CIRCLE (a circle).

Description

A transition effect: Reveals the movie clip object by using an animated mask of a square shape
or a circle shape that zooms in or out.

This class is used by specifying mx.transitions.Iris as a transObject.type parameter for
the TransitionManager class.
1252 TransitionManager class

Example

The following code creates an instance of TransitionManager that applies the Iris transition
with a startPoint from the center (5) and a masking shape of
mx.transitions.Iris.CIRCLE. The content target of the transition is the movie clip
img1_mc. The TransitionManager applies a direction of mx.transitions.Transition.IN
over a duration of 2 seconds with an easing of Strong with an emphasis on the easeOut by
specifying the mx.transitions.easing.Strong.easeOut easing calculation method.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Iris, direction:Transition.IN,

duration:2, easing:Strong.easeOut, startPoint:5, shape:Iris.CIRCLE});

Photo transition
ActionScript Class Name mx.transitions.Photo

Description

A transition effect: Makes the movie clip object appear or disappear like a photographic flash.

This class is used by specifying mx.transitions.Photo as a transObject.type parameter
for the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the Photo transition
to a content target movie clip img1_mc. The TransitionManager class applies a direction of
mx.transitions.Transition.IN over a duration of 1 second with no easing.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start (img1_mc, {type:Photo, direction:Transition.IN,

duration:1, easing:None.easeNone});

PixelDissolve transition
ActionScript Class Name mx.transitions.PixelDissolve

Parameters

xSections An integer that indicates the number of masking rectangle sections along the
horizontal axis. The recommended range is 1 to 50.

ySections An integer that indicates the number of masking rectangle sections along the
vertical axis. The recommended range is 1 to 50.
Transition-based classes 1253

Description

A transition effect: Reveals the movie clip object by using randomly appearing or disappearing
rectangles in a checkerboard pattern.

This class is used by specifying mx.transitions.PixelDissolve as a transObject.type
parameter for the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the PixelDissolve
transition with ten xSections and ten ySections. The content target of the transition is the
movie clip img1_mc. The TransitionManager instance applies a direction of
mx.transitions.Transition.IN over a duration of 2 seconds with no easing.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:PixelDissolve,

direction:Transition.IN, duration:2, easing:None.easeNone, xSections:10,
ySections:10});

Rotate transition
ActionScript Class Name mx.transitions.Rotate

Parameters

ccw A Boolean value: false for clockwise rotation; true for counter-clockwise rotation.

degrees An integer that indicates the number of degrees the object is to be rotated. The
recommended range is 1 to 9999. For example, a degrees setting of 1080 would rotate the
object completely three times.

Description

A transition effect: Rotates the movie clip object.

This class is used by specifying mx.transitions.Rotate as a transObject.type parameter
for the TransitionManager class.
1254 TransitionManager class

Example

The following code creates an instance of TransitionManager that applies the Rotate
transition clockwise 720 degrees (two full revolutions). The content target of the transition is
the movie clip img1_mc. The TransitionManager instance applies a direction of
mx.transitions.Transition.IN over a duration of 3 seconds with an easing set to
Strong.easeInOut so that the transition starts slowly, speeds up, and then ends slowly.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Rotate, direction:Transition.IN,

duration:3, easing:Strong.easeInOut, ccw:false, degrees:720});

Squeeze transition
ActionScript Class Name mx.transitions.Squeeze

Parameters

dimension An integer that indicates the Squeeze effect should be horizontal (0) or
vertical (1).

Description

A transition effect: Scales the movie clip object horizontally or vertically.

This class is used by specifying mx.transitions.Squeeze as a transObject.type
parameter for the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the Squeeze
transition with a dimension integer specified as vertical (1). The content target of the
transition is the movie clip img1_mc. The TransitionManager applies a direction of
mx.transitions.Transition.IN over a duration of 2 seconds with an Elastic easing effect
in the direction of easeOut.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Squeeze, direction:Transition.IN,

duration:2, easing:Elastic.easeOut, dimension:1});

Wipe transition
ActionScript Class Name mx.transitions.Wipe

Parameters

startPoint An integer that indicates a starting position. Range of 1 to 4 and 6 to 9:
Transition-based classes 1255

Top Left, 1; Top Center, 2; Top Right, 3; Left Center, 4; Right Center, 6; Bottom Left, 7;
Bottom Center, 8; Bottom Right, 9.

Description

A transition effect: Reveals or hides the movie clip object by using an animated mask of a
shape that moves horizontally.

This class is used by specifying mx.transitions.Wipe as a transObject.type parameter for
the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies the Wipe transition
with a startPoint from the top left (1). The content target of the transition is the movie clip
img1_mc. The TransitionManager applies a direction of mx.transitions.Transition.IN
over a duration of 2 seconds with no easing.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Wipe, direction:Transition.IN,

duration:2, easing:None.easeNone, startPoint:1});

Zoom transition
ActionScript Class Name mx.transitions.Zoom

Description

A transition effect: Zooms the movie clip object in or out by scaling it in proportion.

This class is used by specifying mx.transitions.Zoom as a transObject.type parameter for
the TransitionManager class.

Example

The following code creates an instance of TransitionManager that applies a Zoom transition
to the content target movie clip img1_mc. The TransitionManager applies a direction of
mx.transitions.Transition.IN over a duration of 2 seconds with an Elastic type easing
that starts fast and eases slowly at the finish.
import mx.transitions.*;
import mx.transitions.easing.*;
TransitionManager.start(img1_mc, {type:Zoom, direction:Transition.IN,

duration:2, easing:Elastic.easeOut});
1256 TransitionManager class

49

CHAPTER 49

TreeDataProvider interface
(Flash Professional only)
The TreeDataProvider interface is a set of properties and methods and does not need to be
instantiated to be used. If a Tree class is packaged in a SWF file, all XML instances in the
SWF file contain the TreeDataProvider interface. All nodes in a tree are XML objects that
contain the TreeDataProvider interface.

It’s best to use the TreeDataProvider methods to create XML for the Tree.dataProvider
property, because only TreeDataProvider broadcasts events that refresh the tree’s display.
These are events that the Tree class handles; you do not need to write functions to handle
these events. (The built-in XML class methods don’t broadcast such events.)

Use the TreeDataProvider methods to control the data model and the data display. Use built-
in XML class methods for read-only tasks such as traversing through the tree hierarchy.

You can select the property that holds the text to be displayed by specifying a labelField or
labelFunction property. For example, the code myTree.labelField = "firstName";
results in the value of the property myTreeDP.attributes.fred being queried for the
display text.

Method summary for the TreeDataProvider interface
The following table lists the methods of the TreeDataProvider interface.

Method Description

TreeDataProvider.addTreeNode() Adds a child node at the root of the tree.

TreeDataProvider.addTreeNodeAt() Adds a child node at a specified location on the
parent node.

TreeDataProvider.getTreeNodeAt() Returns the specified child of a node.

TreeDataProvider.removeTreeNode() Removes a node and all the node’s descendants
from the node’s parent.

TreeDataProvider.removeTreeNodeAt() Removes a node and all the node’s descendants
from the index position of the child node.
1257

Property summary for the TreeDataProvider interface
The following table lists the properties of the TreeDataProvider interface.

TreeDataProvider.addTreeNode()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
someNode.addTreeNode(label, data)

Usage 2:
someNode.addTreeNode(child)

Parameters

label A string that displays the node.

data An object of any type that is associated with the node.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a child node at the root of the tree. The node is constructed either from the
information supplied in the label and data parameters (Usage 1), or from the prebuilt child
node, which is an XMLNode object (Usage 2). Adding a preexisting node removes the node
from its previous location.

Calling this method refreshes the display of the tree.

Property Description

TreeDataProvider.attributes.data Specifies the data to associate with a node.

TreeDataProvider.attributes.label Specifies the text to be displayed next to a node.
1258 TreeDataProvider interface (Flash Professional only)

Example

The first line of code in the following example locates the node to which to add a child. The
second line adds a new node to a specified node.
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.addTreeNode("Inbox", 3);

The following code moves a node from one tree to the root of another tree:
myTreeNode.addTreeNode(mySecondTree.getTreeNodeAt(3));

TreeDataProvider.addTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
someNode.addTreeNodeAt(index, label, data)

Usage 2:
someNode.addTreeNodeAt(index, child)

Parameters

index An integer that indicates the index position (among the child nodes) at which the
node should be added.

label A string that displays the node.

data An object of any type that is associated with the node.

child Any XMLNode object.

Returns

The added XML node.
TreeDataProvider.addTreeNodeAt() 1259

Description

Method; adds a child node at the specified location in the parent node. The node is
constructed either from the information supplied in the label and data parameters (Usage
1), or from the prebuilt child node, which is an XMLNode object (Usage 2). Adding a
preexisting node removes the node from its previous location.

Calling this method refreshes the display of the tree.

Example

The following code locates the node to which you will add a node and adds a new node as the
second child of the root:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.addTreeNodeAt(1, "Inbox", 3);

The following code moves a node from one tree to become the fourth child of the root of
another tree:
myTreeNode.addTreeNodeAt(3, mySecondTree.getTreeNodeAt(3));

TreeDataProvider.attributes.data
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
someNode.attributes.data

Description

Property; specifies the data to associate with the node. This adds the value as an attribute in
the XMLNode object. Setting this property does not refresh any tree displays. This property
can be of any data type.

Example

The following code locates the node to adjust and sets its data property:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.attributes.data = "hi"; // results in <node data = "hi">;

See also

TreeDataProvider.attributes.label
1260 TreeDataProvider interface (Flash Professional only)

TreeDataProvider.attributes.label
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
someNode.attributes.label

Description

Property; a string that specifies the text displayed for the node. This is written to an attribute
of the XMLNode object. Setting this property does not refresh any tree displays.

Example

The following code locates the node to adjust and sets its label property. The result of the
following code is <node label="Mail">.
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.attributes.label = "Mail";

See also

TreeDataProvider.attributes.data

TreeDataProvider.getTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
someNode.getTreeNodeAt(index)

Parameters

index An integer representing the position of the child node in the current node.

Returns

The specified node.
TreeDataProvider.getTreeNodeAt() 1261

Description

Method; returns the specified child node of the node.

Example

The following code locates a node and then retrieves the second child of myTreeNode:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.getTreeNodeAt(1);

TreeDataProvider.removeTreeNode()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
someNode.removeTreeNode()

Parameters

None.

Returns

The removed XML node, or undefined if an error occurs.

Description

Method; removes the specified node, and any of its descendants, from the node’s parent.

Example

The following code removes a node:
myTreeDP.firstChild.removeTreeNode();
1262 TreeDataProvider interface (Flash Professional only)

TreeDataProvider.removeTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
someNode.removeTreeNodeAt(index)

Parameters

index An integer indicating the position of the node to be removed.

Returns

The removed XML node, or undefined if an error occurs.

Description

Method; removes a node (and all of its descendants) specified by the current node and index
position of the child node. Calling this method refreshes the view.

Example

The following code removes the fourth child of the myTreeDP.firstChild node:
myTreeDP.firstChild.removeTreeNodeAt(3);
TreeDataProvider.removeTreeNodeAt() 1263

1264 TreeDataProvider interface (Flash Professional only)

50

CHAPTER 50

Tree component (Flash
Professional only)
The Tree component allows a user to view hierarchical data. The tree appears in a box like the
List component, but each item in a tree is called a node and can be either a leaf or a branch. By
default, a leaf is represented by a text label beside a file icon, and a branch is represented by a
text label beside a folder icon with an expander arrow (disclosure triangle) that a user can open
to display child nodes. The children of a branch can be leaves or branches.

The data of a tree component must be provided from an XML data source. For more
information, see “Using the Tree component (Flash Professional only)” on page 1266.

When a Tree instance has focus either from clicking or tabbing, you can use the following
keys to control it:

The Tree component cannot be made accessible to screen readers.

Key Description

Down Arrow Moves selection down one item.

Up Arrow Moves selection up one item.

Right Arrow Opens a selected branch node. If a branch is already open, moves to first child
node.

Left Arrow Closes a selected branch node. If on a leaf node of a closed branch node,
moves to parent node.

Space Opens or closes a selected branch node.

End Moves selection to the bottom of the list.

Home Moves selection to the top of the list.

Page Down Moves selection down one page.

Page Up Moves selection up one page.

Control Allows multiple noncontiguous selections.

Shift Allows multiple contiguous selections.
1265

Using the Tree component (Flash
Professional only)
The Tree component can be used to represent hierarchical data such as e-mail client folders,
file browser panes, or category browsing systems for inventory. Most often, the data for a tree
is retrieved from a server in the form of XML, but it can also be well-formed XML that is
created during authoring in Flash. The best way to create XML for the tree is to use the
TreeDataProvider interface. You can also use the ActionScript XML class or build an XML
string. After you create an XML data source (or load one from an external source), you assign
it to Tree.dataProvider.

The Tree component comprises two sets of APIs: the Tree class and the TreeDataProvider
interface. The Tree class contains the visual configuration methods and properties. The
TreeDataProvider interface lets you construct XML and add it to multiple tree instances. A
TreeDataProvider object broadcasts changes to any trees that use it. In addition, any XML or
XMLNode object that exists on the same frame as a tree or a menu is automatically given the
TreeDataProvider methods and properties. For more information, see “TreeDataProvider
interface (Flash Professional only)” on page 1257.

Formatting XML for the Tree component
The Tree component is designed to display hierarchical data structures using XML as the data
model. It is important to understand the relationship of the XML data source to the Tree
component.

Consider the following XML data source sample:
<node>
 <node label="Mail">
 <node label="INBOX"/>
 <node label="Personal Folder">
 <node label="Business" isBranch="true" />
 <node label="Demo" isBranch="true" />
 <node label="Personal" isBranch="true" />
 <node label="Saved Mail" isBranch="true" />
 <node label="bar" isBranch="true" />
 </node>
 <node label="Sent" isBranch="true" />
 <node label="Trash"/>
 </node>
</node>

N
O

T
E

The isBranch attribute is read-only; you cannot set it directly. To set it, call
Tree.setIsBranch().
1266 Tree component (Flash Professional only)

Nodes in the XML data source can have any name. Notice in the previous example that each
node is named with the generic name node. The tree reads through the XML and builds the
display hierarchy according to the nested relationship of the nodes.
Each XML node can be displayed as one of two types in the tree: branch or leaf. Branch nodes
can contain multiple child nodes and appear as a folder icon with an expander arrow that
allows users to open and close the folder. Leaf nodes appear as a file icon and cannot contain
child nodes. Both leaves and branches can be roots; a root node appears at the top level of the
tree and has no parent. The icons are customizable; for more information, see “Using skins
with the Tree component” on page 1278.
There are many ways to structure XML, but the Tree component cannot use all types of XML
structures. Do not nest node attributes in a child node; each node should contain all its
necessary attributes. Also, the attributes of each node should be consistent to be useful. For
example, to describe a mailbox structure with a Tree component, use the same attributes on
each node (message, data, time, attachments, and so on). This lets the tree know what it
expects to render, and lets you loop through the hierarchy to compare data.
When a Tree displays a node, it uses the label attribute of the node by default as the text
label. If any other attributes exist, they become additional properties of the node’s attributes
within the tree.

The actual root node is interpreted as the Tree component itself. This means that the first
child (in the previous example, <node label="Mail">), is rendered as the root node in the
tree view. This means that a tree can have multiple root folders. In the example, there is only
one root folder displayed in the tree: Mail. However, if you were to add sibling nodes at that
level in the XML, multiple root nodes would be displayed in the tree.
A data provider for a tree always wants a node that has children it can display. It displays the
first child of the XMLNode object. When the XML is wrapped in an XML object, the
structure looks like the following:
<XMLDocumentObject>

<node>
<node label="Mail">

<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" isBranch="true" />
<node label="Demo" isBranch="true" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" isBranch="true" />
<node label="bar" isBranch="true" />

</node>
<node label="Sent" isBranch="true" />
<node label="Trash"/>

</node>
</node>

</XMLDocumentObject>
Using the Tree component (Flash Professional only) 1267

Flash Player wraps the XML nodes in an extra document node, which is passed to the tree.
When the tree tries to display the XML, it tries to display <node>, which doesn’t have a label,
so it doesn’t display correctly.

To avoid this problem, the data provider for the Tree component should point at the
XMLDocumentObject’s first child, as shown here:
myTree.dataProvider = myXML.firstChild;

Tree parameters
You can set the following authoring parameters for each Tree component instance in the
Property inspector or the Component inspector:

multipleSelection is a Boolean value that indicates whether a user can select multiple items
(true) or not (false). The default value is false.

rowHeight indicates the height of each row, in pixels. The default value is 20.

You can write ActionScript to control these and additional options for the Tree component
using its properties, methods, and events. For more information, see “Tree class (Flash
Professional only)” on page 1278.

You cannot enter data parameters in the Property inspector or the Component inspector for
the Tree component as you can with other components. For more information, see “Using the
Tree component (Flash Professional only)” on page 1266 and “Creating an application with
the Tree component” on page 1268.

Creating an application with the Tree component
The following procedures show how to use a Tree component to display mailboxes in an e-
mail application.

The Tree component does not allow you to enter data parameters in the Property inspector or
Component inspector. Because of the complexity of a Tree component’s data structure, you
must either import an XML object at runtime or build one in Flash while authoring. To
create XML in Flash, you can use the TreeDataProvider interface, use the ActionScript XML
object, or build an XML string. Each of these options is explained in the following
procedures.

To add a Tree component to an application and load XML:

1. In Flash, select File > New and select Flash Document.

2. Save the document as treeMenu.fla.

3. In the Components panel, double-click the Tree component to add it to the Stage.
1268 Tree component (Flash Professional only)

4. Select the Tree instance. In the Property inspector, enter the instance name menuTree.

5. Select the Tree instance and press F8. Select Movie Clip, and enter the name
TreeNavMenu.

6. Click the Advanced button, and select Export for ActionScript.

7. Type TreeNavMenu in the AS 2.0 Class text box and click OK.

8. Select File > New and select ActionScript File.

9. Save the file as TreeNavMenu.as in the same directory as treeMenu.fla.

10. In the Script window, enter the following code:
import mx.controls.Tree;

class TreeNavMenu extends MovieClip {
var menuXML:XML;
var menuTree:Tree;
function TreeNavMenu() {

// Set up the appearance of the tree and event handlers.
menuTree.setStyle("fontFamily", "_sans");
menuTree.setStyle("fontSize", 12);
// Load the menu XML.
var treeNavMenu = this;
menuXML = new XML();
menuXML.ignoreWhite = true;
menuXML.load("TreeNavMenu.xml");
menuXML.onLoad = function() {

treeNavMenu.onMenuLoaded();
};

}
function change(event:Object) {

if (menuTree == event.target) {
var node = menuTree.selectedItem;
// If this is a branch, expand/collapse it.
if (menuTree.getIsBranch(node)) {

menuTree.setIsOpen(node, !menuTree.getIsOpen(node), true);
}
// If this is a hyperlink, jump to it.
var url = node.attributes.url;
if (url) {

getURL(url, "_top");
}
// Clear any selection.
menuTree.selectedNode = null;

}
}
function onMenuLoaded() {

menuTree.dataProvider = menuXML.firstChild;
menuTree.addEventListener("change", this);

}
}

Using the Tree component (Flash Professional only) 1269

This ActionScript sets up styles for the tree. An XML object is created to load the XML
file that creates the tree’s nodes. Then the onLoad event handler is defined to set the data
provider to the contents of the XML file.

11. Create a new file called TreeNavMenu.xml in a text editor.

12. Enter the following code in the file:
<node>

<node label="My Bookmarks">
<node label="Macromedia Web site" url="http://www.macromedia.com" />
<node label="MXNA blog aggregator" url="http://www.markme.com/mxna"

/>
</node>
<node label="Google" url="http://www.google.com" />

</node>

13. Save your documents and return to treeMenu.fla. Select Control > Test Movie to test
the application.

To load XML from an external file:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML();
myTreeDP.ignoreWhite = true;
myTreeDP.load("treeXML.xml");
myTreeDP.onLoad = function() {

myTree.dataProvider = this.firstChild;
};
var treeListener:Object = new Object();
treeListener.change = function(evt:Object) {

trace("selected node is: "+evt.target.selectedNode);
trace("");

};
myTree.addEventListener("change", treeListener);

This code creates an XML object called myTreeDP and calls the XML.load() method to
load an XML data source. The code then defines an onLoad event handler that sets the
dataProvider property of the myTree instance to the new XML object when the
XML loads. For more information about the XML object, see its entry in ActionScript 2.0
Language Reference.

5. Create a new file called treeXML.xml in a text editor.
1270 Tree component (Flash Professional only)

6. Enter the following code in the file:
<node>

<node label="Mail">
<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" isBranch="true" />
<node label="Demo" isBranch="true" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" isBranch="true" />
<node label="bar" isBranch="true" />

</node>
<node label="Sent" isBranch="true" />
<node label="Trash"/>

</node>
</node>

7. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the
tree to see the trace() statements in the change event handler send the data values to the
Output panel.

To use the TreeDataProvider class to create XML in Flash while authoring:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance and in the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML();
myTreeDP.addTreeNode("Local Folders", 0);
// Use XML.firstChild to nest child nodes below Local Folders.
var myTreeNode:XMLNode = myTreeDP.firstChild;
myTreeNode.addTreeNode("Inbox", 1);
myTreeNode.addTreeNode("Outbox", 2);
myTreeNode.addTreeNode("Sent Items", 3);
myTreeNode.addTreeNode("Deleted Items", 4);
// Assign the myTreeDP data source to the myTree component.
myTree.dataProvider = myTreeDP;
// Set each of the four child nodes to be branches.
for (var i = 0; i<myTreeNode.childNodes.length; i++) {

var node:XMLNode = myTreeNode.getTreeNodeAt(i);
myTree.setIsBranch(node, true);

}

Using the Tree component (Flash Professional only) 1271

This code creates an XML object called myTreeDP. Any XML object on the same frame as
a Tree component automatically receives all the properties and methods of the
TreeDataProvider interface. The second line of code creates a single root node called Local
Folders. For detailed information about the rest of the code, see the comments (lines
preceded with //) throughout the code.

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the
tree to see the trace() statements in the change event handler send the data values to the
Output panel.

To use the ActionScript XML class to create XML:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
// Create an XML object.
var myTreeDP:XML = new XML();
// Create node values.
var myNode0:XMLNode = myTreeDP.createElement("node");
myNode0.attributes.label = "Local Folders";
myNode0.attributes.data = 0;
var myNode1:XMLNode = myTreeDP.createElement("node");
myNode1.attributes.label = "Inbox";
myNode1.attributes.data = 1;
var myNode2:XMLNode = myTreeDP.createElement("node");
myNode2.attributes.label = "Outbox";
myNode2.attributes.data = 2;
var myNode3:XMLNode = myTreeDP.createElement("node");
myNode3.attributes.label = "Sent Items";
myNode3.attributes.data = 3;
var myNode4:XMLNode = myTreeDP.createElement("node");
myNode4.attributes.label = "Deleted Items";
myNode4.attributes.data = 4;
// Assign nodes to the hierarchy in the XML tree.
myTreeDP.appendChild(myNode0);
myTreeDP.firstChild.appendChild(myNode1);
myTreeDP.firstChild.appendChild(myNode2);
myTreeDP.firstChild.appendChild(myNode3);
myTreeDP.firstChild.appendChild(myNode4);
// Assign the myTreeDP data source to the Tree component.
myTree.dataProvider = myTreeDP;

For more information about the XML object, see its entry in ActionScript 2.0 Language
Reference.
1272 Tree component (Flash Professional only)

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the
tree to see the trace() statements in the change event handler send the data values to the
Output panel.

To use a well-formed string to create XML in Flash while authoring:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML("<node label='Local Folders'><node

label='Inbox' data='0'/><node label='Outbox' data='1'/></node>");
myTree.dataProvider = myTreeDP;

This code creates the XML object myTreeDP and assigns it to the dataProvider property
of myTree.

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the
tree to see the trace() statements in the change event handler send the data values to the
Output panel.

Customizing the Tree component (Flash
Professional only)
You can transform a Tree component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). When a tree isn’t wide enough to display the text of the nodes, the
text is clipped.
Customizing the Tree component (Flash Professional only) 1273

Using styles with the Tree component
A Tree component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen".

backgroundColor Both The background color of the list. The default color is
white and is defined on the class style declaration.
This style is ignored if alternatingRowColors is
specified.

backgroundDisabledColor Both The background color when the component’s
enabled property is set to "false". The default value is
0xDDDDDD (medium gray).

depthColors Both Sets the background colors for rows based on the
depth of each node. The value is an array of colors
where the first element is the background color for
the root node, the second element is the background
color for its children, and so on, continuing through
the number of colors provided in the array. This style
property is not set by default.

borderStyle Both The Tree component uses a RectBorder instance as
its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.

The default border style is "inset".

color Both The text color.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. Otherwise, the embedded font is not
used. If this style is set to true and fontFamily does
not refer to an embedded font, no text is displayed.
The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.
1274 Tree component (Flash Professional only)

fontStyle Both The font style: either "normal" or "italic". The
default value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or
"center". The default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value
is 0.

defaultLeafIcon Both The icon displayed in a Tree control for leaf nodes
when no icon is specified for a particular node. The
default value is "TreeNodeIcon", which is an image
representing a piece of paper.

disclosureClosedIcon Both The icon displayed next to a closed folder node in a
Tree component. The default value is
"TreeDisclosureClosed", which is a gray arrow
pointing to the right.

disclosureOpenIcon Both The icon displayed next to an open folder node in a
Tree component. The default value is
"TreeDisclosureOpen", which is a gray arrow pointing
down.

folderClosedIcon Both The icon displayed for a closed folder node in a Tree
component if no node-specific icon is set. The default
value is "TreeFolderClosed", which is a yellow closed
file folder image.

folderOpenIcon Both The icon displayed for an open folder node in a Tree
component if no node-specific icon is set. The default
value is "TreeFolderOpen", which is a yellow open file
folder image.

indentation Both The number of pixels to indent each row of a Tree
component. The default value is 17.

openDuration Both The duration, in milliseconds, of the expand and
collapse animations. The default value is 250.

Style Theme Description
Customizing the Tree component (Flash Professional only) 1275

openEasing Both A reference to a tweening function that controls the
expand and collapse animations. Defaults to sine in/
out. For more information, see “Customizing
component animations” in Using Components.

repeatDelay Both The number of milliseconds of delay between when a
user first presses a button in the scrollbar and when
the action begins to repeat. The default value is 500
(half a second).

repeatInterval Both The number of milliseconds between automatic
clicks when a user holds the mouse button down on a
button in the scrollbar. The default value is 35.

rollOverColor Both The background color of a rolled-over row. The
default value is 0xE3FFD6 (bright green) with the
Halo theme and 0xAAAAAA (light gray) with the
Sample theme.

When themeColor is changed through a setStyle()
call, the framework sets rollOverColor to a value
related to the themeColor chosen.

selectionColor Both The background color of a selected row. The default
value is a 0xCDFFC1 (light green) with the Halo
theme and 0xEEEEEE (very light gray) with the
Sample theme.

When themeColor is changed through a setStyle()
call, the framework sets selectionColor to a value
related to the themeColor chosen.

selectionDuration Both The length of the transition from a normal state to a
selected state or back from selected to normal, in
milliseconds. The default value is 200.

selectionDisabledColor Both The background color of a selected row. The default
value is a 0xDDDDDD (medium gray). Because the
default value for this property is the same as the
default for backgroundDisabledColor, the selection is
not visible when the component is disabled unless
one of these style properties is changed.

Style Theme Description
1276 Tree component (Flash Professional only)

For example, the following code creates a Tree instance first_tr using
UIObject.createClassObject(), populates the tree using a data provider, and then uses
UIObject.setStyle() to change the indentation of the nodes of the tree to 8 pixels. Drag a
Tree component to the current document’s library and then add the following to the first
frame of the main timeline:
import mx.controls.Tree;

this.createClassObject(Tree, "first_tr", 20);
first_tr.setSize(200, 100);
first_tr.move(0, 120);

var trDP_xml:XML = new XML("<node label='1st Local Folder'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/><node label='2nd
Local Folder'><node label='Inbox' data='0'/><node label='Outbox'
data='1'/></node></node>");

first_tr.dataProvider = trDP_xml;

first_tr.setStyle("indentation", 8);

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. Applies only for
the transition from a normal to a selected state. The
default equation uses a sine in/out formula. For more
information, see “Customizing component
animations” in Using Components.

textRollOverColor Both The color of text when the pointer rolls over it. The
default value is 0x2B333C (dark gray). This style is
important when you set rollOverColor, because the
two must complement each other so that text is easily
viewable during a rollover.

textSelectedColor Both The color of text in the selected row. The default
value is 0x005F33 (dark gray). This style is
important when you set selectionColor, because the
two must complement each other so that text is easily
viewable while selected.

useRollOver Both Determines whether rolling over a row activates
highlighting. The default value is true.

Style Theme Description
Customizing the Tree component (Flash Professional only) 1277

Setting styles for all Tree components in a document
The Tree class inherits from the List class, which inherits from the ScrollSelectList class. The
default class-level style properties are defined on the ScrollSelectList class, which the Menu
component and all List-based components extend. You can set new default style values on this
class directly, and the new settings are reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the Tree components only, you can create a new
CSSStyleDeclaration instance and store it in _global.styles.DataGrid.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.Tree == undefined) {

_global.styles.Tree = new CSSStyleDeclaration();
}
_global.styles.Tree.setStyle("backgroundColor", 0xFF00AA);

When you create a new class-level style declaration, you lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for loop, as follows, to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.Tree;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

Using skins with the Tree component
The Tree component uses an instance of RectBorder for its border and scroll bars for scrolling
images. For more information about skinning these visual elements, see “RectBorder class”
on page 1063 and “Using skins with the UIScrollBar component” on page 1394.

Tree class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List component > Tree

ActionScript Class Name mx.controls.Tree

The methods, properties, and events of the Tree class allow you to manage and manipulate
Tree objects.
1278 Tree component (Flash Professional only)

Method summary for the Tree class
The following table lists methods of the Tree class.

Methods inherited from the UIObject class
The following table lists the methods the Tree class inherits from the UIObject class. When
calling these methods from the Tree object, use the form TreeInstance.methodName.

Method Description

Tree.addTreeNode() Adds a node to a Tree instance.

Tree.addTreeNodeAt() Adds a node at a specific location in a Tree instance.

Tree.getDisplayIndex() Returns the display index of a given node.

Tree.getIsBranch() Specifies whether the folder is a branch (has a folder icon and
an expander arrow).

Tree.getIsOpen() Indicates whether a node is open or closed.

Tree.getNodeDisplayedAt() Maps a display index of the tree onto the node that is
displayed there.

Tree.getTreeNodeAt() Returns a node on the root of the tree.

Tree.refresh() Updates the tree.

Tree.removeAll() Removes all nodes from a Tree instance and refreshes
the tree.

Tree.removeTreeNodeAt() Removes a node at a specified position and refreshes
the tree.

Tree.setIcon() Specifies an icon for the specified node.

Tree.setIsBranch() Specifies whether a node is a branch (has a folder icon and
expander arrow).

Tree.setIsOpen() Opens or closes a node.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.
Tree class (Flash Professional only) 1279

Methods inherited from the UIComponent class
The following table lists the methods the Tree class inherits from the UIComponent class.
When calling these methods from the Tree object, use the form TreeInstance.methodName.

Methods inherited from the List class
The following table lists the methods the Tree class inherits from the List class. When calling
these methods from the Tree object, use the form TreeInstance.methodName.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index. With the Tree
component, it is better to use Tree.addTreeNodeAt().

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare
function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Method Description
1280 Tree component (Flash Professional only)

Property summary for the Tree class
The following table lists properties of the Tree class.

Properties inherited from the UIObject class
The following table lists the properties the Tree class inherits from the UIObject class. When
accessing these properties from the Tree object, use the form TreeInstance.propertyName.

Property Description

Tree.dataProvider Specifies an XML data source.

Tree.firstVisibleNode Specifies the first node at the top of the display.

Tree.selectedNode Specifies the selected node in a Tree instance.

Tree.selectedNodes Specifies the selected nodes in a Tree instance.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.
Tree class (Flash Professional only) 1281

Properties inherited from the UIComponent class
The following table lists the properties the Tree class inherits from the UIComponent class.
When accessing these properties from the Tree object, use the form
TreeInstance.propertyName.

Properties inherited from the List class
The following table lists the properties the Tree class inherits from the List class. When
accessing these properties from the Tree object, use the form TreeInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the
list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on")
or not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use
for the label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list
(true) or not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).
1282 Tree component (Flash Professional only)

Event summary for the Tree class
The following table lists events of the Tree class.

Events inherited from the UIObject class
The following table lists the events the Tree class inherits from the UIObject class.

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is
read-only.

List.selectedItems The selected item objects in a multiple-selection list. This
property is read-only.

List.vPosition Scrolls the list so the topmost visible item is the number
assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"),
not displayed ("off"), or displayed when needed ("auto").

Event Description

Tree.nodeClose Broadcast when a node is closed by a user.

Tree.nodeOpen Broadcast when a node is opened by a user.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
Tree class (Flash Professional only) 1283

Events inherited from the UIComponent class
The following table lists the events the Tree class inherits from the UIComponent class.

Events inherited from the List class
The following table lists the events the Tree class inherits from the List class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

List.change Broadcast whenever user interaction causes the selection to
change.

List.itemRollOut Broadcast when the pointer rolls over and then off list items.

List.itemRollOver Broadcast when the pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.
1284 Tree component (Flash Professional only)

Tree.addTreeNode()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
treeInstance.addTreeNode(label [, data])

Usage 2:
treeInstance.addTreeNode(child)

Parameters

label A string that displays the node, or an object with a label field (or whatever label field
name is specified by the labelField property).

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a child node to the tree. The node is constructed either from the information
supplied in the label and data parameters (Usage 1), or from the prebuilt child node, which
is an XMLNode object (Usage 2). Adding a preexisting node removes the node from its
previous location.

Calling this method refreshes the view.

Example

The following example creates two Tree components with a node for each one, 1st Local
Folders and 2nd Local Folders, respectively. Then it adds the tree node (2nd Local
Folders) from the second Tree to the first Tree and also adds a new node, Inbox.

You must first add the component to the document library by dragging a Tree component to
the Stage and then deleting it; then add the following code to Frame 1.

T
IP First try this example without the two addTreeNode() statements at the end; then try the

full example.
Tree.addTreeNode() 1285

/**
 Requires:
 - Tree component in library
*/

import mx.controls.Tree;

this.createClassObject(Tree, "first_tr", 10);
first_tr.setSize(200, 100);

this.createClassObject(Tree, "second_tr", 20);
second_tr.setSize(200, 100);
second_tr.move(0, 120);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node>");

first_tr.dataProvider = trDP_xml;

var trDP2_xml:XML = new XML("<node label='2nd Local Folders'><node
label='Outbox' data='0'/><node label='Outbox' data='1'/></node>");

second_tr.dataProvider = trDP2_xml;

// Add the node from second_tr to first_tr.
first_tr.addTreeNode(second_tr.getTreeNodeAt(0));

// Add node to first_tr.
first_tr.addTreeNode("Inbox", "data");

Tree.addTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
treeInstance.addTreeNodeAt(index, label [, data])

Usage 2:
treeInstance.addTreeNodeAt(index, child)
1286 Tree component (Flash Professional only)

Parameters

index The zero-based index position (among the child nodes) at which the node should be
added.

label A string that contains the name of the node to add.

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a node at the specified location in the tree. The node is constructed either from
the information supplied in the label and data parameters (Usage 1), or from the prebuilt
XMLNode object (Usage 2). Adding a preexisting node removes the node from its previous
location.

Calling this method refreshes the view.

Example

The following example creates two Tree components with a node for each one: 1st Local
Folders and 2nd Local Folders, respectively. It uses the first usage of addTreeNodeAt() to
add a new node, Inbox, to the first Tree. It then uses the second usage of addTreeNodeAt()
to add the 1st node ((getTreeNodeAt(0)) from the second Tree to the first Tree.

You must first add the component to the document library by dragging a Tree component to
the Stage and then deleting it; then add the following code to Frame 1.

T
IP First try this example without the two addTreeNodeAt() statements at the end; then try

the full example.
Tree.addTreeNodeAt() 1287

/**
 Requires:
 - Tree component in library
*/

import mx.controls.Tree;

this.createClassObject(Tree, "first_tr", 10);
first_tr.setSize(200, 100);

this.createClassObject(Tree, "second_tr", 20);
second_tr.setSize(200, 100);
second_tr.move(0, 120);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node>");

first_tr.dataProvider = trDP_xml;

var trDP2_xml:XML = new XML("<node label='2nd Local Folders'><node
label='Outbox' data='0'/><node label='Outbox' data='1'/></node>");

second_tr.dataProvider = trDP2_xml;

// Add node to first_tr.
first_tr.addTreeNodeAt(1, "Inbox", "data");
// Add the node from second_tr to first_tr.
first_tr.addTreeNodeAt(2, second_tr.getTreeNodeAt(0));

Tree.dataProvider
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.dataProvider

Description

Property; either XML or a string. If dataProvider is an XML object, it is added directly to
the tree. If dataProvider is a string, it must contain valid XML that is read by the tree and
converted to an XML object.
1288 Tree component (Flash Professional only)

You can either load XML from an external source at runtime or create it in Flash while
authoring. To create XML, you can use either the TreeDataProvider methods, or the built-in
ActionScript XML class methods and properties. You can also create a string that
contains XML.

XML objects that are on the same frame as a Tree component automatically contain the
TreeDataProvider methods and properties. You can use the ActionScript XML or
XMLNode object.

Example

The following example uses the dataProvider property to add the contents of an XML file
to the my_tr instance of the Tree component:

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML();
trDP_xml.ignoreWhite = true;
trDP_xml.onLoad = function(success:Boolean){
 my_tr.dataProvider = trDP_xml.firstChild;
}
trDP_xml.load("http://www.flash-mx.com/mm/xml/tree.xml");

N
O

T
E

Most XML files contain white space. To make Flash ignore white space, you must set the
XML.ignoreWhite property to true.
Tree.dataProvider 1289

Tree.firstVisibleNode
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.firstVisibleNode = someNode

Description

Property; indicates the first node that is visible at the top of the tree display. Use this property
to scroll the tree display to a desired position. If the specified node someNode is within a node
that hasn’t been expanded, setting firstVisibleNode has no effect. The default value is the
first visible node or undefined if there is no visible node. The value of this property is an
XMLNode object.

This property is an analogue to the List.vPosition property.

Example

The following example populates a Tree component called my_tr with six nodes that it creates
from a string of XML text. It makes the last node visible in the Tree by assigning the last node
(relative position 5) to the firstVisibleNode property. You can make other nodes visible by
changing 5 to other values from 0 to 4.
1290 Tree component (Flash Professional only)

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node><node label='3rd Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='4th Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node><node label='5th Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='6th Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node>");

my_tr.dataProvider = trDP_xml;

// Set visible node to last node.
my_tr.firstVisibleNode = my_tr.getTreeNodeAt(5);

Tree.getDisplayIndex()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.getDisplayIndex(node)

Parameters

node An XMLNode object.

Returns

The index of the specified node, or undefined if the node is not currently displayed.
Tree.getDisplayIndex() 1291

Description

Method; returns the display index of the node specified in the node parameter.

The display index indicates the item’s position in the list of items that are visible in the tree
window. For example, any children of a closed node are not in the display index. The list of
display indices starts with 0 and proceeds through the visible items regardless of parent. In
other words, the index is the row number, starting with 0, of the displayed rows.

Example

The following example adds six nodes to a Tree and calls getDisplayIndex() to display the
position of the node that the user selects.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 140);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node><node label='3rd Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='4th Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node><node label='5th Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='6th Local Folders'><node label='Inbox' data='0' /><node
label='Outbox' data='1' /></node>");

my_tr.dataProvider = trDP_xml;
my_tr.firstVisibleNode = my_tr.getTreeNodeAt(0);

my_tr.addEventListener("change", listChanged);
function listChanged(evt_obj:Object) {

trace(my_tr.getDisplayIndex(evt_obj.target.selectedNode));
}

1292 Tree component (Flash Professional only)

Tree.getIsBranch()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.getIsBranch(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the node is a branch (true) or not (false).

Description

Method; indicates whether the specified node has a folder icon and expander arrow (and is
therefore a branch). This is set automatically when children are added to the node. You only
need to call Tree.setIsBranch() to create empty folders.

Example

The following example creates two nodes in a tree and calls isBranch() to determine
whether the second one is a branch.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='2' /><node
label='Outbox' data='3' /></node>");

my_tr.dataProvider = trDP_xml;

var isBranch:Boolean = my_tr.getIsBranch(my_tr.getTreeNodeAt(1));
trace("2nd node is a branch: " + isBranch);
Tree.getIsBranch() 1293

See also

Tree.setIsBranch()

Tree.getIsOpen()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.getIsOpen(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the tree is open (true) or closed (false).

Description

Method; indicates whether the specified node is open or closed.

Example

The following example adds two nodes to a Tree called my_tr, opens the second node, and
then calls getIsOpen() to display the state of the second node.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

N
O

T
E

Display indices change every time nodes open and close.
1294 Tree component (Flash Professional only)

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node><node
label='2nd Local Folders'><node label='Inbox' data='2'/><node
label='Outbox' data='3'/></node>");

my_tr.dataProvider = trDP_xml;
my_tr.setIsOpen(my_tr.getTreeNodeAt(1), true);
var isOpen:Boolean = my_tr.getIsOpen(my_tr.getTreeNodeAt(1));
trace("2nd node is a open: " + isOpen);

Tree.getNodeDisplayedAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.getNodeDisplayedAt(index)

Parameters

index An integer representing the display position in the viewable area of the tree. This
number is zero-based; the node at the first position is 0, second position is 1, and so on.

Returns

The specified XMLNode object.

Description

Method; maps a display index of the tree onto the node that is displayed there. For example, if
the fifth row of the tree showed a node that is eight levels deep into the hierarchy, that node
would be returned by a call to getNodeDisplayedAt(4).

The display index is an array of items that can be viewed in the tree window. For example, any
children of a closed node are not in the display index. The display index starts with 0 and
proceeds through the visible items regardless of parent. In other words, the display index is the
row number, starting with 0, of the displayed rows.

N
O

T
E

Display indices change every time nodes open and close.
Tree.getNodeDisplayedAt() 1295

Example

The following example adds a node to a Tree instance called my_tr and then calls the
getNodeDisplayedAt() method to retrieve the node at display position 0 (zero). The
example calls the trace() function to display the node.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label=\"1st Local Folders\"><node
label=\"Inbox\" data=\"0\" />");

my_tr.dataProvider = trDP_xml;

trace(my_tr.getNodeDisplayedAt(0));

Tree.getTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.getTreeNodeAt(index)

Parameters

index The index number of a node.

Returns

An XMLNode object.

Description

Method; returns the specified node on the root of myTree.
1296 Tree component (Flash Professional only)

Example

The following example adds a node to the Tree instance my_tr, and then calls the
getTreeNodeAt() method to return the first node in the tree.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label=\"1st Local Folders\"><node
label=\"Inbox\" data=\"0\" /><node label=\"Outbox\" data=\"1\" /></
node>");

my_tr.dataProvider = trDP_xml;

trace(my_tr.getTreeNodeAt(0));

Tree.nodeClose
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.nodeClose = function(eventObject:Object) {

// Insert your code here.
};
treeInstance.addEventListener("nodeClose", listenerObject);

Description

Event; broadcast to all registered listeners when the nodes of a Tree component are closed
by a user.

Version 2 components use a dispatcher/listener event model. The Tree component broadcasts
a nodeClose event when one of its nodes is clicked closed; the event is handled by a function,
also called a handler, that is attached to a listener object (listenerObject) that you create.
Tree.nodeClose 1297

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Tree.nodeClose event’s event
object has one additional property: node (the XML node that closed).

For more information, see “EventDispatcher class” on page 499.

Example

The following example adds two nodes to the Tree instance my_tr, and then creates two
listener objects, one for nodeOpen events and one for nodeClose events. When these events
occur, the listener function uses a trace statement to display the event and the affected node in
the Output panel.

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node><node
label='2nd Local Folders'><node label='Inbox' data='2'/><node
label='Outbox' data='3'/></node>");

my_tr.dataProvider = trDP_xml;

// Create listener object.
var trListener:Object = new Object();
trListener.nodeOpen = function(evt_obj:Object){
 trace("Node opened\n" + evt_obj.node);
 trace("\n");
}
trListener.nodeClose = function(evt_obj:Object){
 trace("Node closed\n" + evt_obj.node);
 trace("\n");
}
// Add listeners.
my_tr.addEventListener("nodeOpen", trListener);
my_tr.addEventListener("nodeClose", trListener);
1298 Tree component (Flash Professional only)

Tree.nodeOpen
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
var listenerObject:Object = new Object();
listenerObject.nodeOpen = function(eventObject:Object) {

// Insert your code here.
};
treeInstance.addEventListener("nodeOpen", listenerObject);

Description

Event; broadcast to all registered listeners when a user opens a node on a Tree component.

Version 2 components use a dispatcher/listener event model. The Tree component dispatches
a nodeOpen event when a node is clicked open by a user; the event is handled by a function,
also called a handler, that is attached to a listener object (listenerObject) that you create.
You call the addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. The Tree.nodeOpen event’s event
object has one additional property: node (the XML node that was opened).

For more information, see “EventDispatcher class” on page 499.

Example

The following example adds two nodes to the Tree instance my_tr, and then creates two
listener objects, one for nodeOpen events and one for nodeClose events. When these events
occur, the listener functions call trace statements to display the event and the affected node in
the Output panel.
Tree.nodeOpen 1299

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/
var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node><node
label='2nd Local Folders'><node label='Inbox' data='2'/><node
label='Outbox' data='3'/></node>");

my_tr.dataProvider = trDP_xml;

// Create listener object.
var trListener:Object = new Object();
trListener.nodeOpen = function(evt_obj:Object){
 trace("Node opened\n" + evt_obj.node);
 trace("\n");
}
trListener.nodeClose = function(evt_obj:Object){
 trace("Node closed\n" + evt_obj.node);
 trace("\n");
}
// Add listeners.
my_tr.addEventListener("nodeOpen", trListener);
my_tr.addEventListener("nodeClose", trListener);

Tree.refresh()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.refresh()

Parameters

None.
1300 Tree component (Flash Professional only)

Returns

Nothing.

Description

Method; updates the tree.

Example

The following example adds a node to a Tree instance called my_tr and creates listeners for a
Refresh button and a Remove All button. Assuming the XML source for the data provider has
changed, the user can click the Refresh button, and the code calls the refresh() method to
update the tree contents.

You must first add an instance of the Tree component to the Stage and name it my_tr. Then
add a button called refresh_button. Then add the following code to Frame 1 in the
main timeline:
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
 - Button component on Stage (instance name: refresh_button)
*/

var my_tr:mx.controls.Tree;
var refresh_button:mx.controls.Button;
var removeAll_button:mx.controls.Button;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML();
trDP_xml.ignoreWhite = true;
trDP_xml.onLoad = function() {
 my_tr.dataProvider = this.firstChild;
};
trDP_xml.load("http://yourXMLsourcehere");

function refreshListener(evt_obj:Object):Void {
 my_tr.refresh();
}
refresh_button.addEventListener("click", refreshListener);
Tree.refresh() 1301

Tree.removeAll()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all nodes and refreshes the tree.

Example

The following example adds a node to a Tree instance called my_tr and creates a listener for a
Remove All button. When the user clicks the Remove All button, the code calls the
removeAll() method to remove all nodes from the tree.

You first add an instance of the Tree component to the Stage and name it my_tr and add a
button called removeAll_button; then add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
 - Button component on Stage (instance name: refresh_button)
 - Button component on Stage (instance name: removeAll_button)
*/

var my_tr:mx.controls.Tree;
var removeAll_button:mx.controls.Button;

my_tr.setSize(200, 100);
1302 Tree component (Flash Professional only)

var trDP_xml:XML = new XML();
trDP_xml.ignoreWhite = true;
trDP_xml.onLoad = function() {
 my_tr.dataProvider = this.firstChild;
};
trDP_xml.load("http://www.flash-mx.com/mm/xml/tree.xml");

function removeAllListener(evt_obj:Object):Void {
 my_tr.removeAll();
}
removeAll_button.addEventListener("click", removeAllListener);

Tree.removeTreeNodeAt()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.removeTreeNodeAt(index)

Parameters

index The index number of a tree child. Each child of a tree is assigned a zero-based index
in the order in which it was created.

Returns

An XMLNode object, or undefined if an error occurs.

Description

Method; removes a node (specified by its index position) on the root of the tree and refreshes
the tree.

Example

The following example adds two nodes to a Tree instance and creates a listener for a change
event on the tree. When a change event occurs, the listener functions call the
removeTreeNodeAt() method to delete the selected node from the tree.
Tree.removeTreeNodeAt() 1303

You first add an instance of the Tree component to the Stage and name it my_tr and then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='2' /><node
label='Outbox' data='3' /></node>");

my_tr.dataProvider = trDP_xml;

var treeListener:Object = new Object();
treeListener.change = function (evt_obj:Object) {
 my_tr.removeTreeNodeAt(my_tr.selectedIndex);
}
my_tr.addEventListener("change", treeListener);

Tree.selectedNode
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.selectedNode

Description

Property; specifies the selected node in a tree instance.

Example

The following example adds two nodes to a Tree instance and sets the second node to the
selected state.
1304 Tree component (Flash Professional only)

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1:
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/
var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='2' /><node
label='Outbox' data='3' /></node>");

my_tr.dataProvider = trDP_xml;

// Select the second node.
my_tr.selectedNode = my_tr.getTreeNodeAt(1);

See also

Tree.selectedNodes

Tree.selectedNodes
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.selectedNodes

Description

Property; specifies the selected nodes in a tree instance.

Example

The following example adds three nodes to a Tree instance and sets the first two to the
selected state.
Tree.selectedNodes 1305

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1:
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node><node
label='2nd Local Folders'><node label='Inbox' data='2'/><node
label='Outbox' data='3'/></node><node label='3rd Local Folders'><node
label='Inbox' data='2'/><node label='Outbox' data='3'/></node>");

my_tr.dataProvider = trDP_xml;

// Allow multiple selections.
my_tr.multipleSelection = true;

// Select first and second node.
my_tr.selectedNodes = [my_tr.getTreeNodeAt(0), my_tr.getTreeNodeAt(1)];

See also

Tree.selectedNode

Tree.setIcon()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.setIcon(node, linkID [, linkID2])

Parameters

node An XML node.

linkID The linkage identifier of a symbol to be used as an icon beside the node. This
parameter is used for leaf nodes and for the closed state of branch nodes.
1306 Tree component (Flash Professional only)

linkID2 For a branch node, the linkage identifier of a symbol to be used as an icon that
represents the open state of the node. This parameter is optional.

Returns

Nothing.

Description

Method; specifies an icon for the specified node. This method takes one ID parameter
(linkID) for leaf nodes and two ID parameters (linkID and linkID2) for branch nodes (the
closed and open icons). For leaf nodes, the second parameter is ignored. For branch nodes, if
you omit linkID2, the icon is used for both the closed and open states.

Example

The following example adds two nodes to a Tree instance called my_tr and calls the
setIcon() function to specify an icon in the library with a Linkage ID of imageIcon for the
second node.

You must first add an instance of the Tree component to the Stage and name it my_tr and add
an icon to the library with a Linkage ID of imageIcon; then add the following code to Frame
1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
 - Library item with Linkage ID of imageIcon
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0' /><node label='Outbox' data='1' /></node><node
label='2nd Local Folders'><node label='Inbox' data='2' /><node
label='Outbox' data='3' /></node>");

my_tr.dataProvider = trDP_xml;

// Set movieclip as icon for 2nd node.
my_tr.setIcon(my_tr.getTreeNodeAt(1), "imageIcon");
Tree.setIcon() 1307

Tree.setIsBranch()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.setIsBranch(node, isBranch)

Parameters

node An XML node.

isBranch A Boolean value indicating whether the node is (true) or is not (false)
a branch.

Returns

Nothing.

Description

Method; specifies whether the node has a folder icon and expander arrow and either has
children or can have children. A node is automatically set as a branch when it has children;
you only need to call setIsBranch() when you want to create an empty folder. You may
want to create branches that don’t yet have children if, for example, you only want child nodes
to load when a user opens a folder.

Calling setIsBranch() refreshes any views.

Example

The following example adds a single node to a Tree instance called my_tr and calls
setIsBranch() to make it a branch without children.
1308 Tree component (Flash Professional only)

You must first add an instance of the Tree component to the Stage and name it my_tr; then
add the following code to Frame 1.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/

var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='Inbox' data='0'/>");
my_tr.dataProvider = trDP_xml;

// Set 1st node to be branch.
my_tr.setIsBranch(my_tr.getTreeNodeAt(0), true);

Tree.setIsOpen()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
treeInstance.setIsOpen(node, open [, animate [, fireEvent]])

Parameters

node An XML node.

open A Boolean value that opens a node (true) or closes it (false).

animate A Boolean value that determines whether the opening transition is animated
(true) or not (false). This parameter is optional.

fireEvent A Boolean value that determines whether the nodeOpen and nodeClose events
are dispatched (true) or not (false) when the tree node is opened or closed. This parameter
is optional. The default value is false.

Returns

Nothing.
Tree.setIsOpen() 1309

Description

Method; opens or closes a node.

Example

The following example creates two nodes in a Tree instance called my_tr and calls the
setIsOpen() method to open the second node.
/**
 Requires:
 - Tree component on Stage (instance name: my_tr)
*/
var my_tr:mx.controls.Tree;

my_tr.setSize(200, 100);

var trDP_xml:XML = new XML("<node label='1st Local Folders'><node
label='Inbox' data='0'/><node label='Outbox' data='1'/></node><node
label='2nd Local Folders'><node label='Inbox' data='2'/><node
label='Outbox' data='3'/></node>");

my_tr.dataProvider = trDP_xml;

// Set 2nd node open.
my_tr.setIsOpen(my_tr.getTreeNodeAt(1), true);
1310 Tree component (Flash Professional only)

51

CHAPTER 51

Tween class
Inheritance (Root class)

ActionScript Class Name mx.transitions.Tween

The Tween class lets you use ActionScript to move, resize, and fade movie clips easily on the
Stage by specifying a property of the target movie clip to be tween animated over a number of
frames or seconds. The Tween class also lets you specify a variety of easing methods. Easing
refers to gradual acceleration or deceleration during an animation, which helps your
animations appear more realistic. For example, the options on a drop-down list component
you create might gradually increase their speed near the beginning of an animation as the
options appear, but slow down before the options come to a full stop at the end of the
animation as the list is extended. Flash provides many easing methods that contain equations
for this acceleration and deceleration, which change the easing animation accordingly.

The Tween class also invokes event handlers so your code may respond when an animation
starts, stops, or resumes or increments its tweened property value. For example, you can start a
second tweened animation when the first tween invokes its Tween.onMotionStopped event
handler, indicating that the first tween has stopped.

Method summary for the Tween class
The following table lists methods of the Tween class:

Method Description

Tween.yoyo() Instructs the tweened animation to continue from its current
value to a new value.

Tween.fforward() Forwards the tweened animation directly to the end of the
animation.

Tween.nextFrame() Forwards the tweened animation to the next frame.

Tween.prevFrame() Directs the tweened animation to the frame previous to the
current frame.
1311

Property summary for the Tween class
The following table lists properties of the Tween class.

Event handler summary for the Tween class
The following table lists event handlers of the Tween class.

Tween.resume() Resumes a tweened animation from its stopped point in
the animation.

Tween.rewind() Rewinds a tweened animation to the beginning of the
tweened animation.

Tween.start() Starts the tweened animation from the beginning.

Tween.stop() Stops the tweened animation at its current position.

Tween.toString() Returns the class name, “[Tween]”.

Tween.yoyo() Instructs the tweened animation to play in reverse from its
last direction of tweened property increments.

Property Description

Tween.duration The duration of the tweened animation in frames or seconds.
Read-only.

Tween.finish The last tweened value for the end of the tweened animation.
Read-only.

Tween.FPS The number of frames per second of the tweened animation.
Read-only.

Tween.position The current value of the target movie clip’s property being
tweened. Read-only.

Tween.time The current time within the duration of the animation. Read-
only.

Event Description

Tween.onMotionChanged Event handler; invoked with each change in the tweened
object’s property that is being animated.

Tween.onMotionFinished Event handler; invoked when the Tween object finishes
its animation.

Method Description
1312 Tween class

Using the Tween class
To use the methods and properties of the Tween class, you use the new operator to create a
new instance of the class. For example, to apply an instance of a tween to a movie clip object
on the Stage called myMovieClip_mc, you use the following code to create a new instance of
mx.transitions.Tween:
import mx.transitions.Tween;
var myTween:Tween = new Tween(myMovieClip_mc, "_x",

mx.transitions.easing.Elastic.easeOut, 0, 300, 3, true);

Tween class parameters
When you create a new instance of a Tween class, you pass several parameters. You must
indicate the target movie clip object, what property of the movie clip the tween is to affect, the
range over which the object is to be tweened, and an easing method to use to calculate the
tweened property.

The constructor for the mx.transitions.Tween class has the following parameter names
and types:
Tween(obj:Object, prop:String, func:Function, begin:Number, finish:Number,

duration:Number, useSeconds:Boolean)

obj The movie clip object that the Tween instance targets.

prop A string name of a property in obj to which the values are to be tweened.

func The easing method that calculates an easing effect for the tweened object’s property
values. See “About easing classes and methods” on page 1314

begin A number indicating the starting value of prop (the target object property to be
tweened).

finish A number indicating the ending value of prop (the target object property to
be tweened).

Tween.onMotionResumed Event handler; invoked when the Tween.resume() method is
called, causing the tweened animation to resume.

Tween.onMotionStarted Event handler; invoked when the Tween.start() method is
called, causing the tweened animation to start.

Tween.onMotionStopped Event handler; invoked when the Tween.stop() method is
called, causing the tweened animation to stop.

Event Description
Using the Tween class 1313

duration A number indicating the length of time of the tween motion. If omitted, the
duration is set to infinity by default.

useSeconds A Boolean value indicating to use seconds if true or frames if false in relation
to the value specified in the duration parameter.

About easing classes and methods
When you create an instance of the Tween class, you use the func parameter to specify a
function or method that provides an easing calculation. Flash provides five easing classes, each
with three methods that indicate which part of the transitional motion to apply the easing
effect to: at the beginning of the animation, the end, or both. In addition, a None easing class
with an easeNone method is available for designating that no easing be used.

The following classes and components use the easing classes and methods:

■ The mx.transitions.Tween class for easing effects on a tweened animation
■ The mx.transitions.TransitionManager class for easing effects on transitions. See Chapter

48, “TransitionManager class,” on page 1237.
■ Some components in version 2 of the Macromedia Component Architecture. See

“Applying easing methods to components” on page 1315

The six easing calculation classes are described in the following table:

Easing Class Description

Back Extends the animation once beyond the transition range at one or both
ends to give the effect of being pulled back from beyond its range.

Bounce Adds a bouncing effect within the transition range at one or both ends.
The number of bounces relates to the duration—longer durations
produce more bounces.

Elastic Adds an elastic effect that falls outside the transition range at one or
both ends. The amount of elasticity is unaffected by the duration.

Regular Adds slower movement at one or both ends. This feature lets you add a
speeding up effect, a slowing down effect, or both.

Strong Adds slower movement at one or both ends. This effect is similar to the
Regular easing class, but it’s more pronounced.

None Adds an equal movement from start to end without effects, slowing, or
speeding up. This transition is also called a linear transition.
1314 Tween class

These six easing calculation classes each have three easing methods, which indicate at what
part of the animation to apply the easing effect. In addition, the None easing class has a fourth
easing method: easeNone. The easing methods are described in the following table:

Applying easing methods to components
Another use for the various easing methods is to apply them on version 2 of the Macromedia
Component Architecture. You can apply the easing methods only to the following version 2
components: Accordion, ComboBox, DataGrid, List, Menu, and Tree. Each component uses
the easing methods to allow different customizations. For example, the Accordion,
ComboBox, and Tree components let you select an easing class to use for their respective open
and close animations. In contrast, the Menu component lets you define only the number of
milliseconds that the animation lasts.

Applying easing methods to an Accordion
component
This section describes how to add an Accordion component to a Flash document, add a few
child slides, and change the default easing method and duration. If you decide to use this code
in a project, reduce the value of the openDuration property to avoid annoying users
with animations that are too slow when they open and close the Accordion component’s
child panes.

To apply a different easing method to the Accordion component:

1. Create a new Flash document and save it as accordion.fla.

2. Drag a copy of the Accordion component onto the Stage.

3. Open the Property inspector, and type my_acc into the Instance Name text box.

4. Insert a new layer above Layer 1, and name it actions.

Method Description

easeIn Provides the easing effect at the beginning of the transition.

easeOut Provides the easing effect at the end of the transition.

easeInOut Provides the easing effect at the beginning and end of the transition.

easeNone Indicates no easing calculation is to be used. Provided only in the None
easing class.
Applying easing methods to components 1315

5. Add the following ActionScript to Frame 1 of the actions layer:
import mx.core.View;
import mx.transitions.easing.*;
my_acc.createChild(View, "studio_view", {label:"Studio"});
my_acc.createChild(View, "dreamweaver_view", {label:"Dreamweaver"});
my_acc.createChild(View, "flash_view", {label:"Flash"});
my_acc.createChild(View, "coldfusion_view", {label:"ColdFusion"});
my_acc.createChild(View, "contribute_view", {label:"Contribute"});
my_acc.setStyle("openEasing", Bounce.easeOut);
my_acc.setStyle("openDuration", 3500);

This code imports the easing classes, so you can type Bounce.easeOut instead of referring
to each of the classes with fully qualified names such as
mx.transitions.easing.Bounce.easeOut. Next, the code adds five new child panes to
the Accordion component (Studio, Dreamweaver, Flash, ColdFusion, and Contribute).
The final two lines of code set the easing style from the default easing method to
Bounce.easeOut and set the length of the animation to 3500 milliseconds (3.5 seconds).

6. Save the document, and then select Control > Test Movie to preview the file in the test
environment.

Click each of the different header (title) bars to view the modified animations and switch
between each pane.
If you want to increase the animation speed, decrease openDuration from 3500
milliseconds to a smaller number. The default duration for the animation is 250
milliseconds (one fourth of a second).

Applying easing methods to the ComboBox
component
The process to change the default easing method on a ComboBox component is similar to the
example in “Applying easing methods to an Accordion component” on page 1315 where you
modify the Accordion component’s animation. In the following example, you use
ActionScript to dynamically add the component to the Stage at runtime.

To apply easing methods to a ComboBox component:

1. Create a new Flash document and save it as combobox.fla.

2. Drag a copy of the ComboBox component from the Components panel to the current
document’s library.

N
O

T
E

The component appears in the library (not on the Stage) and is available to the SWF
file at runtime.
1316 Tween class

3. Insert a new layer and rename it actions.

Make sure the actions layer is above Layer 1.
4. Add the following ActionScript to Frame 1 of the actions layer:

import mx.transitions.easing.*;
this.createClassObject(mx.controls.ComboBox, "my_cb", 20);
var product_array:Array = new Array("Studio", "Dreamweaver", "Flash",

"ColdFusion", "Contribute", "Breeze", "Director", "Flex");
my_cb.dataProvider = product_array;
my_cb.move(10, 10);
my_cb.setSize(140, 22);
my_cb.setStyle("openDuration", 2000);
my_cb.setStyle("openEasing", Elastic.easeOut);

After you import each of the easing methods, which occurs in the first line of code, the
createClassObject() method creates an instance of the ComboBox component. The
keyword this in the second line of code refers to the main of the SWF file. This line of
code puts the component on the Stage at runtime and gives it the instance name my_cb.
Next, you create an array named product_array that contains a list of Macromedia
software. You use this array in the following line of code to set the dataProvider property
to the array of product names. Then you use the setSize() method to resize the
component instance, set openDuration to 2000 milliseconds (2 seconds), and change the
easing method to Elastic.easeOut.

5. Save the current document, and select Control > Test Movie to view the document in the
test environment.

6. Click the ComboBox component on the Stage to use the specified easing class to animate
your drop-down list of product names.

Animating the DataGrid component
Flash 8 also lets you tweak the animations you use when you select items in a component
(such as the DataGrid, Tree, ComboBox, or List components). Although the animations are
subtle, in some cases you want to control small details or increase the speed of the animation.

N
O

T
E

As with earlier examples, you import the easing classes, which let you use the
shortened version of the class name instead of using the fully qualified class name of
mx.transitions.easing.Elastic.easeOut.

N
O

T
E

Use an easing method such as Elastic or Bounce for your ComboBox or Accordion
components with care. Some users might find it distracting if your options take a
long time to stop moving before they can read and select from the menu. Test your
individual applications and settings, and decide whether the easing methods
enhance or detract from your Flash document.
Applying easing methods to components 1317

To add easing to the DataGrid component:

1. Create a new Flash document and save it as datagrid.fla.

2. Drag an instance of the DataGrid component onto the Stage, and give it the name my_dg.

3. Insert a new layer and rename it actions.

Make sure you place the actions layer above Layer 1.
4. Add the following ActionScript to the actions layer:

import mx.transitions.easing.*;
my_dg.setSize(320, 240);
my_dg.addColumn("product");
my_dg.getColumnAt(0).width = 304;
my_dg.rowHeight = 60;
my_dg.addItem({product:"Studio"});
my_dg.addItem({product:"Dreamweaver"});
my_dg.addItem({product:"Flash"});
my_dg.setStyle("selectionEasing", Elastic.easeInOut);
my_dg.setStyle("selectionDuration", 1000);

This ActionScript imports the easing classes and resizes the component instance on the
Stage to 320 pixels (width) by 240 pixels (height). Next, you create a new column named
product and resize the column to 304 pixels (width). The data grid itself is 320 pixels wide,
although the scroll bar is 16 pixels wide, which leaves a difference of 304 pixels. Then you
set the row height to 60 pixels, which makes the easing animations easier to see.
The next three lines of ActionScript add items to the data grid instance so you can click
and see the animations. Finally, the selectionEasing and selectionDuration
properties are set using the setStyle() method. The easing method is set to
Elastic.easeInOut and the duration is set to 1000 milliseconds (one second, which is
five times longer than the default value of 200 milliseconds).

5. Save the document and select Control > Test Movie to view the result in the test
environment.

When you click an item in the DataGrid instance, you see the selection ease in and out
using the elastic effect. The animation should be easy to see because the duration is
significantly increased.

N
O

T
E

You can also use the same properties (selectionEasing and selectionDuration)
with the ComboBox, List, and Tree components.
1318 Tween class

Tween.continueTo()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.continueTo(finish, duration)

Parameters

finish A number indicating the ending value of the target object property that is to be
tweened.

duration A number indicating the length of time or number of frames for the tween motion;
duration is measured in length of time if the Tween.start() useSeconds parameter is set to
true, or measured in frames if it is set to false. For more information on the useSeconds
parameter, see Tween.start() on page 1334.

Returns

Nothing.

Description

Method; instructs the tweened animation to continue tweening from its current animation
point to a new finish and duration point.

Example

In this example a handler is triggered by the onMotionFinished event and tells a Tween
instance to continue its animation with new finish and duration values by calling the
Tween.continueTo() method. A movie clip instance named img1_mc is required on the
Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_y",

mx.transitions.easing.Elastic.easeOut,0, 200, 3, true);
myTween.onMotionFinished = function() {

var myFinish:Number = 100;
var myDuration:Number = 5;
myTween.continueTo(myFinish, myDuration);

};
Tween.continueTo() 1319

Tween.duration
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.duration

Description

Property (read-only); a number indicating the duration of the tweened animation in frames or
seconds. This property is set as a parameter when creating a new Tween instance or when
calling the Tween.yoyo() method.

Example

The following example traces the current duration setting of a Tween object by getting the
Tween.duration property. A movie clip instance named img1_mc is required on the Stage for
this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_y",

mx.transitions.easing.Strong.easeOut,0, Stage.height, 50, false);
var theDuration:Number = myTween.duration;
trace(theDuration);

Tween.fforward()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.fforward()

Returns

Nothing.
1320 Tween class

Description

Method; forwards the tweened animation directly to the final value of the tweened animation.

Example

In this example, Tween.fforward() is called to forward a tweened animation directly to its
final value, immediately triggering the onMotionFinished event. A handler for the
Tween.onMotionFinished event calls the Tween.yoyo() method. The tweened animation
therefore visibly starts with the reversing effect of the Tween.yoyo() method, since the initial
animation was skipped to its end. A movie clip instance named img1_mc is required on the
Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.Elastic.easeOut,0, Stage.width - img1_mc._width, 8,
true);

myTween.fforward();

myTween.onMotionFinished = function() {
myTween.yoyo();

};

Tween.finish
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.finish

Description

Property (read-only); a number indicating the ending value of the target object property that
is to be tweened. This property is set as a parameter when creating a new Tween instance or
when calling the Tween.yoyo() method.
Tween.finish 1321

Example

The following example returns the current finish setting of a Tween instance. A movie clip
instance named img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_y",

mx.transitions.easing.Strong.easeOut,0, Stage.height - img1_mc._height,
50, false);

var myFinish:Number = myTween.finish;
trace(myFinish);

Tween.FPS
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.FPS

Description

Property; the number of frames per second calculated into the tweened animation. By default
the current Stage frame rate is used to calculate the tweened animation. Setting this property
recalculates the number of increments in the animated property that is displayed each second
to the Tween.FPS property rather than the current Stage frame rate. Setting the Tween.FPS
property does not change the actual frame rate of the Stage.

N
O

T
E

The Tween.FPS property returns undefined unless it is first set explicitly.
1322 Tween class

Example

The following example creates two tweened animations set at two different FPS settings. The
current FPS settings of both Tween instances are displayed. A movie clip instance named
img1_mc, and a movie clip instance named img2_mc are required on the Stage for
this example:
import mx.transitions.Tween;
var myTween1:Tween = new Tween(img1_mc, "_y",

mx.transitions.easing.Strong.easeOut,0, Stage.height - img1_mc._height,
400, false);

myTween1.FPS = 1;
var myFPS1:Number = myTween1.FPS;
trace("myTween1.FPS:" + myFPS1);

var myTween2:Tween = new Tween(img2_mc, "_y",
mx.transitions.easing.Strong.easeOut,0, Stage.height - img2_mc._height,
400, false);

myTween2.FPS = 12;
var myFPS2:Number = myTween2.FPS;
trace("myTween2.FPS:" + myFPS2);

Tween.nextFrame()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.nextFrame()

Returns

Nothing.

Description

Method; forwards the tweened animation to the next frame of an animation that was stopped.
Use this method to forward a frame at a time of a tweened animation after you use the
Tween.stop() method to stop it.

N
O

T
E

This method may be used only on frame-based tweens. A tween is set to frame based at
its creation by setting the useSeconds parameter to false.
Tween.nextFrame() 1323

Example

This example applies a tweened animation to the img1_mc movie clip. The animation is
looped to play repeatedly from its starting point by calling the Tween.start() method from
within a handler triggered by the Tween.onMotionFinished event. Clicking a button called
forwardByFrame_btn calls the Tween.stop() method to stop the animation, followed by
calling the Tween.nextFrame() method. Clicking the button during the tweened animation
has the effect of stopping the animation and then moving forward by only a single frame.
When you create the Tween instance, the useSeconds parameter is declared false to make the
tween frame based. This process is required to use the Tween.nextFrame() method. A movie
clip instance named img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width, 60, false);

myTween.onMotionFinished = function() {
myTween.start();

};

forwardByFrame_btn.onRelease = function() {
 myTween.stop();
 myTween.nextFrame();

};

Tween.onMotionChanged
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.onMotionChanged = function() {

// ...
};
1324 Tween class

Description

Event handler; invoked with each change in the tweened object property that is being
animated. Handling this event allows your code to react as the target movie clip’s property
that is being tweened increments to the next value.

Example

In this example, a tween is applied to the img1_mc movie clip. With each increment of the
tween to the _x property of the movie clip, the onMotionChanged event handler is invoked
and displays a trace message indicating the tweened movie clip’s new position. A movie clip
instance named img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.Elastic.easeOut,0, Stage.width-img1_mc._width, 3,
true);

myTween.onMotionChanged = function() {
trace(this.position);

};

Tween.onMotionFinished
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.onMotionFinished = function() {

// ...
};

Description

Event handler; invoked when the animation reaches the end of its duration. Handling this
event allows your code to react at the point at which the tweened animation is finished.
Tween.onMotionFinished 1325

Example

In the following example, a tween is applied to the img1_mc movie clip. When the tween
reaches the end of its animation, it invokes the onMotionFinished event handler which calls
the Tween.yoyo()method. The tween is therefore able to complete its animation before the
Tween.yoyo() method is called to reverse the animation. A movie clip instance named
img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.Elastic.easeOut,0, Stage.width-img1_mc._width, 3,
true);

myTween.FPS = 30;
myTween.onMotionFinished = function() {

myTween.yoyo();
};

Tween.onMotionResumed
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.onMotionResumed = function() {

// ...
};

Description

Event handler; invoked when the Tween.resume() method is called. Handling this event
allows your code to react at the point at which the tweened animation was resumed.
1326 Tween class

Example

The following example applies a tweened animation to the img1_mc movie clip. The
animation is looped to play repeatedly from its starting point by calling the Tween.start()
method from within an onMotionFinished event handler. Clicking a button called
stopTween_btn calls the Tween.stop() method to stop the tweened animation at its current
value. Clicking a button called resumeTween_btn calls the Tween.resume() method to
resume the tweened animation from its stopping point. When the Tween.resume() method
is called, the Tween instance invokes the onMotionResumed handler. A movie clip instance
named img1_mc, a movie clip instance named stopTween_btn, and a movie clip instance
named resumeTween_btn, are required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width, 3, true);

myTween.onMotionFinished = function() {
myTween.start();

};

myTween.onMotionResumed = function() {
trace("onMotionResumed");

};

stopTween_btn.onRelease = function() {
 myTween.stop();

};

resumeTween_btn.onRelease = function() {
 myTween.resume();

};

Tween.onMotionStarted
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.onMotionStarted = function() {

// ...
};
Tween.onMotionStarted 1327

Description

Event handler; invoked when the animation starts again during or after completing its
animation. This event handler is not invoked at the initial start of a tweened animation.
Calling the Tween.start(), Tween.yoyo() or Tween.yoyo()method to restart a finished
animation or restart during an animation invokes the onMotionStarted event handler.
Handling this event allows your code to react at the point at which the tweened animation
was started again sometime after its initial start.

Example

The following example applies a tweened animation to the img1_mc movie clip. The
animation is looped to play repeatedly from its starting point by calling the Tween.start()
method from within the Tween.onMotionFinished event handler. When the
Tween.start() method is called, the Tween instance invokes the Tween.onMotionStarted
event handler. A movie clip instance named img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width, 4, true);

myTween.onMotionFinished = function() {
myTween.start();

};

myTween.onMotionStarted = function() {
trace("onMotionStarted");

};

Tween.onMotionStopped
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.onMotionStopped = function() {

// ...
};
1328 Tween class

Description

Event handler; invoked when the tweened animation completes to the end of its animation or
when the Tween.stop() method is called. Handling this event allows your code to react at
the point at which the tweened animation was stopped.

Example

The following example applies a tweened animation to the img1_mc movie clip. When the
Tween instance finishes its animation, the Tween instance invokes the
Tween.onMotionStopped event handler. A movie clip instance named img1_mc is required on
the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width-img1_mc._width, 3,
true);

myTween.onMotionStopped = function() {
trace("onMotionStopped");

};

Tween.position
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.position

Description

Property (read-only); the current value of the target object property being tweened. This value
updates with each drawn frame of the tweened animation.
Tween.position 1329

Example

The following example traces a Tween object’s current Tween.position and the
Tween.position value that the tween position ends with at the last frame of the tweened
animation. A movie clip instance named img1_mc is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new mx.transitions.Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, 0, Stage.width-img1_mc._width, 3,
true);

myTween.onMotionChanged = function() {
var myPosition:Number = myTween.position;
var myFinish:Number = myTween.finish;
trace(myPosition + " : " + myFinish);

};

Tween.prevFrame()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.prevFrame()

Returns

Nothing.

Description

Method; plays the previous frame of the tweened animation from the current stopping point
of an animation that was stopped. Use this method to play a tweened animation backwards
one frame at a time after you use the Tween.stop() method to stop it.

N
O

T
E

This method may be used only on frame-based tweens. A tween is set to frame based at
its creation by setting the Tween.start() useSeconds parameter to false. For more
information on the useSeconds parameter, see Tween.start() on page 1334.
1330 Tween class

Example

This example applies a tweened animation to the img1_mc movie clip. The animation is
looped to play repeatedly from its starting point by calling the Tween.start() method from
within a handler triggered by the onMotionFinished event. Clicking a button called
forwardByFrame_btn calls the Tween.stop() method to stop the animation, followed by
calling the Tween.prevFrame() method. Clicking the button during the tweened animation
stops the animation and then reverses it by only a single frame. Clicking the
resumeTween_btn button calls the Tween.resume() method, and the tweened animation
resumes. When you create the Tween instance, the useSeconds parameter is declared false
to make the tween frame-based. This process is required to use the Tween.nextFrame()
method. A movie clip instance named img1_mc, a movie clip instance named
resumeTween_btn and a movie clip instance named reverseByFrame_btn are required on
the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, -img1_mc._width, Stage.width, 50,
false);

myTween.onMotionFinished = function() {
myTween.start();

};

reverseByFrame_btn.onRelease = function() {
 myTween.stop();
 myTween.prevFrame();

};
resumeTween_btn.onRelease = function() {

 myTween.resume();
};

Tween.resume()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.resume()
Tween.resume() 1331

Returns

Nothing.

Description

Method; resumes the play of a tweened animation that has been stopped. Use this method to
continue a tweened animation after you have stopped it by using the Tween.stop() method.

Example

This example applies a tweened animation to the img1_mc movie clip. The animation is
looped to play repeatedly from its starting point by calling the Tween.start() method from
within a handler triggered by the onMotionFinished event. Clicking the stopTween_btn
button calls the Tween.stop() method to stop the tweened animation at its current value.
Clicking the resumeTween_btn button calls the Tween.resume() method to resume the
tweened animation from its stopping point. A movie clip instance named img1_mc, a movie
clip instance named stopTween_btn, and a movie clip instance named resumeTween_btn,
are required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, -img1_mc._width, Stage.width, 3,
true);

myTween.onMotionFinished = function() {
myTween.start();

};

stopTween_btn.onRelease = function() {
 myTween.stop();

};
resumeTween_btn.onRelease = function() {

 myTween.resume();
};

N
O

T
E

This method may be used only on frame-based tweens. A tween is set to be frame based
at its creation by setting the useSeconds parameter to false.
1332 Tween class

Tween.rewind()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.rewind()

Parameters

None.

Returns

Nothing.

Description

Method; moves the play of a tweened animation back to its starting value. If Tween.rewind()
is called while the tweened animation is still playing, the animation rewinds to its starting
value and continues playing. If Tween.rewind() is called while the tweened animation has
been stopped or has finished its animation, the tweened animation rewinds to its starting
value and remains stopped. Use this method to rewind a tweened animation to its starting
point after you have stopped it by using the Tween.stop() method or to rewind a tweened
animation during its play.
Tween.rewind() 1333

Example

The following example applies a tweened animation to the img1_mc movie clip. The
animation is looped to play repeatedly from its starting point by calling the Tween.start()
method from within a handler triggered by the Tween.onMotionFinished event. Clicking
the rewindTween_btn button calls the Tween.rewind() method to rewind the tweened
animation to its starting point. A movie clip instance named img1_mc, a movie clip instance
named stopTween_btn, a movie clip instance named rewindTween_btn and a movie clip
instance named resumeTween_btn, are required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, img1_mc._width, Stage.width, 8,
true);

myTween.onMotionFinished = function() {
myTween.start();

};

stopTween_btn.onRelease = function() {
myTween.stop();

};

rewindTween_btn.onRelease = function() {
myTween.rewind();

};

resumeTween_btn.onRelease = function() {
myTween.resume();

};

Tween.start()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.start()

Returns

Nothing.
1334 Tween class

Description

Method; starts the play of a tweened animation from its starting point. This method is used
for re-starting a Tween from the beginning of its animation after it stops or has completed
its animation.

Example

This example creates a new Tween object that animates the _x property of the img1_mc movie
clip. After the tweened animation is complete and calls the Tween.onMotionFinished event
handler, the tween is played again by calling the Tween.start() method. The result is a
movie clip that moves across the Stage from left to right and then starts the animation over
again when it reaches the end of the Stage. A movie clip instance named img1_mc, is required
on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width, 50, false);

myTween.onMotionFinished = function() {
myTween.start();

};

Tween.stop()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.stop()

Returns

Nothing.

Description

Method; stops the play of a tweened animation at its current value.
Tween.stop() 1335

Example

The following example applies a tweened animation to the _x property of the img1_mc movie
clip. A stopTween_btn movie clip’s onRelease() handler calls the Tween.stop() method to
stop the tweened animation and a resumeTween_btn movie clip’s onRelease() handler calls
the Tween.resume() method to resume the animation from a stopped position. A movie clip
instance named img1_mc, a movie clip instance named stopTween_btn, and a movie clip
instance named resumeTween_btn, are required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, img1_mc._width, Stage.width, 8,
true);

myTween.onMotionFinished = function() {
myTween.start();

};

stopTween_btn.onRelease = function() {

 myTween.stop();
};

resumeTween_btn.onRelease = function() {
 myTween.resume();

};

Tween.time
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.time

Description

Property (read-only); the current number of seconds that have passed within the duration of
the animation if the useSeconds parameter was set to true when creating the Tween
instance. If the useSeconds parameter of the animation was set to false, Tween.time
returns the current number of frames that have passed in the Tween object animation.
1336 Tween class

Example

The following example returns the time value of a Tween instance. A movie clip instance
named img1_mc, is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new mx.transitions.Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone, 0, Stage.width-img1_mc._width, 10,
false);

myTween.onMotionChanged = function() {
var myCurrentTime:Number = myTween.time;
var myCurrentDuration:Number = myTween.duration;

trace(myCurrentTime + " of " + myCurrentDuration);
};

Tween.toString()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.toString()

Returns

The following string is returned: “[Tween]”.

Description

Method; returns the class name, “[Tween]”.

Example

In the following example a Tween object is identified by calling the Tween.toString()
method to return “[Tween]”, identifying the object’s class name. A movie clip instance
named img1_mc, is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_alpha",

mx.transitions.easing.None.easeNone,0, 100, 50, false);
var theClassName:String = myTween.toString();
trace(theClassName);
Tween.toString() 1337

Tween.yoyo()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
tweenInstance.yoyo()

Returns

Nothing.

Description

Method; instructs the tweened animation to play in reverse from its last direction of tweened
property increments. If this method is called before a Tween object’s animation is complete,
the animation abruptly jumps to the end of its play and then plays in a reverse direction from
that point. You can achieve an effect of an animation completing its entire play and then
reversing its entire play by calling the Tween.yoyo() method within a
Tween.onMotionFinished event handler. This process ensures that the reverse effect of the
Tween.yoyo method does not begin until the current tweened animation is complete. See
Tween.onMotionFinished on page 1325.

Example

In the following example, a handler is triggered by the Tween.onMotionFinished event and
tells the Tween instance to animate the img1_mc movie clip in a reverse direction by calling
the Tween.yoyo() method. The result is a movie clip that moves from the left of the Stage to
the right and then reverses direction, moving from right to left in an animation loop. A movie
clip instance named img1_mc, is required on the Stage for this example:
import mx.transitions.Tween;
var myTween:Tween = new Tween(img1_mc, "_x",

mx.transitions.easing.None.easeNone,0, Stage.width, 4, true);
myTween.onMotionFinished = function() {

myTween.yoyo();
};
1338 Tween class

52

CHAPTER 52

UIComponent class
The UIComponent class does not represent a visual component; it contains methods,
properties, and events that allow Macromedia components to share some common behavior.
All version 2 Macromedia Component Architecture components extend UIComponent. The
UIComponent class lets you do the following:

■ Receive focus and keyboard input
■ Enable and disable components
■ Resize by layout

To use the methods and properties of UIComponent, you call them directly from whichever
component you are using. For example, to call UIComponent.setFocus() from the
RadioButton component, you would write the following code:
myRadioButton.setFocus();

You only need to create an instance of UIComponent if you are using version 2 of the
Macromedia Component Architecture to create a new component. Even in that case,
UIComponent is often created implicitly by other subclasses such as Button. If you do need
to create an instance of UIComponent, use the following code:
class MyComponent extends mx.core.UIComponent;

UIComponent class (API)
Inheritance MovieClip > UIObject class > UIComponent

ActionScript Class Name mx.core.UIComponent

The methods, properties, and events of the UIComponent class allow you to control the
common behavior of Flash visual components.
1339

Method summary for the UIComponent class
The following table lists methods of the UIComponent class.

Methods inherited from the UIObject class
The following table lists the methods the UIComponent class inherits from the UIObject
class. When calling these methods from the UIComponent object, use the form
UIComponentInstance.methodName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
1340 UIComponent class

Property summary for the UIComponent class
The following table lists properties of the UIComponent class.

Properties inherited from the UIObject class
The following table lists the properties the UIComponent class inherits from the UIObject
class. When accessing these properties from the UIComponent object, use the form
UIComponentInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
UIComponent class (API) 1341

Event summary for the UIComponent class
The following table lists events of the UIComponent class.

Events inherited from the UIObject class
The following table lists the events the UIComponent class inherits from the UIObject class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
1342 UIComponent class

UIComponent.enabled
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.enabled

Description

Property; indicates whether the component can (true) or cannot (false) accept focus and
mouse input. The default value is true.

Example

The following example sets the enabled property of a CheckBox component to false:
checkBoxInstance.enabled = false;

UIComponent.focusIn
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.focusIn = function(eventObj:Object) {

//...
};
componentInstance.addEventListener("focusIn", listenerObject);

Usage 2:
on (focusIn) {

// ...
}

UIComponent.focusIn 1343

Description

Event; notifies listeners that the object has received keyboard focus.

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusIn), and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create.
You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an
event object (eventObject) to the listener object method. Each event object has properties
that contain information about the event. You can use these properties to write code that
handles the event. Finally, you call the EventDispatcher.addEventListener()method on
the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.

Example

The following code disables a Button component, btn, while a user types the TextInput
component, txt, and enables the button when the user clicks it:
var txt:mx.controls.TextInput;
var btn:mx.controls.Button;

var txtListener:Object = new Object();
txtListener.focusOut = function() {

_root.btn.enabled = true;
}
txt.addEventListener("focusOut", txtListener);

var txtListener2:Object = new Object();
txtListener2.focusIn = function() {

_root.btn.enabled = false;
}
txt.addEventListener("focusIn", txtListener2);

See also

EventDispatcher.addEventListener(), UIComponent.focusOut
1344 UIComponent class

UIComponent.focusOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
on(focusOut){

...
}
listenerObject = new Object();
listenerObject.focusOut = function(eventObject){

...
}
componentInstance.addEventListener("focusOut", listenerObject)

Description

Event; notifies listeners that the object has lost keyboard focus.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusOut) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create.
You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an
event object (eventObject) to the listener object method. Each event object has properties
that contain information about the event. You can use these properties to write code that
handles the event. Finally, you call the EventDispatcher.addEventListener()method on
the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
UIComponent.focusOut 1345

Example

The following code disables a Button component, btn, while a user types the TextInput
component, txt, and enables the button when the user clicks it:
var txt:mx.controls.TextInput;
var btn:mx.controls.Button;

var txtListener:Object = new Object();
txtListener.focusOut = function() {

_root.btn.enabled = true;
}
txt.addEventListener("focusOut", txtListener);

var txtListener2:Object = new Object();
txtListener2.focusIn = function() {

_root.btn.enabled = false;
}
txt.addEventListener("focusIn", txtListener2);

See also

EventDispatcher.addEventListener(), UIComponent.focusIn

UIComponent.getFocus()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getFocus();

Parameters

None.

Returns

A reference to the object that currently has focus.

Description

Method; returns a reference to the object that has keyboard focus.
1346 UIComponent class

Example

The following code returns a reference to the object that has focus and assigns it to the
tmp variable:
var tmp = checkbox.getFocus();

UIComponent.keyDown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
on(keyDown){

...
}
listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

...
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; notifies listeners when a key is pressed. This is a very low-level event that you should
not use unless necessary, because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyDown) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
UIComponent.keyDown 1347

Example

The following code makes an icon blink when a key is pressed:v
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyDown", formListener);

UIComponent.keyUp
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
on(keyUp){

...
}
listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

...
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; notifies listeners when a key is released. This is a low-level event that you should not
use unless necessary, because it can affect system performance.
The first usage example uses an on() handler and must be attached directly to a
component instance.
The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyUp) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.
For more information, see “EventDispatcher class” on page 499.
1348 UIComponent class

Example

The following code makes an icon blink when a key is released:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyUp", formListener);

UIComponent.setFocus()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setFocus();

Parameters

None.

Returns

Nothing.

Description

Method; sets the focus to this component instance. The instance with focus receives all
keyboard input.

Example

The following code gives focus to the checkbox instance:
checkbox.setFocus();
UIComponent.setFocus() 1349

UIComponent.tabIndex
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
instance.tabIndex

Description

Property; a number indicating the tabbing order for a component in a document.

Example

The following code sets the value of tmp to the tabIndex property of the checkbox instance:
var tmp = checkbox.tabIndex;
1350 UIComponent class

53

CHAPTER 53

UIEventDispatcher class
ActionScript Class Name mx.events.UIEventDispatcher

Inheritance EventDispatcher class > UIEventDispatcher

The UIEventDispatcher class is mixed in to the UIComponent class and allows components
to emit certain events.

If you want an object that doesn’t inherit from UIComponent to dispatch certain events, you
can use UIEventDispatcher.

Method summary for the UIEventDispatcher class
The following table lists the method of the UIEventDispatcher class.

Methods inherited from the EventDispatcher class
The following table lists the methods the UIEventDispatcher class inherits from the
EventDispatcher class. When calling these methods from the UIEventDispatcher object, use
the form UIEventDispatcherInstance.methodName.

Method Description

UIEventDispatcher.removeEventListener() Removes a registered listener from a component
instance. This method overrides the
eventDispatcher.removeEventListenter()
method.

Method Description

EventDispatcher.addEventListener() Registers a listener to a component instance.

EventDispatcher.dispatchEvent() Dispatches an event to all registered listeners.
1351

Event summary for the UIEventDispatcher class
The following table lists events of the UIEventDispatcher class.

UIEventDispatcher.keyDown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; broadcast to all registered listeners when a key is pressed and the Flash application
has focus.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.

Method Description

UIEventDispatcher.keyDown Broadcast when a key is pressed.

UIEventDispatcher.keyUp Broadcast when a pressed key is released.

UIEventDispatcher.load Broadcast when a component loads into Flash Player.

UIEventDispatcher.mouseDown Broadcast when the mouse is pressed.

UIEventDispatcher.mouseOut Broadcast when the mouse is moved off a
component instance.

UIEventDispatcher.mouseOver Broadcast when the mouse is moved over a
component instance.

UIEventDispatcher.mouseUp Broadcast when the mouse is pressed and released.

UIEventDispatcher.unload Broadcast when a component is unloaded from
Flash Player.
1352 UIEventDispatcher class

UIEventDispatcher.keyUp
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; broadcast to all registered listeners when a key that was pressed is released and the Flash
application has focus.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.

UIEventDispatcher.load
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.load = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("load", listenerObject)
UIEventDispatcher.load 1353

Description

Event; broadcast to all registered listeners when a component is loaded into Flash Player.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.

UIEventDispatcher.mouseDown
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.mouseDown = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("mouseDown", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse
is pressed.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.

UIEventDispatcher.mouseOut
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
1354 UIEventDispatcher class

Usage
listenerObject = new Object();
listenerObject.mouseOut = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("mouseOut", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
moved off a component instance.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.

UIEventDispatcher.mouseOver
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.mouseOver = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("mouseOver", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
moved over a component instance.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.
UIEventDispatcher.mouseOver 1355

UIEventDispatcher.mouseUp
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.mouseUp = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("mouseUp", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
pressed and released.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event. For more information, see
“EventDispatcher class” on page 499.

UIEventDispatcher.removeEventListener()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage
componentInstance.removeEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.
1356 UIEventDispatcher class

Description

Method; unregisters a listener object from a component instance that is broadcasting an
event. This method overrides the EventDispatcher.removeEventListener() event found
in the EventDispatcher base class.

UIEventDispatcher.unload
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.unload = function(eventObject){

// Insert your code here.
}
componentInstance.addEventListener("unload", listenerObject)

Description

Event; broadcast to all registered listeners when a component is unloaded from Flash Player.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can
use these properties to write code that handles the event.
UIEventDispatcher.unload 1357

1358 UIEventDispatcher class

54

CHAPTER 54

UIObject class
Inheritance MovieClip > UIObject

ActionScript Class Name mx.core.UIObject

UIObject is the base class for all version 2 of the Macromedia Component Architecture
components; it is not a visual component. The UIObject class wraps the ActionScript
MovieClip object and contains functions and properties that allow version 2 components to
share some common behavior. Wrapping the MovieClip class allows Macromedia to add new
events and extend functionality in the future without breaking content. Wrapping the
MovieClip class also allows users who aren’t familiar with the traditional Flash concepts of
“movie” and “frame” to use properties, methods, and events to create component-based
applications without learning those concepts.

The UIObject class implements the following:

■ Styles
■ Events
■ Resize by scaling

To use the methods and properties of the UIObject class, you call them directly from
whichever component you are using. For example, to call the UIObject.setSize() method
from the RadioButton component, you would write the following code:
myRadioButton.setSize(30, 30);

You only need to create an instance of UIObject if you are using version 2 of the Macromedia
Component Architecture to create a new component. Even in that case, UIObject is often
created implicitly by other subclasses like Button. If you do need to create an instance of
UIObject, use the following code:
class MyComponent extends UIObject;
1359

Method summary for the UIObject class
The following table lists methods of the UIObject class.

Property summary for the UIObject class
The following table lists properties of the UIObject class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createLabel() Creates a TextField subobject, for use when
creating components.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.
1360 UIObject class

Event summary for the UIObject class
The following table lists events of the UIObject class.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
1361

UIObject.bottom
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.bottom

Description

Property (read-only); a number indicating the bottom position of the object, in pixels, relative
to its parent’s bottom. To set this property, call UIObject.move().

Example

This example moves the check box so it aligns under the bottom edge of the list box:
myCheckbox.move(myCheckbox.x, form.height - listbox.bottom);

UIObject.createClassObject()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.createClassObject(className, instanceName, depth,

initObject)

Parameters

className An object indicating the class of the new instance.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject object that is an instance of the specified class.
1362 UIObject class

Description

Method; creates an instance of a component at runtime. Use the import statement and
specify the class package name before you call this method. In addition, the component must
be in the FLA file’s library.

Example

The following code imports the assets of the Button component and then makes a subobject
of the Button component:
import mx.controls.Button;
createClassObject(Button,"button2",5,{label:"Test Button"});

The following example creates a CheckBox object:
import mx.controls.CheckBox;
form.createClassObject(CheckBox, "cb", 0, {label:"Check this"});

You can also use the following syntax to specify the class package name:
createClassObject(mx.controls.Button, "button2", 5, {label:"Test Button"});

UIObject.createLabel()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
createLabel(name, depth, text)

Parameters

name A string for the instance name.

depth A number indicating the depth of the new instance.

text The text for the label.

Returns

A TextField object.
UIObject.createLabel() 1363

Description

Method; creates a TextField subobject. Used by most components to get a lightweight text
object to display text in the component while inheriting sizing and style methods and
properties of the component. This method is used to create new components. The TextField
that is created is the same as a TextField object created using
MovieClip.createTextField(), but has the added benefit of inheriting useful properties
and methods from the parent UIObject.

A TextField that uses UIObject.createLabel() to create within a component can take
advantage of the following inherited UIObject methods to set sizing and styles within the
context of the parent UIObject:

■ TextField.getPreferredHeight() : Number
■ TextField.getPreferredWidth() : Number
■ TextField.setStyle(styleName : String, value)
■ TextField.setSize(width : Number, height : Number)
■ TextField.setValue(text : String)

For more information, see the MultilineCell.as file example in “Simple cell renderer example”
on page 112.

Example

The following example creates a TextField instance called multiLineLabel within a
component’s UIComponent.createChildren() method:
public function createChildren():Void {

var myTextField_txt:TextField = this.createLabel("multiLineLabel", 900,
"Hello World");
// Set the fontSize style attribute of the TextField.
myTextField_txt.setStyle("fontSize", 18);
// Set the TextField’s initial size.
myTextField_txt.setSize(myTextField_txt.getPreferredWidth(),
myTextField_txt.getPreferredHeight());
// Set the TextField’s initial location in the center of the Stage.
myTextField_txt._x = (Stage.width/2) - (myTextField_txt._width/2);
myTextField_txt._y = (Stage.height/2) - (myTextField_txt._height/2);

}

N
O

T
E

TextFields created with UIObject.createLabel() have an initial
TextField._visible property of false. This property is used to avoid flickering
that may occur while UIObject.setSize() is called by the parent component. The
TextField._visible property is set to true when the UIObject.draw() is called
after the parent component’s children objects are resized.
1364 UIObject class

UIObject.createObject()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.createObject(linkageName, instanceName, depth,

initObject)

Parameters

linkageName A string indicating the linkage identifier of a symbol in the library.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject object that is an instance of the symbol.

Description

Method; creates a subobject on an object. This method is generally used only by component
developers or advanced developers.

Example

The following example creates a CheckBox instance on the form object:
form.createObject("CheckBox", "sym1", 0);

UIObject.destroyObject()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
destroyObject(instanceName)
UIObject.destroyObject() 1365

Parameters

instanceName A string indicating the instance name of the object to be destroyed.

Returns

Nothing.

Description

Method; destroys a component instance.

Example

The following example removes the TextInput instance my_ti when the button is clicked.
With a Button and a TextInput component in the current document’s library, add the
following code to the first frame of the main timeline:
//Create textinput and button instances
this.createClassObject(mx.controls.TextInput, "my_ti", 1, {text:"Hello

World"});
this.createClassObject(mx.controls.Button, "my_button", 2, {label:"My

Button"});
//Shift button to be below text input
my_button.move(my_ti.left, Stage.height - my_ti.bottom);

//Create Listener Object for button click
var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object){

destroyObject("my_ti");
}
//Add Listener
my_button.addEventListener("click", buttonListener);

UIObject.doLater()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.doLater(target, "function")
1366 UIObject class

Parameters

target A reference to a timeline that contains the specified function.

function A string indicating a function name to be called after a frame within the
component movie clip has passed (so the component’s properties set in the Property or
Component inspector are available).

Returns

Nothing.

Description

Method; calls a user-defined function only after the component has finished setting all of its
properties from the Property inspector or Component inspector. All version 2 components
that inherit from UIObject have the doLater() method.

Component properties set in the Property inspector or Component inspector may not be
immediately available to ActionScript in the timeline. For example, attempting to trace the
label property from a CheckBox component using ActionScript on the first frame of your
SWF file fails without notification, even though the component appears on the Stage as
expected.

Although properties that are set in a class or a frame script are available immediately, most
properties assigned in the Property inspector or Component inspector are not set until the
next frame within the component itself.

Although any approach that delays access of the property will resolve this problem, the
simplest and most direct solution is to use the doLater() method.

Example

The following example shows how the doLater() method is used:
// doLater() is called from the component instance

myCheckBox.doLater(this, "delay");

// The function or method called from doLater().

function delay() {
 trace(myCheckBox.label); // The property can now be traced
 // any additional statements go here
}

UIObject.doLater() 1367

UIObject.draw
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.draw = function(eventObject:Object) {

// ...
};
componentInstance.addEventListener("draw", listenerObject);

Usage 2:
on (draw) {

// ...
}

Description

Event; notifies listeners that the object is about to draw its graphics. This is a low-level event
that you should not use unless necessary because it can affect system performance.

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, draw) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.
1368 UIObject class

Example

The following code redraws the object form2 when the form object is drawn:
formListener.draw = function(eventObj:Object) {

form2.redraw(true);
}
form.addEventListener("draw", formListener);

See also

EventDispatcher.addEventListener()

UIObject.getStyle()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.getStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example,
"fontWeight", "borderStyle", and so on).

Returns

The value of the style property. The value can be of any data type.

Description

Method; gets the style property from the style declaration or object. If the style property is an
inheriting style, the ancestors of the object may be the source of the style value.

For a list of the styles supported by each component, see the individual component entries.
See also “Using global, custom, and class styles in the same document” in Using Components.

Example

The following code sets the ib instance’s fontWeight style property to bold if the cb
instance’s fontWeight style property is bold:
if (cb.getStyle("fontWeight") == "bold") {
 ib.setStyle("fontWeight", "bold");
};
UIObject.getStyle() 1369

UIObject.height
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.height

Description

Property (read-only); a number indicating the height of the object, in pixels. To change the
height property, call UIObject.setSize().

Example

The following example increases the check box height:
myCheckbox.setSize(myCheckbox.width, myCheckbox.height + 10);

UIObject.hide
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.hide = function(eventObject:Object) {

// ...
};
componentInstance.addEventListener("hide", listenerObject);

Usage 2:
on (hide) {

// ...
}

1370 UIObject class

Description

Event; broadcast when the object’s visible property is changed from true to false.

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes invisible.
on (hide) {

trace("I’ve become invisible.");
}

See also

UIObject.reveal

UIObject.invalidate()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.invalidate()

Returns

Nothing.

Description

Method; marks the object so it is redrawn on the next frame interval.

This method is primarily useful to developers of new custom components. A custom
component is likely to support a number of operations that change the component’s
appearance.

Often, the best way to build a component is to centralize the logic for updating the
component’s appearance in the draw() method. If the component has a draw() method, you
can call invalidate() on the component to redraw it. (For information on defining a
draw() method, see “Defining the draw() method” in Using Components.)
UIObject.invalidate() 1371

All operations that change the component’s appearance can call invalidate() instead of
redrawing the component themselves. This has some advantages: code isn’t duplicated
unnecessarily, and multiple changes can easily be batched up into one redraw, instead of
causing multiple, redundant redraws.

Example

The following example marks the ProgressBar instance pBar for redrawing:
pBar.invalidate();

UIObject.left
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.left

Description

Property (read-only); a number indicating the left edge of the object, in pixels, relative to its
parent. To set this property, call UIObject.move().

UIObject.load
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.load = function(eventObject:Object) {

// ...
};
componentInstance.addEventListener("load", listenerObject);
1372 UIObject class

Usage 2:
on (load) {

//...
}

Description

Event; notifies listeners that the subobject for this object is being created.

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, load) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.

Example

The following example creates an instance of MySymbol after the form instance is loaded:
var formListener:Object = new Object();
formListener.load = function(eventObj:Object) {

form.createObject("MySymbol", "sym1", 0);
};
form.addEventListener("load", formListener);

UIObject.move
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
UIObject.move 1373

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.move = function(eventObject:Object):Void {

// ...
};
componentInstance.addEventListener("move", listenerObject);

Usage 2:
on (move) {

// ...
}

Description

Event; notifies listeners that the object has moved.

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, move) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.

Example

The following example calls the move() method to reposition a Button component,
my_button, from its current position to the upper-left corner (10,10) of the Stage:
var my_button:mx.controls.Button;
my_button.addEventListener("move", doMove);
function doMove(evt_obj:Object):Void {

trace(evt_obj.target + " moved from {oldX:" + evt_obj.oldX + ", oldY:" +
evt_obj.oldY + "} to {x:" + evt_obj.target.x + ", y:" + evt_obj.target.y
+ "}");

}
my_button.move(10, 10);
1374 UIObject class

UIObject.move()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.move(x, y, noEvent)

Parameters

x A number that indicates the position of the object’s upper left corner, relative to its parent.

y A number that indicates the position of the object’s upper left corner, relative to its parent.

noEvent A Boolean value that indicates whether the move event should be dispatched.

Returns

Nothing.

Description

Method; moves the object to the requested position. Pass only integer values to
UIObject.move(), or the component may appear fuzzy.

Example

The following example moves the check box 10 pixels to the right:
myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);

The following example calls the move() method to reposition a Button component,
my_button, from its current position to the upper-left corner (10,10) of the Stage:
var my_button:mx.controls.Button;
my_button.addEventListener("move", doMove);
function doMove(evt_obj:Object):Void {

trace(evt_obj.target + " moved from {oldX:" + evt_obj.oldX + ", oldY:" +
evt_obj.oldY + "} to {x:" + evt_obj.target.x + ", y:" + evt_obj.target.y
+ "}");

}
my_button.move(10, 10);
UIObject.move() 1375

UIObject.redraw()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.redraw(always)

Parameters

always A Boolean value. If true, the method draws the object, even if invalidate()
wasn’t called. If false, the method draws the object only if invalidate() was called.

Returns

Nothing.

Description

Method; forces validation of the object so that it is drawn in the current frame.

Example

The following example creates a check box and a button and draws them because other scripts
are not expected to modify the form:
form.createClassObject(mx.controls.CheckBox, "cb", 0);
form.createClassObject(mx.controls.Button, "b", 1);
form.redraw(true)

UIObject.resize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.
1376 UIObject class

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.resize = function(eventObject:Object) {

// ...
};
componentInstance.addEventListener("resize", listenerObject);

Usage 2:
on (resize) {

// ...
}

Description

Event; notifies listeners that an object has been resized.

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, resize) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.

Example

The following example calls the setSize() method to make sym1 half the width and a fourth
of the height when form is moved:
var formListener:Object = new Object();
formListener.resize = function(eventObj:Object):Void {

form.sym1.setSize(sym1.width / 2, sym1.height / 4);
};
form.addEventListener("resize", formListener);
UIObject.resize 1377

The following example calls the setSize() method to resize a Button component,
my_button, to 200 pixels wide by 100 pixels high:
var my_button:mx.controls.Button;

my_button.addEventListener("resize", doSize);
function doSize(evt_obj:Object):Void {

trace(evt_obj.target + " resized from {oldWidth:" + evt_obj.oldWidth + ",
oldHeight:" + evt_obj.oldHeight + "} to {width:" + evt_obj.target.width +
", height:" + evt_obj.target.height + "}");

}
my_button.setSize(200, 100);

UIObject.reveal
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.reveal = function(eventObject:Object) {

// ...
};
componentInstance.addEventListener("reveal", listenerObject);

Usage 2:
on (reveal) {

// ...
}

Description

Event; broadcast when the object’s visible property changes from false to true.
1378 UIObject class

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes visible.
on (reveal) {

trace("I’ve become visible.");
}

See also

UIObject.hide

UIObject.right
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.right

Description

Property (read-only); a number indicating the right edge of the object, in pixels, relative to its
parent’s right edge. To set this property, call UIObject.move().

Example

The following example moves the check box so it aligns under the right edge of the list box:
myCheckbox.move(form.width - listbox.right, myCheckbox.y);

UIObject.scaleX
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.scaleX
UIObject.scaleX 1379

Description

Property; a number indicating the scaling factor in the x direction of the object, relative to
its parent.

Example

The following example makes the check box twice as wide and sets the tmp variable to the
horizontal scale factor:
checkbox.scaleX = 200;
var tmp:Number = checkbox.scaleX;

UIObject.scaleY
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.scaleY

Description

Property; a number indicating the scaling factor in the y direction of the object, relative to
its parent.

Example

The following example makes the check box twice as high and sets the tmp variable to the
vertical scale factor:
checkbox.scaleY = 200;
var tmp:Number = checkbox.scaleY;
1380 UIObject class

UIObject.setSize()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setSize(width, height, noEvent)

Parameters

width A number that indicates the width of the object, in pixels.

height A number that indicates the height of the object, in pixels.

noEvent A Boolean value that indicates whether the resize event should be dispatched.

Returns

Nothing.

Description

Method; resizes the object to the requested size. You should pass only integer values to
UIObject.setSize(), or the component may appear fuzzy. This method (as with all
methods and properties of UIObject) is available from any component instance.

When you call this method on a ComboBox instance, the combo box is resized and the
rowHeight property of the contained list also changes.

Example

The following example resizes the pBar component instance to 100 pixels wide and 100
pixels high:
pBar.setSize(100, 100);

N
O

T
E

Some components allow you to modify height or width dimensions only. For example,
the CheckBox and RadioButton components do not allow you to modify the height.
UIObject.setSize() 1381

The following example calls the setSize() method to resize the my_button Button
component to 200 pixels wide by 100 pixels high:
var my_button:mx.controls.Button;

my_button.addEventListener("resize", doSize);
function doSize(evt_obj:Object):Void {

trace(evt_obj.target + " resized from {oldWidth:" + evt_obj.oldWidth + ",
oldHeight:" + evt_obj.oldHeight + "} to {width:" + evt_obj.target.width +
", height:" + evt_obj.target.height + "}");

}
my_button.setSize(200, 100);

UIObject.setSkin()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setSkin(id, linkageName)

Parameters

id A number indicating the depth of the skin within the component.

linkageName A string indicating an asset in the library.

Returns

A reference to the movie clip (skin) that was attached.

Description

Method; sets a skin in the component instance. Use this method in a component’s class file
when you are creating a component. For more information, see “About assigning skins” in
Using Components.

You cannot use this method to set a component’s skins at runtime (for example, the way you
set a component’s styles at runtime).
1382 UIObject class

Example

This example is a code snippet from the class file of a new component, called Shape. It creates
a variable, themeShape and sets it to the Linkage identifier of the skin. In the
createChildren() method, the setSkin() method is called and passed the id 1 and the
variable that holds the linkage identifier of the skin:
class Shape extends UIComponent {

static var symbolName:String = "Shape";
static var symbolOwner:Object = Shape;
var className:String = "Shape";

var themeShape:String = "circle_skin"

function Shape() {
}

function init(Void):Void {
super.init();

}

function createChildren():Void {
setSkin(1, themeShape);
super.createChildren();

}
}

UIObject.setStyle()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.setStyle(propertyName, value)
UIObject.setStyle() 1383

Parameters

propertyName A string indicating the name of the style property. Supported styles vary
depending on the component. Each component has a different set of styles that you can set.
For example, “Customizing the TextArea component” on page 1180 shows a table of styles,
including fontWeight. So, for a TextArea component, you can use fontWeight as the
propertyName parameter.

value The value of the property. If the value is a string, it must be enclosed in
quotation marks.

Returns

Nothing.

Description

Method; sets the style property on the style declaration or object. If the style property is an
inheriting style, the children of the object are notified of the new value.

For a list of the styles that each component supports, see individual component entries. For
example, Button component styles are listed in “Using styles with the Button component”
on page 94.

To enhance performance, you can change styles before they are loaded, calculated, and applied
to the objects in your SWF file. If you can change styles before the styles are loaded and
calculated, you do not have to call setStyle.

Macromedia recommends that you set properties on each object because objects are
instantiated to improve performance when you use styles. When you dynamically attach
instances to the Stage, set properties in the initObj parameter for the call that you make to
UIObject.createClassObject(), as shown in the following ActionScript:
createClassObject(ComponentClass, "myInstance", 0, {styleName:"myStyle",

color:0x99CCFF});

Example

The following code sets the fontWeight style property of the cb check box instance to bold:
cb.setStyle("fontWeight", "bold");

N
O

T
E

This example uses the myStyle custom style declaration. To change multiple properties,
or change properties for multiple component instances, create a custom style
declaration. Flash renders a component using a custom style declaration faster than it
renders a component using UIObject.setStyle() for multiple properties. For more
information, see “Setting custom styles for groups of components” in Using
Components.
1384 UIObject class

UIObject.top
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.top

Description

Property (read-only); a number indicating the top edge of the object, in pixels, relative to its
parent. To set this property, call UIObject.move().

UIObject.unload
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.unload = function(eventObject:Object):Void {

// ...
};
componentInstance.addEventListener("unload", listenerObject);

Usage 2:
on (unload) {

// ...
}

Description

Event; notifies listeners that the subobjects of this object are being unloaded.
UIObject.unload 1385

The first usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, unload) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. Each event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a
component instance.

Example

The following example deletes sym1 when the unload event is triggered:
function doUnload():Void {

form.destroyObject(sym1);
}
form.addEventListener("unload", doUnload);

UIObject.visible
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.visible

Description

Property; a Boolean value indicating whether the object is visible (true) or not (false).

Example

The following example makes the myLoader loader instance visible:
myLoader.visible = true;
1386 UIObject class

UIObject.width
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.width

Description

Property (read-only); a number indicating the width of the object, in pixels. To change the
width, call UIObject.setSize().

Example

The following example makes the check box wider:
myCheckbox.setSize(myCheckbox.width + 10, myCheckbox.height);

UIObject.x
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.x

Description

Property (read-only); a number indicating the left edge of the object, in pixels. To set this
property, call UIObject.move().

Example

The following example moves the check box 10 pixels to the right:
myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);
UIObject.x 1387

UIObject.y
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
componentInstance.y

Description

Property (read-only); a number indicating the top edge of the object, in pixels. To set this
property, call UIObject.move().

Example

The following example moves the check box down 10 pixels:
myCheckbox.move(myCheckbox.x, myCheckbox.y + 10);
1388 UIObject class

55

CHAPTER 55

UIScrollBar Component
The UIScrollBar component allows you to add a scroll bar to a text field. You can add a scroll
bar to a text field while authoring, or at runtime with ActionScript.

The UIScrollBar component functions like any other scroll bar. It contains arrow buttons at
either end and a scroll track and scroll box (thumb) in between. It can be attached to any edge
of a text field and used both vertically and horizontally.

Using the UIScrollBar component
To use the UIScrollBar component, verify that object snapping is turned on (View >
Snapping > Snap to Objects). Then create a text input field on the Stage and drag the
UIScrollBar component from the Components panel to any quadrant of the text field’s
bounding box.

If the length of the scroll bar is smaller than the combined size of its scroll arrows, it is not
displayed correctly. One of the arrow buttons becomes hidden behind the other. Flash does
not provide error checking for this. In this case it is a good idea to hide the scroll bar with
ActionScript. If the scroll bar is sized so that there is not enough room for the scroll box
(thumb), Flash makes the scroll box invisible.

Unlike many other components, the UIScrollBar component can receive continuous mouse
input, such as when the user holds the mouse button down, rather than requiring
repeated clicks.

There is no keyboard interaction with the UIScrollBar component.
1389

UIScrollBar parameters
You can set the following authoring parameters for each UIScrollBar instance in the Property
inspector or in the Component inspector (Window > Component Inspector menu option):

_targetInstanceName indicates the name of the text field instance that the UIScrollBar
component is attached to.

horizontal indicates whether the scroll bar is oriented horizontally (true) or vertically
(false). The default value is false.

You can set the following additional parameters for each UIScrollBar component instance in
the Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.\

You can write ActionScript to control these and additional options for a UIScrollBar
component using its properties, methods, and events. For more information, see “UIScrollBar
class” on page 1395.

Creating an application with the UIScrollBar
component
The following procedure explains how to add a UIScrollBar component to an application
while authoring.

N
O

T
E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
1390 UIScrollBar Component

To create an application with the UIScrollBar component:

1. Create a dynamic text field and give it an instance name myText in the Property inspector.

2. In the Property inspector, set the Line Type of the text input field to Multiline or to
Multiline No Wrap if you plan to use the scroll bar horizontally.

3. In Frame 1, use ActionScript to add enough text to the field so that users have to scroll to
view it all. You could write the following code:
myText.text="When the moon is in the seventh house and Jupiter aligns

with Mars, then peace will guide the planet and love will rule the
stars."

4. Verify that object snapping is turned on (View > Snapping > Snap to Objects).

5. Drag a UIScrollBar instance from the Components panel onto the text input field near the
side you want to attach it to. The component must overlap with the text field when you
release the mouse in order for it to be properly bound to the field.

The _targetInstanceName property of the component is automatically populated with
the text field instance name in the Property and Component inspectors. If it does not
appear in the Parameters tab, you may not have overlapped the UIScrollBar instance
enough.

6. Select Control > Test Movie.

The application runs, and the scroll bar scrolls the contents of the text field.

You can also create a UIScrollBar component instance and associate it with a text field at
runtime with ActionScript.

N
O

T
E

Make sure that the text field on the Stage is small enough that you need to scroll it to
see all the text. If it isn’t, the scroll bar does not appear or may appear simply as two
lines with no thumb grip (the part you drag to scroll the content).
Using the UIScrollBar component 1391

The following code creates a vertically oriented UIScrollBar instance and attaches it to the
right side of a text field instance named my_txt and sets the size of the scroll bar to match the
size of the text field:
/**
 Requires:
 - UIScrollBar component in library
*/
// Create text field.
this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field for the scroll bar.
my_sb.setScrollTarget(my_txt);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");
1392 UIScrollBar Component

Customizing the UIScrollBar component
You can transform a UIScrollBar component horizontally and vertically while authoring and
at runtime. However, a vertical UIScrollBar does not allow you to modify the width, and a
horizontal UIScrollBar does not allow you to modify the height. While authoring, select the
component on the Stage and use the Free Transform tool or any of the Modify > Transform
commands. At runtime, use the setSize() method (see UIObject.setSize()) or any
applicable properties and methods of the UIScrollBar class.

Note, however, that with the Halo theme, the width of a vertically oriented scroll bar must be
16 pixels, and the height of a horizontally oriented scroll bar must also be 16 pixels. These
dimensions are determined strictly by the current theme used with the scroll bar. Only the
dimension of a scroll bar that corresponds to its length can be changed.

You can customize the appearance of a UIScrollBar instance by using styles and skins.

Using styles with the UIScrollBar component
The UIScrollBar component supports the following styles:

N
O

T
E

If you use the UIObject.setSize() method, you can change only the height or the
width of the instance, depending on whether the instance is a horizontal or a vertical
scroll bar. Therefore the setSize() method ignores either the height or the width
parameter.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values
are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen".

scrollTrackColor Sample The background color for the scroll track.The default
value is 0xCCCCCC (light gray).

symbolColor Sample The color of the up and down scroll arrows. The default
value is 0x000000 (black).

symbolDisabledColor Sample The color of the up and down scroll arrows in a disabled
scroll bar. The default value is 0x848384 (dark gray).
Customizing the UIScrollBar component 1393

Using skins with the UIScrollBar component
The UIScrollBar component uses 13 skins for the track, scroll box (thumb), and buttons. To
customize these skin elements, edit the symbols in the Flash UI Components 2/Themes/
MMDefault/ScrollBar Assets/States folder. For more information, see “About skinning
components” in Using Components.

Both horizontal and vertical scroll bars use the same vertical skins, and when displaying a
horizontal scroll bar the UIScrollBar component rotates the skins as appropriate.

The UIScrollBar component supports the following skin properties.

Property Description

upArrowUpName The up (normal) state of the up and left buttons. The default value is
ScrollUpArrowUp.

upArrowOverName The rollover state of the up and left buttons. The default value is
ScrollUpArrowOver.

upArrowDownName The pressed state of the up and left buttons. The default value is
ScrollUpArrowDown.

downArrowUpName The up (normal) state of the down and right buttons. The default
value is ScrollDownArrowUp.

downArrowOverName The rollover state of the down and right buttons. The default value is
ScrollDownArrowOver.

downArrowDownName The pressed state of the down and right buttons. The default value is
ScrollDownArrowDown.

scrollTrackName The symbol used for the scroll bar’s track (background). The default
value is ScrollTrack.

scrollTrackOverName The symbol used for the scroll track (background) when rolled over.
The default value is undefined.

scrollTrackDownName The symbol used for the scroll track (background) when pressed.
The default value is undefined.

thumbTopName The top and left caps of the scroll box (thumb). The default value is
ScrollThumbTopUp.

thumbMiddleName The middle (expandable) part of the thumb. The default value is
ScrollThumbMiddleUp.

thumbBottomName The bottom and right caps of the thumb. The default value is
ScrollThumbBottomUp.

thumbGripName The grip displayed in front of the thumb. The default value is
ScrollThumbGripUp.
1394 UIScrollBar Component

The following example demonstrates how to put a thin blank line in the middle of the
scroll track.

To create movie clip symbols for UIScrollBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” in Using Components.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault
folder and drag the ScrollBar Assets folder to the library for your document.

4. Expand the ScrollBar Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ScrollTrack symbol.
6. Customize the symbol as desired.

For example, draw a black rectangle in the middle of the track using a 1 x 4 rectangle
at (8,0).

7. Repeat steps 5-6 for all symbols you want to customize.

For example, draw the same line on the ScrollTrackDisabled symbol.
8. Click the Back button to return to the main timeline.

9. Create an input type TextField instance on the Stage.

10. Drag a UIScrollBar component to the TextField instance.

11. Select Control > Test Movie.

UIScrollBar class
Inheritance MovieClip > UIObject class > UIComponent class > ScrollBar > UIScrollBar

ActionScript Class Name mx.controls.UIScrollBar

The properties of the UIScrollBar class let you adjust the scroll position and the amount of
scrolling that occurs when the user clicks the scroll arrows or the scroll track.

Unlike most other components, events are broadcast when the mouse button is pressed and
continue broadcasting until the button is released.
UIScrollBar class 1395

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.controls.UIScrollBar.version);

Method summary for the UIScrollBar class
The following table lists the method of the UIScrollBar class.

Methods inherited from the UIObject class
The following table lists the methods the UIScrollBar class inherits from the UIObject class.
When calling these methods from the UIScrollBar object, use the form
UIScrollBarInstance.methodName.

N
O

T
E

The code trace(myUIScrollBarInstance.version); returns undefined.

Method Description

UIScrollBar.setScrollProperties() Sets the scroll range of the scroll bar and the size of the
text field that the scroll bar is attached to.

UIScrollBar.setScrollTarget() Assigns the scroll bar to a text field.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration
or object.

UIObject.invalidate() Marks the object so it is redrawn on the next
frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.
1396 UIScrollBar Component

Methods inherited from the UIComponent class
The following table lists the methods the UIScrollBar class inherits from the UIComponent
class. When calling these methods from the UIScrollBar object, use the form
UIScrollBarInstance.methodName.

Property summary for the UIScrollBar class
The following table lists properties of the UIScrollBar class.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration
or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

UIScrollBar.lineScrollSize The number of lines or pixels scrolled when the user
clicks the arrow buttons of the scroll bar.

UIScrollBar.pageScrollSize The number of lines or pixels scrolled when the user
clicks the track of the scroll bar.

UIScrollBar.scrollPosition The current scroll position of the scroll bar.

UIScrollBar._targetInstanceName The instance name of the text field associated with the
UIScrollBar instance.

UIScrollBar.horizontal A Boolean value indicating whether the scroll bar is
oriented vertically (false), the default, or horizontally
(true).

Method Description
UIScrollBar class 1397

Properties inherited from the UIObject class
The following table lists the properties the UIScrollBar class inherits from the UIObject class.
When accessing these properties from the UIScrollBar object, use the form
UIScrollBarInstance.propertyName.

Properties inherited from the UIComponent class
The following table lists the properties the UIScrollBar class inherits from the UIComponent
class. When accessing these properties from the UIScrollBar object, use the form
UIScrollBarInstance.propertyName.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the
object, relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only; the position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction
of the object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction
of the object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object,
relative to its parent.

UIObject.visible A Boolean value indicating whether the object is visible
(true) or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in
a document.
1398 UIScrollBar Component

Event summary for the UIScrollBar class
The following table lists the event of the UIScrollBar class.

Events inherited from the UIObject class
The following table lists the events the UIScrollBar class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the UIScrollBar class inherits from the
UIComponent class.

Event Description

UIScrollBar.scroll Broadcast when any part of the scroll bar is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible
to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from
invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
UIScrollBar class 1399

UIScrollBar.horizontal
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.horizontal

Description

Property; indicates whether the scroll bar is oriented vertically (false) or horizontally (true).

This property can be tested and set. The default value is false.

Example

The following example uses the horizontal property to set the scroll bar named my_sb to a
horizontal orientation and displays the text in the TextField component my_txt:
/**
 Requires:
 - UIScrollBar component in library
*/
// Create the text field.
this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = false;

my_txt.text = "Mary had a little lamb whose fleece " +
"was white as snow and everywhere that Mary went the " +
"lamb was sure to go."

// Create scroll bar.
this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);
my_sb.horizontal = true;

// Set the target text field for the scroll bar.
my_sb.setScrollTarget(my_txt);
// Size it to match the text field.
my_sb.setSize(my_txt._width, 16);

// Move it to the bottom of the text field.
my_sb.move(my_txt._x, my_txt._y + my_txt._height);
1400 UIScrollBar Component

UIScrollBar.lineScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.lineScrollSize

Description

Property; gets or sets the number of lines or pixels scrolled when the user clicks the arrow
buttons of the UIScrollBar component. If the scroll bar is oriented vertically, the value is a
number of lines. If the scroll bar is oriented horizontally, the value is a number of pixels.

The default value is 1.

Example

The following example creates a scroll bar to scroll text in a text field, which it loads from a
web page. The example sets the lineScrollSize property to scroll two lines at a time for
each click of an arrow button:
/**
 Requires:
 - UIScrollBar component in library
*/

this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field.
my_sb.setScrollTarget(my_txt);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Scroll 2 lines per click on scroll arrow.
my_sb.lineScrollSize = 2;

// Scroll 5 lines per click on scroll track.
my_sb.pageScrollSize = 5;
UIScrollBar.lineScrollSize 1401

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

UIScrollBar.pageScrollSize
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.pageScrollSize

Description

Property; gets or sets the number of lines or pixels scrolled when the user clicks the track of
the UIScrollBar component. If the scroll bar is oriented vertically, the value is a number of
lines. If the scroll bar is oriented horizontally, the value is a number of pixels.

You can also set this value by passing a pageSize parameter with the
UIScrollBar.setScrollTarget() method.

Example

The following example creates a scroll bar to scroll text in a text field that it loads from a web
page. The example sets the pageScrollSize property to scroll five lines of text each time the
user clicks the scroll track:
/**
 Requires:
 - UIScrollBar component in library
*/

this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field.
1402 UIScrollBar Component

my_sb.setScrollTarget(my_txt);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Scroll 2 lines per click of scroll arrow.
my_sb.lineScrollSize = 2;

// Scroll 5 lines per click of scroll track.
my_sb.pageScrollSize = 5;

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

UIScrollBar.scroll
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.scroll = function(eventObject:Object) {

// ...
};
scrollBarInstance.addEventListener("scroll", listenerObject)

Usage 2:
on (scroll) {

// ...
}

UIScrollBar.scroll 1403

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the scroll
bar. The UIScrollBar.scrollPosition property and the scroll bar’s onscreen image are
updated before this event is broadcast.

The first usage example uses a dispatcher/listener event model, in which the script is placed on
a frame in the timeline that contains the component instance. A component instance
(scrollBarInstance) dispatches an event (in this case, scroll) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event occurs. When the event occurs, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the
event. Finally, you call addEventListener() (see EventDispatcher.addEventListener())
on the component instance that broadcasts the event to register the listener with the instance.
When the instance dispatches the event, the listener is called.

In addition to the normal properties of the event object (type and target), the event object
for the scroll event includes a third property named direction. The direction property
contains a string describing which way the scroll bar is oriented. The possible values for the
direction property are vertical (the default) and horizontal.

For more information about the type and target event object properties, see “Event objects”
on page 499.

The second usage example uses an on() handler and must be attached directly to a
UIScrollBar component instance. The keyword this, used inside an on() handler attached to
a component, refers to the component instance. For example, the following code, attached to
the UIScrollBar component instance myUIScrollBarComponent, sends
“_level0.myUIScrollBarComponent” to the Output panel:
on (scroll) {

trace(this);
}

1404 UIScrollBar Component

Example

The following example implements Usage 1 and creates a listener object called sbListener
with a scroll event handler:
/**
 Requires:
 - UIScrollBar component in library
*/

this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field.
my_sb.setScrollTarget(my_txt);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Create listener object.
var sbListener:Object = new Object();
sbListener.scroll = function(evt_obj:Object){
 // Insert code to handle the "scroll" event.
 trace("text is scrolling");
}
// Add listener.
my_sb.addEventListener("scroll", sbListener);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

The following code implements Usage 2. The code is attached to the UIScrollBar component
instance and sends a message to the Output panel when the user clicks the scroll bar. The
on() handler must be attached directly to the UIScrollBar instance.
on (scroll) {

trace("UIScrollBar component was clicked");
}

UIScrollBar.scroll 1405

UIScrollBar.scrollPosition
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.scrollPosition

Description

Property; gets or sets the current scroll position of the scroll box (thumb) when a new
scrollPosition value is set. The value of scrollPosition depends on whether the
UIScrollBar instance is being used for vertical or horizontal scrolling.

Set the scrolling of the scroll bar target instance separately, using the following syntax:
my_scrollbar._targetInstanceName.scroll = 20;

If the UIScrollBar instance is being used for vertical scrolling (the most common use), the
value of scrollPosition is an integer with a range that begins with 0 and ends with a
number that is equal to the total number of lines in the text field divided by the number of
lines that can be displayed in the text field simultaneously. If scrollPosition is set to a
number greater than this range, the text field simply scrolls to the end of the text.

To set the scroll box (thumb) to the first line, set scrollPosition to 0.

To set the scroll box (thumb) to the end, set scrollPosition to the number of lines of text
in the text field minus 1. You can determine the number of lines by retrieving the value of the
maxscroll property of the text field.

If the UIScrollBar instance is being used for horizontal scrolling, the value of
scrollPosition is an integer value ranging from 0 to the width of the text field, in pixels.
You can determine the width of the text field in pixels by getting the value of the maxhscroll
property of the text field.

The default value of scrollPosition is 0.
1406 UIScrollBar Component

Example

The following example sets the text to position 20:
/**
 Requires:
 - UIScrollBar and Button components in library
*/
this.createTextField("my_txt", 10, 10, 20, 200, 100);
this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);
this.createClassObject(mx.controls.Button, "my_bt", 30, {label: "Scroll"});

my_txt.wordWrap = true;
my_bt.move(300, 100);

// Set the target text field.
my_sb.setScrollTarget(my_txt);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();

my_lv.onData = function(src:String) {
if (src != undefined) {

my_txt.text = src;
} else {

my_txt.text = "Error loading text.";

}
};

my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

var scroll_listener = new Object();
scroll_listener.click = function() {

my_sb.scrollPosition = 20;
my_txt.scroll = 20;

};
my_bt.addEventListener("click", scroll_listener);
UIScrollBar.scrollPosition 1407

UIScrollBar.setScrollProperties()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.setScrollProperties(pageSize, minPos, maxPos)

Parameters

pageSize The number of items that can be viewed in the display area. This parameter sets
the size of the text field’s bounding box. If the scroll bar is vertical, this value is a number of
lines of text; if the scroll bar is horizontal, this value is a number of pixels.

minPos This parameter refers to the lowest numbered line of text when the scroll bar is used
vertically, or the lowest numbered pixel in the text field’s bounding box when the scroll bar is
used horizontally. The value is usually 0.

maxPos This value refers to the highest numbered line of text when the scroll bar is used
vertically, or the highest numbered pixel in the text field’s bounding box when the scroll bar is
used horizontally.

Description

Method; sets the scroll range of the scroll bar and the size of the text field that the scroll bar is
attached to. This method is primarily useful when you attach a UIScrollBar component to a
text field at runtime (using UIScrollBar.setScrollTarget()) rather than while authoring,
and the assignment doesn’t cause the text field to broadcast change events. If you use the
replaceText method to set the text of the text field, you must use setScrollProperties()
to cause an update of the scroll bars.

The minPos and maxPos values are used together by the UIScrollBar component to determine
the scroll range for the scroll bar and the associated text field.

Example

The following example sets up a UIScrollBar component to display 10 lines of text at a time
in the text field out of a range of 0 to 99 lines:
my_sb.setScrollProperties(10, 0, 99);
1408 UIScrollBar Component

UIScrollBar.setScrollTarget()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance.setScrollTarget(textInstance)

Parameters

textInstance The text field to assign to the scroll bar.

Description

Method; assigns a UIScrollBar component to a text field instance. If you need to associate a
text field and a UIScrollBar component at runtime, use this method.

Example

The following example creates a scroll bar to scroll text in a text field, which it loads from a
web page. The example calls the setScrollTarget() method to associate the scroll bar
my_sb with the text field my_txt.
/**
 Requires:
 - UIScrollBar component in library
*/

this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field.
my_sb.setScrollTarget(my_txt);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Scroll 2 lines per click of scroll arrow.
my_sb.lineScrollSize = 2;

// Scroll 5 lines per click of scroll track.
UIScrollBar.setScrollTarget() 1409

my_sb.pageScrollSize = 5;

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");

UIScrollBar._targetInstanceName
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
scrollBarInstance._targetInstanceName

Description

Property; indicates the instance name of the text field associated with a UIScrollBar
component. This property can be tested and set. However, it should not be used to create an
association between a text field and a scroll bar. Use UIScrollBar.setScrollTarget()
instead.
1410 UIScrollBar Component

Example

The following example creates a scroll bar to scroll text in a text field, which it loads from a
web page. The example calls the trace() function to display the value of the
targetInstanceName property.
/**
 Requires:
 - UIScrollBar component in library
*/

this.createTextField("my_txt", 10, 10, 20, 200, 100);
my_txt.wordWrap = true;

this.createClassObject(mx.controls.UIScrollBar, "my_sb", 20);

// Set the target text field.
my_sb.setScrollTarget(my_txt);

trace(my_sb._targetInstanceName);

// Size it to match the text field.
my_sb.setSize(16, my_txt._height);

// Move it next to the text field.
my_sb.move(my_txt._x + my_txt._width, my_txt._y);

// Set scroll properties.
my_sb.setScrollProperties(10, 0, 99);

// Load text to display and define onData handler.
var my_lv:LoadVars = new LoadVars();
my_lv.onData = function(src:String) {
 if (src != undefined) {
 my_txt.text = src;
 my_txt.condenseWhite = true;
 } else {
 my_txt.text = "Error loading text.";
 }
};
my_lv.load("http://www.helpexamples.com/flash/lorem.txt");
UIScrollBar._targetInstanceName 1411

1412 UIScrollBar Component

56

CHAPTER 56

Web service classes (Flash
Professional only)
The web service classes, which are found in the mx.services package, let you access web
services that use Simple Object Access Protocol (SOAP). This API is not the same as the
WebServiceConnector component API. The web service API is a set of classes that can you
use only in ActionScript code, and is common to various Macromedia products. In contrast,
the WebServiceConnector component is an API unique to Flash and provides an ActionScript
interface to the visual WebServiceConnector component.

The following table lists the classes in the mx.services package. These classes are closely
integrated, so when first learning about this package, you may want to read the information in
the order in which it is presented in the table.

Class Description

WebService class (Flash
Professional only)

Using a Web Service Definition Language (WSDL) file that
defines the web service, constructs a new WebService object for
calling web service methods and handling callbacks from the
web service.

PendingCall class (Flash
Professional only)

Object returned from a web service method call that you
implement to handle the call’s results and faults.

Log class (Flash
Professional only)

Optional object used to record activity related to a
WebService object.

SOAPCall class (Flash
Professional only)

Advanced class that contains information about the web service
operation, and provides control over certain behaviors.
1413

Making web service classes available at
runtime (Flash Professional only)
In order to make the web service classes available at runtime, the WebServiceConnector
component must be in your FLA file’s library. This component contains the runtime classes
that let you work with web services. For details on adding these classes to your FLA file, see
Chapter 16, “Data Integration (Flash Professional Only),” in Using Flash.

Log class (Flash Professional only)
ActionScript Class Name mx.services.Log

The Log class is part of the mx.services package and is used with the WebService class (see
“WebService class (Flash Professional only)” on page 1437). For an overview of the classes in
the mx.data.services package, see “Web service classes (Flash Professional only)”
on page 1413.

You can create a new Log object to record activity related to a WebService object. To execute
code when messages are sent to a Log object, use the Log.onLog() callback function. There is
no log file; the logging mechanism is whatever you have used in the onLog() callback
function, such as sending the log messages to a trace() statement.

The constructor for this class creates a Log object that can be passed as an optional parameter
to the WebService constructor (see “WebService class (Flash Professional only)”
on page 1437).

N
O

T
E

These classes are automatically made available to your Flash document when you add a
WebServiceConnector component to your FLA file.
1414 Web service classes (Flash Professional only)

Method summary for the Log class
The following table lists methods of the PendingCall class.

Property summary for the Log object
The following table lists properties of the PendingCall class.

Callback summary for the Log object
The following table lists the callback of the Log object.

Method Description

Log.getDateString() Returns the current date and time as a string in
the following format: mm/dd hh:mm:ss used by
Log messages.

Log.logInfo() Generates a Log.onLog event with a designated
log level and a designated message.

Log.logDebug() Generates a Log.onLog event with a log level of
Log.DEBUG and a designated message.

Property Description

Log.level The category of information that you want to
record in the log.

Log.name A string name identifying the Log object;
included in every Log.onLog event message.

Callback Description

Log.onLog() Called by Flash Player when a log message is sent to a log file.
Log class (Flash Professional only) 1415

Constructor for the Log class
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebSrvcLog = new Log([logLevel] [, logName]);

Parameters

logLevel A level to indicate the category of information that you want to record in the log.
Four log levels are available:

■ Log.BRIEF The log records primary life-cycle event and error notifications. This is the
default value.

■ Log.VERBOSE The log records all life-cycle event and error notifications.
■ Log.DEBUG The log records metrics and fine-grained events and errors.
■ Log.NONE The log records nothing. Can be used to temporarily turn off Log.onLog

events.

logName Optional name that is included with each log message. If you are using multiple
Log objects, you can use the log name to determine which log recorded a given message.

Returns

Nothing.

Description

Constructor; creates a Log object. After you create the Log object, you can pass it to a web
service to get messages.

Example

You can call the new Log constructor to return a Log object to pass to your web service:
// Creates a new log object.
import mx.services.*;
myWebSrvcLog = new Log();
myWebSrvcLog.onLog = function(msg : String) : Void
{

myTrace(txt)
}

1416 Web service classes (Flash Professional only)

You then pass this Log object as a parameter to the WebService constructor:
myWebSrvc = new WebService("http://www.myco.com/info.wsdl", myWebSrvcLog);

As the web services code executes and messages are sent to the Log object, the onLog()
function of your Log object is called. This is the only place to put code that displays the log
messages if you want to see them in real time.

The following are examples of log messages:
7/30 15:22:43 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:44 [INFO] SOAP: Decoded SOAP response into result [16 millis]
7/30 15:22:46 [INFO] SOAP: Received SOAP response from network [6469 millis]
7/30 15:22:46 [INFO] SOAP: Parsed SOAP response XML [15 millis]
7/30 15:22:46 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:46 [INFO] SOAP: Decoded SOAP response into result [16 millis]

Log.getDateString()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebSrvcLog.getDateString()

Parameters

None.

Returns

The current date and time as a string in the following format: mm/dd hh:mm:ss.

Description

Function; returns the current date and time as a string in the following format: mm/dd
hh:mm:ss. You can use Log.getDateString() to get the date in the same format that is
provided in a log message, or you can record only the date string in a log.onLog event
handler for use with custom log handling.
Log.getDateString() 1417

Example

The following example creates a new Log object, passes it to a new WebService object, and
handles the log messages, using Log.getDateString() to get the time of the log.
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log(Log.BRIEF, "myLog");
// Passes the Log object to the web service.
myWebService = new WebService(wsdlURI, myWebSrvcLog);
// Handles incoming log messages.
myWebSrvcLog.onLog = function(message : String) : Void
{

trace("A Log Event Occurred At This Time: "+ this.getDateString());
}

Log.logInfo()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebSrvcLog.logInfo(myMessageString)

Parameters

msg A message of type String that you want to appear in the resulting log event message.

level A level to indicate the category of information that you want to record in the log.
Four log levels are available:

■ Log.BRIEF The log records primary life-cycle event and error notifications. This is the
default value.

■ Log.VERBOSE The log records all life-cycle event and error notifications.
■ Log.DEBUG The log records metrics and fine-grained events and errors.
■ Log.NONE The log records nothing. Can be used to temporarily turn off Log.onLog

events.

Returns

Nothing.
1418 Web service classes (Flash Professional only)

Description

Function; generates a log message set by the msg parameter at a log level set by the level
parameter. This method provides a way to create your own log events with any log level.

Example

The following example creates a new Log object. An onLog event with a message indicating
the start of a new log is generated by calling Log.logDebug().
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log(Log.VERBOSE, "myLog");

// Handles incoming log messages.
myWebSrvcLog.onLog = function(message : String) : Void
{

trace(message);
}
myWebSrvcLog.logInfo("New Log Started");
// Passes the Log object to the web service.
myWebService = new WebService(wsdlURI, myWebSrvcLog);

Log.logDebug()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebSrvcLog.logDebug(msg)

Parameters

msg A log message string. The string you provide in this parameter appears as the log message
in the resulting log event.

Returns

Nothing.
Log.logDebug() 1419

Description

Function; generates a log message containing msg and the message type indicator of [debug].
This method provides a way to create your own log events with [debug] in the log message,
which will be viewable only with a log level setting of Log.DEBUG.

The following string is an examples of a debug level log message generated by
Log.logDebug():
12/18 23:20:17 [DEBUG] myLog: My log message

Example

The following example creates a new Log object. An onLog event with a message indicating
the start of a new log is generated by calling Log.logDebug().
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log(Log.DEBUG, "myLog");

// Handles incoming log messages.
myWebSrvcLog.onLog = function(message : String) : Void
{

trace(message);
}
// Generates a log message with a log level of Log.DEBUG.
myWebSrvcLog.logDebug("New Log Started");
// Passes the Log object to the web service.
myWebService = new WebService(wsdlURI, myWebSrvcLog);

Log.level
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myLevel_Number = myWebSrvcLog.level
1420 Web service classes (Flash Professional only)

Description

Property; indicates the category of information that you want to record in the log. Four log
levels are available:

■ Log.BRIEF The log records primary life-cycle event and error notifications. This is the
default value. A Log.level property set to Log.BRIEF returns the number 0.

■ Log.VERBOSE The log records all life-cycle event and error notifications. A Log.level
property set to Log.VERBOSE returns the number 1.

■ Log.DEBUG The log records metrics and fine-grained events and errors. A Log.level
property set to Log.DEBUG returns the number 2.

■ Log.NONE The log records nothing. Can be used to temporarily turn off Log.onLog
events. A Log.level property set to Log.NONE returns the number -1.

Although you can set this property directly, usually the Log.level property is set as a
parameter when you create a new Log object. See “Log class (Flash Professional only)”
on page 1414.)

Example

The following example creates a new Log object with a Log.level property of Log.DEBUG.
The current Log.level property is traced. Then the Log object’s Log.level property is set to
Log.VERBOSE.
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log(Log.DEBUG, "myLog");
trace("myWebSrvcLog.level: "+ myWebSrvcLog.level);

// Now change the Log object’s level.
myWebSrvcLog.level = Log.VERBOSE;
trace("myWebSrvcLog.level: "+ myWebSrvcLog.level);

Log.name
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebServiceName = myWebSrvcLog.name
Log.name 1421

Description

Property; a string identifying the Log instance; included in every Log.onLog event message.
This property can be both get and set. It is usually set when creating a new Log object. See
“Log class (Flash Professional only)” on page 1414.)

Example

The following example creates a new Log object with a Log.level property of Log.VERBOSE
and a name of “myLog”. The current Log.name property is traced. Then the Log object’s
Log.name property is set to "myNewLogName".
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log(Log.VERBOSE, "myLog");
trace("myWebSrvcLog.level: "+ myWebSrvcLog.level);

// Sets a new name for the Log object.
myWebSrvcLog.name = "myNewLogName";
trace("myWebSrvcLog.name: " + myWebSrvcLog.name);

Log.onLog()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebSrvcLog.onLog = function(message)

Parameters

message The log message passed to the handler. For example:
“7/30 15:22:43 [INFO] SOAP: Decoding PendingCall response”

Returns

Nothing.

Description

Callback function; called by Flash Player when a log message is sent to a log file. This function
is a good place to put code that records or displays the log messages, such as a trace
command. (For information about the structure of the log, see “Log class (Flash Professional
only)” on page 1414.)
1422 Web service classes (Flash Professional only)

Example

The following example creates a new Log object, passes it to a new WebService object, and
handles the log messages:
import mx.services.*;
// Creates a new Log object.
myWebSrvcLog = new Log();
// Passes the Log object to the web service.
myWebService = new WebService(wsdlURI, myWebSrvcLog);
// Handles incoming log messages.
myWebSrvcLog.onLog = function(message : String) : Void
{

mytrace("myWebSrvcLog.message: " + message);
}

PendingCall class (Flash Professional
only)
ActionScript Class Name mx.services.PendingCall

The PendingCall class is part of the mx.services package and is used with the WebService
class. For an overview of the classes in the mx.services package, see “Web service classes (Flash
Professional only)” on page 1413.

You don’t create a PendingCall object or use a constructor function; instead, when you call a
method on a WebService object, the WebService method returns a PendingCall object. You
use the PendingCall.onResult and PendingCall.onFault callback functions to handle the
asynchronous response from the web service method. If the web service method returns a
fault, Flash Player calls PendingCall.onFault and passes a SOAPFault object that represents
the XML SOAP fault returned by the server or web service. A SOAPFault object is not
constructed directly by you, but is returned as the result of a failure. This object is an
ActionScript mapping of the SOAPFault XML type.

If the web service invocation is successful, Flash Player calls PendingCall.onResult and
passes a result object. The result object is the XML response from the web service, decoded or
deserialized into ActionScript. For more information about the WebService object, see
“WebService class (Flash Professional only)” on page 1437.
PendingCall class (Flash Professional only) 1423

The PendingCall object also gives you access to multiple output parameters when the web
service method returns more than one result. The “return value” referred to in this API is
simply the first (or only) result; to gain access to all of the results, you can use the “get output”
functions. For example, if the return value delivered to you in the parameter to the onResult
callback is not the only result you want to access, you can use getOutputValues() (which
returns an array) or getOutputValue() (which returns an individual value) to get the
ActionScript decoded values.

You can also access the SOAPParameter object directly. The SOAPParameter object is an
ActionScript object with two properties: value (the output parameter’s ActionScript value)
and element (the output parameter’s XML value). The following functions return a
SOAPParameter object, or an array of SOAPParameter objects: getOutputParameters(),
getOutputParameterByName(), and getOutputParameter().

Method summary for the PendingCall class
The following table lists methods of the PendingCall class.

Property summary for the PendingCall object
The following table lists properties of the PendingCall class.

Method Description

PendingCall.getOutputParameter() Retrieves a SOAPParameter object by index.

PendingCall.getOutputParameterByName() Retrieves a SOAPParameter object by name.

PendingCall.getOutputParameters() Retrieves an array of SOAPParameter objects.

PendingCall.getOutputValue() Retrieves the output value according to the
specified index.

PendingCall.getOutputValues() Retrieves an array of all the output values.

Property Description

PendingCall.myCall The SOAPCall operation descriptor for the
PendingCall operation.

PendingCall.request The SOAP request in raw XML format.

PendingCall.response The SOAP response in raw XML format.
1424 Web service classes (Flash Professional only)

Callback summary for the PendingCall object
The following table lists the callbacks of the PendingCall class.

PendingCall.getOutputParameter()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCall.getOutputParameter(index)

Parameters

index The zero-based index of the parameter.

Returns

A SOAPParameter object with two properties: value (the output parameter’s ActionScript
value) and element (the output parameter’s XML value).

Description

Function; gets an additional output parameter of the SOAPParameter object, which contains
the value and the XML element. SOAP RPC calls may return multiple output parameters.
The first (or only) return value is always delivered in the result parameter of the onResult
callback function, but to get access to the other return values, you must use functions such as
getOutputParameter() and getOutputValue(). The getOutputParameter() function
returns the nth output parameter as a SOAPParameter object.

Callback Description

PendingCall.onFault Called by Flash Player when a web service
method has failed and returned an error.

PendingCall.onResult Called when a method has succeeded and
returned a result.
PendingCall.getOutputParameter() 1425

Example

Given the SOAP descriptor file below, getOutputParameter(1) would return a
SOAPParameter object with value="Hi there!" and element=the <outParam2>
XMLNode.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

See also

PendingCall.getOutputParameterByName(), PendingCall.getOutputParameters(),
PendingCall.getOutputValue(), PendingCall.getOutputValues()

PendingCall.getOutputParameterByName()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCall.getOutputParameterByName(var localName)

Parameters

localName The local name of the parameter. In other words, the name of an XML element,
stripped of any namespace information. For example, the local name of both of the following
elements is bob:
<bob abc="123">
<xsd:bob def="ghi">

Returns

A SOAPParameter object with two properties: value (the output parameter’s ActionScript
value) and element (the output parameter’s XML value).
1426 Web service classes (Flash Professional only)

Description

Function; gets any output parameter as a SOAPParameter object, which contains the value
and the XML element. SOAP RPC calls may return multiple output parameters. The first (or
only) return value is always delivered in the result parameter of the onResult callback
function, but to get access to the other return values, you must use functions such as
getOutputParameterByName(). This function returns the output parameter with the name
localName.

Example

Given the SOAP descriptor file below, getOutputParameterByName("outParam2") would
return a SOAPParameter object with value="Hi there!" and element=the <outParam2>
XMLNode.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

See also

PendingCall.getOutputParameter(), PendingCall.getOutputParameters(),
PendingCall.getOutputValue(), PendingCall.getOutputValues()

PendingCall.getOutputParameters()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCall.getOutputParameters()

Parameters

None.
PendingCall.getOutputParameters() 1427

Returns

A SOAPParameter object with two properties: value (the output parameter’s ActionScript
value) and element (the output parameter’s XML value).

Description

Function; gets additional output parameters of the SOAPParameter object, which contains
the values and the XML elements. SOAP RPC calls may return multiple output parameters.
The first (or only) return value is always delivered in the result parameter of the onResult
callback function, but to get access to the other return values, you must use functions such as
getOutputParameters() and getOutputValues().

See also

PendingCall.getOutputParameterByName(), PendingCall.getOutputParameter(),
PendingCall.getOutputValue(), PendingCall.getOutputValues()

PendingCall.getOutputValue()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCall.getOutputValue(var index)

Parameters

index The index of an output parameter. The first parameter is index 0.

Returns

The nth output parameter.

Description

Function; gets the decoded ActionScript value of an individual output parameter. SOAP RPC
calls may return multiple output parameters. The first (or only) return value is always
delivered in the result parameter of the onResult callback function, but to get access
to the other return values, you must use functions such as getOutputValue() and
getOutputParameter(). The getOutputValue() function returns the nth output
parameter.
1428 Web service classes (Flash Professional only)

Example

Given the SOAP descriptor file below, getOutputValue(2) would return true.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

See also

PendingCall.getOutputParameterByName(),PendingCall.getOutputParameter(),
PendingCall.getOutputParameters(), PendingCall.getOutputValues()

PendingCall.getOutputValues()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCall.getOutputValues()

Parameters

None.

Returns

An array of all output parameters’ decoded values.

Description

Function; gets the decoded ActionScript value of all output parameters. SOAP RPC calls can
return multiple output parameters. The first (or only) return value is always delivered in the
result parameter of the onResult callback function, but to get access to the other return
values, you must use functions such as getOutputValues() and getOutputParameters().
PendingCall.getOutputValues() 1429

See also

PendingCall.getOutputParameterByName(), PendingCall.getOutputParameter(),
PendingCall.getOutputParameters(), PendingCall.getOutputValue()

PendingCall.myCall
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
PendingCall.myCall

Description

Property; the SOAPCall object corresponding to the PendingCall operation. The SOAPCall
object contains information about the web service operation, and provides control over
certain behaviors. For more information, see “SOAPCall class (Flash Professional only)”
on page 1434.

Example

The following onResult callback traces the name of the SOAPCall operation.
callback.onResult = function(result)
{

// Check my operation name.
trace("My operation name is " + this.myCall.name);

}

PendingCall.onFault
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
1430 Web service classes (Flash Professional only)

Usage
myPendingCallObj.onFault = function(fault)
{

// Your code here.
}

Parameters

fault Decoded ActionScript object version of the SOAPFault object with properties. If the
error information came from a server in the form of XML, the SOAPFault object is the
decoded ActionScript version of that XML.

The type of error object returned to PendingCall.onFault is a SOAPFault object. It is not
constructed directly by you, but is returned as the result of a failure. This object is an
ActionScript mapping of the SOAPFault XML type.

Returns

Nothing.

Description

Callback function; you provide this function, which Flash Player calls when a web service
method has failed and returned an error. The fault parameter is an ActionScript SOAPFault
object.

This is a good place to put code that handles any faults, for example, by telling the user that
the server isn’t available or to contact technical support, if appropriate.

SOAPFault
property

Description

faultcode String; a short string describing the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error,
such as a stack trace or other information returned by the web service
engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault (optional if an intermediary is not
involved).
PendingCall.onFault 1431

Example

The following example handles errors returned from the web service method.
// Handles any error returned from the use of a web service method.
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onFault = function(fault)
{

// Catches the SOAP fault.
DebugOutputField.text = fault.faultstring;

// Add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support.

}

PendingCall.onResult
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myPendingCallObj.onResult = function(result)
{

// Your code here.

}

Parameters

result Decoded ActionScript object version of the XML result returned by a web service
method called with myPendingCallObj = myWebService.methodName(params).

Returns

Nothing.

Description

Callback function; you provide this function, which Flash Player calls when a web service
method succeeds and returns a result. The result is a decoded ActionScript object version of
the XML returned by the operation. In this function, include code that takes appropriate
action based on the result. To return the raw XML instead of the decoded result, access the
PendingCall.response property.
1432 Web service classes (Flash Professional only)

Example

The following example handles results returned from the web service method.
// Handles results returned from the use of a web service method.
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onResult = function(result)
{

// Catches the result and handles it for this application.
ResultOutputField.text = result;

}

See also

PendingCall.response

PendingCall.request
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
rawXML = myPendingCallback.request;

Description

Property; contains the raw XML form of the current request sent with myPendingCallback =
myWebService.methodName(). Normally, you would not have any use for
PendingCall.request, but you can use it if you are interested in the SOAP communications
that are sent over the network. To get the ActionScript version of the results of the request, use
myPendingCallback.onResult.

PendingCall.response
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
PendingCall.response 1433

Usage
rawXML = myPendingCallback.response;

Description

Property; contains the raw XML form of the response to the most recent web service method
call sent with myPendingCallback = myWebService.methodName(). Normally, you would
not have any use for PendingCall.response, but you can use it if you are interested in the
SOAP communications that are sent over the network. To get the corresponding ActionScript
version of the results of the request, use myPendingCallback.onResult.

SOAPCall class (Flash Professional only)
ActionScript Class Name mx.services.SOAPCall

The SOAPCall class is part of the mx.services package and is an advanced class to be used with
the WebService class (see “WebService class (Flash Professional only)” on page 1437). For an
overview of the classes in the mx.data.services package, see “Web service classes (Flash
Professional only)” on page 1413.

The SOAPCall object is not constructed by you. Instead, when you call a method on a
WebService object, the WebService object returns a PendingCall object. To access the
associated SOAPCall object, use myPendingCall.myCall.

When you create a new WebService object, it contains the methods that correspond to
operations in the WSDL URL you pass in. Behind the scenes, a SOAPCall object is created
for each operation in the WSDL as well. The SOAPCall object is the descriptor of the
operation, and as such contains all the information about that operation (how the XML
should look on the network, the operation style, and so on). It also provides control over
certain behaviors. You can get the SOAPCall object for a given operation by using the
WebService.getCall() function. There is a single SOAPCall for each operation, shared by
all active calls to that operation. Once you have the SOAPCall object, you can customize the
descriptor by doing the following:

■ Turning on/off decoding of the XML response
■ Turning on/off the delay of converting SOAP arrays into ActionScript objects
■ Changing the concurrency configuration for a given operation
1434 Web service classes (Flash Professional only)

Property summary for the SOAPCall object
The following table lists the properties of the SOAPCall object.

SOAPCall.concurrency
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
SOAPCall.concurrency

Description

Property; the number of concurrent requests. Possible values are listed in the table below:

Property Description

SOAPCall.concurrency The number of concurrent requests.

SOAPCall.doDecoding Turns the decoding of the XML response on or off.

SOAPCall.doLazyDecoding Turns “lazy decoding” (the delay of turning SOAP arrays into
ActionScript objects) on or off.

Value Description

SOAPCall.MULTIPLE_CONCURRENCY Allows multiple active calls.

SOAPCall.SINGLE_CONCURRENCY Allows only one call at a time by causing a fault after one is
active.

SOAPCall.LAST_CONCURRENCY Allows only one call by cancelling previous ones.
SOAPCall.concurrency 1435

SOAPCall.doDecoding
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
SOAPCall.doDecoding

Description

Property; turns decoding of the XML response on (true) or off (false). By default, the XML
response is converted (decoded) into ActionScript objects. If you want just the XML, set
SOAPCall.doDecoding to false.

SOAPCall.doLazyDecoding
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
SOAPCall.doLazyDecoding

Description

Property; turns “lazy decoding” of arrays on (true) or off (false). By default, a “lazy
decoding” algorithm is used to delay turning SOAP arrays into ActionScript objects until the
last moment; this makes functions execute much more quickly when returning large data sets.
This means any arrays you receive from the remote location are ArrayProxy objects. Then
when you access a particular index (foo[5]), that element is automatically decoded if
necessary. You can turn this behavior off (which causes all arrays to be fully decoded) by
setting SOAPCall.doLazyDecoding to false.
1436 Web service classes (Flash Professional only)

WebService class (Flash Professional
only)
ActionScript Class Name mx.services.WebService

The WebService class is part of the mx.services package and is used with the Log,
PendingCall, and SOAPCall classes. For an overview of the classes in the mx.services package,
see “Web service classes (Flash Professional only)” on page 1413.

The WebService object acts as a local reference to a remote web service. When you create a
new WebService object, the WSDL file that defines the web service gets downloaded, parsed,
and placed in the object. You can then call the methods of the web service directly on the
WebService object and handle any callbacks from the web service. When the WSDL has been
successfully processed and the WebService object is ready, the WebService.onLoad callback is
invoked. If there is a problem loading the WSDL, the WebService.onFault callback is
invoked.

When you call a method on a WebService object, the return value is a callback object. The
object type of the callback returned from all web service methods is PendingCall. These
objects are normally not constructed by you, but instead are constructed automatically as a
result of the webServiceObject.webServiceMethodName() method that was called. These
objects are not the result of the WebService call, which occurs later. Instead, the PendingCall
object represents the call in progress. When the WebService operation finishes executing
(usually several seconds after a method is called), the various PendingCall data fields are filled
in, and the PendingCall.onResult or PendingCall.onFault callback you provide is called.
For more information about the PendingCall object, see “PendingCall class (Flash
Professional only)” on page 1423.

Flash Player queues any calls you make before the WSDL is parsed, and attempts to execute
them after parsing the WSDL. This is because the WSDL contains information that is
necessary for correctly encoding and sending a SOAP request. Function calls that you make
after the WSDL has been parsed do not need to be queued; they are executed immediately. If
a queued call doesn’t match the name of any of the operations defined in the WSDL, Flash
Player returns a fault to the callback object you were given when you originally made the call.

The WebServices API, included under the mx.services package, consists of the WebService
class, the Log class, the PendingCall class, and the PendingCall class.

N
O

T
E

The WebService class is not the same as the WebServiceConnector class. The
WebServiceConnector class provides an ActionScript interface to the visual
WebServiceConnector component.
WebService class (Flash Professional only) 1437

To make the web service classes available at runtime, you must have the
WebServiceConnector component in your FLA file’s library. If you’re using ActionScript only
to access a web service at runtime, you must add this component manually to your
document’s library. For information on how to add this component to your document, see
Chapter 16, “Data Integration (Flash Professional Only),” in Using Flash.

Method summary for the WebService object
The following table lists methods of the WebService object.

Callback summary for the WebService object
The following table lists the callbacks of the WebService object.

Supported types (Flash Professional
only)
The web services classes support a subset of XML schema types (data types) as defined in the
tables below.

Complex data types and the SOAP-encoded array type are also supported, and these may be
composed of other complex types, arrays, or built-in XML schema types:

■ “Numeric Simple types” on page 1439
■ “Date and Time Simple types” on page 1439
■ “Name and String Simple types” on page 1440
■ “Boolean type” on page 1440
■ “Object types” on page 1440
■ “Supported XML schema object elements” on page 1440

Method Description

WebService.getCall() Gets the SOAPCall object for a given operation.

WebService.myMethodName() Invokes a specific web service operation defined by the WSDL.

Callback Description

WebService.onFault Called when an error occurs during WSDL parsing.

WebService.onLoad Called when the web service has successfully loaded and parsed
its WSDL file.
1438 Web service classes (Flash Professional only)

Numeric Simple types

Date and Time Simple types

XML schema type ActionScript binding

decimal Number

integer Number

negativeInteger Number

nonNegativeInteger Number

positiveInteger Number

long Number

int Number

short Number

byte Number

unsignedLong Number

unsignedShort Number

unsignedInt Number

unsignedByte Number

float Number

double Number

XML schema type ActionScript binding

date Date object

datetime Date object

duration Date object

gDay Date object

gMonth Date object

gMonthDay Date object

gYear Date object

gYearMonth Date object

time Date object
Supported types (Flash Professional only) 1439

Name and String Simple types

Boolean type

Object types

Supported XML schema object elements
The following schema description illustrates the supported XML schema object elements:
schema
 complexType
 complexContent
 restriction
 sequence | simpleContent
 restriction
 element
 complexType | simpleType

XML schema type ActionScript binding

string ActionScript string

normalizedString ActionScript string

QName mx.services.Qname object

XML schema type ActionScript binding

Boolean Boolean

XML schema type ActionScript binding

Any XML object

Complex Type ActionScript object composed of properties of any
supported type

Array ActionScript array composed of any supported object or type
1440 Web service classes (Flash Professional only)

WebService security (Flash Professional
only)
The methods and callbacks of the WebService class conform to the Flash Player security
model. For more information on the Flash Player security model, see “Understanding
Security” in Learning ActionScript 2.0 in Flash.

User authentication and authorization The authentication and authorization rules are the
same for the WebService API as they are for any XML network operation from Flash. SOAP
itself does not specify any means of authentication and authorization. For example, when the
underlying HTTP transport returns an HTTP BASIC response in the HTTP headers, the
browser responds by presenting a dialog box and subsequently attaching the user’s input to the
HTTP headers in subsequent messages. This mechanism exists at a level lower than SOAP
and is part of the Flash HTTP authentication design.

Message integrity Message-level security involves the encryption of the SOAP messages
themselves, at a conceptual layer above the network packets on which the SOAP messages are
delivered.

Transport security The underlying network transport for Flash Player SOAP web services
is always HTTP POST. Therefore, any means of security that can be applied at the Flash
HTTP transport layer—such as SSL—is supported through web services invocations from
Flash. SSL/HTTPS provides the most common form of transport security for SOAP
messaging, and use of HTTP BASIC authentication, coupled with SSL at the transport layer,
is the most common form of security for websites today.

Constructor for the WebService class
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myWebServiceObject = new WebService(wsdlURI [, logObject]);
Constructor for the WebService class 1441

Parameters

wsdlURI The URI of the web service WSDL file.

logObject An optional parameter specifying the name of the Log object for this web
service. If this parameter is used, the Log object must be created first. For more information,
see “Log class (Flash Professional only)” on page 1414.

Returns

Nothing.

Description

Constructor function; creates a WebService object. When you call new WebService(), you
provide a WSDL URL, and Flash Player returns a WebService object. The constructor can
optionally accept a proxy URI and a Log object.

If you want, you can use two callbacks for the WebService object. Flash Player calls
webServiceObject.onLoad when it finishes parsing the WSDL file and the object is
complete. This is a good place to put code you want to execute only after the WSDL file has
been completely parsed. For example, you might choose to put your first web service method
call in this function.

Flash Player calls webServiceObject.onFault when an error occurs in finding or parsing the
WSDL file. This is a good place to put debugging code and code that tells users that the server
is unavailable, that they should try again later, or similar information. For more information,
see the individual entries for these functions.

Invoking a web service operation You invoke a web service operation as a method directly
available on the web service. For example, if your web service has the method
getCompanyInfo(tickerSymbol), you would invoke the method in the following manner:
myPendingCallObject = myWebServiceObject.getCompanyInfo(tickerSymbol);

In this example, the callback object is named myPendingCallObject. All method invocations
are asynchronous, and return a callback object of type PendingCall. (Asynchronous means
that the results of the web service call are not available immediately.)

Consider the following call:
x = stockService.getQuote("macr");

When you make this call, the object x is not the result of getQuote; it’s a PendingCall object.
The actual results are only available later, when the web service operation completes. Your
ActionScript code is notified by a call to the onResult callback function.
1442 Web service classes (Flash Professional only)

Handling the PendingCall object This callback object is a PendingCall object that you use
for handling the results and errors from the web service method that was called (see
“PendingCall class (Flash Professional only)” on page 1423). Here is an example:
MyPendingCallObject = myWebServiceObject.myMethodName(param1, ..., paramN);
MyPendingCallObject.onResult = function(result)
{

OutputField.text = result
}
MyPendingCallObject.onFault = function(fault)
{

DebugField.text = fault.faultCode + "," + fault.faultstring;

// Add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support.

}

WebService.getCall()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
getCall(var operationName)

Parameters

operationName The web service operation of the corresponding SOAPCall object that you
want to retrieve.

Returns

A SOAPCall object.
WebService.getCall() 1443

Description

Function; when you create a new WebService object, it contains the methods corresponding
to operations in the WSDL URL you pass in. Behind the scenes, a SOAPCall object is created
for each operation in the WSDL as well. The SOAPCall object is the descriptor of the
operation, and as such contains all the information about that operation (how the XML
should look on the network, the operation style, and so on). It also provides control over
certain behaviors. You can get the SOAPCall object for a given operation by using the
getCall() method. There is a single SOAPCall object for each operation, shared by all active
calls to that operation. Once you have the SOAPCall object, you can change the operator
descriptor by using the SOAPCall class; see “SOAPCall class (Flash Professional only)”
on page 1434.

WebService.myMethodName()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
callbackObj = myWebServiceObject.myMethodName(param1, ... paramN);

Parameters

param1, ... paramN Various parameters, depending on the web service method that
is called.

Returns

A PendingCall object to which you can attach a function for handling results and errors on
the invocation. For more information, see “PendingCall class (Flash Professional only)”
on page 1423.
1444 Web service classes (Flash Professional only)

The callback invoked when the response comes back from the WebService method is
PendingCall.onResult or PendingCall.onFault. By uniquely identifying your callback
objects, you can manage multiple onResult callbacks, as in the following example:
myWebService = new WebService("http://www.myCompany.com/myService.wsdl");
callback1 = myWebService.getWeather("02451");
callback1.onResult = function(result)
{

// do something
}
callback2 = myWebService.getDetailedWeather("02451");
callback2.onResult = function(result)
{

// do something else
}

Description

Method; invokes a web service operation. You invoke the method directly on the web service.
For example, if your web service has the method getCompanyInfo(tickerSymbol), you
would make the following call:
myCallbackObject.myservice.getCompanyInfo(tickerSymbol);

All invocations are asynchronous, and return a callback object of type PendingCall.

WebService.onFault
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.
Usage
MyWebServiceObject.onFault = function(fault)
{

// Your code here.
}

Parameters

fault Decoded ActionScript object version of the error with properties. If the error
information came from a server in the form of XML, then the SOAPFault object is the
decoded ActionScript version of that XML.
WebService.onFault 1445

The type of error object returned to WebService.onFault methods is a SOAPFault object.
This object is not constructed directly by you, but returned as the result of a failure. This
object is an ActionScript mapping of the SOAPFault XML type.

Returns

Nothing.

Description

Callback function; called by Flash Player when the new WebService() constructor has failed
and returned an error. This can happen when the WSDL file cannot be parsed or the file
cannot be found. The fault parameter is an ActionScript SOAPFault object.

Example

The following example handles any error returned from the creation of the
WebService object.
MyWebServiceObject.onFault = function(fault)
{

// Captures the fault.
DebugOutputField.text = fault.faultstring;

// Adds code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support.

}

SOAPFault
property

Description

faultcode String; the short standard QName describing the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error,
such as a stack trace or other information returned by the web
service engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault. Optional if an intermediary is not
involved.
1446 Web service classes (Flash Professional only)

WebService.onLoad
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
myService.onLoad = function(wsdlDocument)
{

// Your code here.
}

Parameters

wsdlDocument The WSDL XML document.

Returns

Nothing.

Description

Callback function; called by Flash Player when the WebService object has successfully loaded
and parsed its WSDL file. If operations are invoked in an application before this callback
function is called, they are queued internally and not actually transmitted until the WSDL
has loaded.

Example

The following example specifies the WSDL URL, creates a new web service object, and
receives the WSDL document after loading.
// Specify the WSDL URL.
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// Creates a new web service object.
stockService = new WebService(wsdlURI);

// Receives the WSDL document after loading.
stockService.onLoad = function(wsdlDocument);
{

// Code to execute when the WSDL loading is complete and the
// object has been created.

}
WebService.onLoad 1447

1448 Web service classes (Flash Professional only)

57

CHAPTER 57

WebServiceConnector component
(Flash Professional only)
The WebServiceConnector component lets you access remote methods exposed by a server
using the industry-standard Simple Object Access Protocol (SOAP). A web service method
can accept parameters and return a result. Using the Flash Professional 8 authoring tool and
the WebServiceConnector component, you can inspect, access, and bind data between a
remote web service and your Flash application.

A single instance of a WebServiceConnector component can be used to make multiple calls to
the same operation. You need to use a different instance of WebServiceConnector for each
different operation you want to call.

For introductory information on working with the results of this component, see “Working
with schemas in the Schema tab (Flash Professional only)” in Using Flash.

Using the WebServiceConnector
component (Flash Professional only)
You can use the WebServiceConnector component to connect to a web service and make the
properties of the web service available for binding to properties of UI components in your
application. To connect to a web service, you must first enter the URL for the WSDL file that
represents the web service. You can enter this URL in the Component inspector or the Web
Services panel. See “Connecting to web services with the WebService connector component
(Flash Professional only)” in Using Flash.

For more information on connecting to web services, see “Data binding (Flash Professional
only)”in Using Flash.

N
O

T
E

The WebServiceConnector component appears on the Stage during application
authoring but is not visible in the runtime application.
1449

WebServiceConnector parameters
You can set the following authoring parameters for each WebServiceConnector component
instance by using the Parameters tab of the Component inspector:

multipleSimultaneousAllowed is a Boolean value that indicates whether multiple calls can
take place at the same time; the default value is false. If this parameter is false, the
trigger() method does not perform a call if a call is already in progress. A status event is
emitted, with the code CallAlreadyInProgress. If this parameter is true, the call
takes place.

operation is a string indicating the name of an operation that appears within the SOAP port
in a WSDL file.

suppressInvalidCalls is a Boolean value that indicates whether to suppress a call if parameters
are invalid; the default value is false. If this parameter is true, the trigger() method does
not perform a call if the databound parameters fail the validation. A status event is emitted,
with the code InvalidParams. If this parameter is false, the call takes place, using the
invalid data as required.

WSDLURL (String type) is the URL of the WSDL file that defines the web service operation.
When you set this URL during authoring, the WSDL file is immediately fetched and parsed.
The resulting parameters and results information can be seen in the Schema tab of the
Component inspector. The service description is also added to the Web Service panel. For
example, see www.flash-mx.com/mm/tips/tips.cfc?wsdl.

Common workflow for the WebServiceConnector
component
The following procedure shows the typical workflow for the WebServiceConnector
component.
1450 WebServiceConnector component (Flash Professional only)

http://www.flash-mx.com/mm/tips/tips.cfc?wsdl

To use a WebServiceConnector component:

1. Use the Web Services panel to enter the URL for a web service WSDL file.

2. Add a call to a method of the web service by selecting the method, right-clicking
(Windows) or Control-clicking (Macintosh), and selecting Add Method Call from the
context menu.

This creates a WebServiceConnector component instance in your application. The
schema for the component can then be found on the Schema tab of the Component
inspector. You are free to edit this schema as needed—for example, to provide additional
formatting or validation settings.

3. Use the Bindings tab in the Component inspector to bind the web service parameters and
results that are now defined in your schema to UI components in your application.

4. Add a trigger to initiate the data binding operation in one of the following ways:

■ Attach the Trigger Data Source behavior to a button.
■ Add your own ActionScript to call the trigger() method on the

WebServiceConnector component.
■ Create a binding between a web service parameter and a UI control, and set its Kind

property to AutoTrigger. For more information, see “Schema kinds” in Using Flash.

For a step-by-step example that connects and displays a web service using the
WebServiceConnector component, see “Web Service Tutorial: Macromedia Tips.”

WebServiceConnector class (Flash
Professional only)
Inheritance RPC > WebServiceConnector

ActionScript Class Name mx.data.components.WebServiceConnector

This class allows you to connect to remote web services using ActionScript code instead of
component instances on the Stage. To use the WebServiceConnector class, you need to add an
instance of the WebServiceConnector component to your library. The component does not
need to be placed directly on the Stage. You must import the ActionScript class
mx.data.components.WebServiceConnector at the beginning of the script or use the fully
qualified class name throughout your code.

N
O

T
E

The schema for the params and results component properties is updated each time
you change the WSDLURL or operation parameter. This overwrites any settings that
you have edited.
WebServiceConnector class (Flash Professional only) 1451

Method summary for the WebServiceConnector
class
The following table lists the method of the WebServiceConnector class.

Property summary for the WebServiceConnector
class
The following table lists properties of the WebServiceConnector class.

Method Description

WebServiceConnector.trigger() Initiates a call to a web service.

Property Description

WebServiceConnector.multiple

SimultaneousAllowed

Indicates whether multiple calls can take
place at the same time.

WebServiceConnector.operation Indicates the name of an operation that
appears within the SOAP port in a
WSDL file.

WebServiceConnector.params Specifies data that is sent to the
server when the next trigger()
operation is executed.

WebServiceConnector.results Identifies data that was received from
the server as a result of the trigger()
operation.

WebServiceConnector.suppress InvalidCalls Indicates whether to suppress a call if
parameters are invalid.

WebServiceConnector.WSDLURL Specifies the URL of the WSDL file that
defines the web service operation.
1452 WebServiceConnector component (Flash Professional only)

Event summary for the WebServiceConnector class
The following table lists events of the WebServiceConnector class.

WebServiceConnector.multiple
SimultaneousAllowed
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.multipleSimultaneousAllowed

Description

Property; indicates whether multiple calls can (true) or cannot (false) take place at the same
time. If this property is true, the call takes place. If this property is false, and another call is
already in progress, the WebServiceConnector.trigger() method causes a status event to
be emitted with the code CallAlreadyInProgress.

Event Description

WebServiceConnector.result Broadcast when a call to a web service
completes successfully.

WebServiceConnector.send Broadcast when the trigger() method
is in process, after the parameter data
has been gathered but before the data is
validated and the call to the web service
is initiated.

WebServiceConnector.status Broadcast when a call to a web service
is initiated, to inform the user of the
status of the operation.
WebServiceConnector.multiple SimultaneousAllowed 1453

When multiple calls are simultaneously in progress, there is no guarantee that they will be
completed in the order in which they were triggered. Also, the browser and/or operating
system may place limits on the number of simultaneous network operations. The most likely
limit you may encounter is the browser enforcing a maximum number of URLs that can be
downloaded simultaneously. This is something that is often configurable in a browser.
However, even in this case, the browser should queue streams, and this should not interfere
with the expected behavior of the Flash application.

Example

The following example enables multiple simultaneous calls to myXmlUrl to take place:
myXmlUrl.multipleSimultaneousAllowed = true;

WebServiceConnector.operation
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.operation;

Description

Property; the name of an operation that appears within the SOAP port in a WSDL file.

Example

This example returns data from a remote web service and traces a tip and how long the service
takes to return the data to the SWF file. Drag a WebServiceConnector component into your
library, and enter the following code on Frame 1 of the timeline:
import mx.data.components.WebServiceConnector;

var startTime:Number;
var wscListener:Object = new Object();
wscListener.result = function(evt:Object) {
var resultTimeMS:Number = getTimer()-startTime;
trace("result loaded in "+resultTimeMS+" ms.");
trace(evt.target.results);
};
wscListener.send = function(evt:Object) {
startTime = getTimer();
};
1454 WebServiceConnector component (Flash Professional only)

var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("result", wscListener);
wsConn.addEventListener("send", wscListener);
wsConn.WSDLURL = "http://www.flash-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
wsConn.params = ["Flash"];
wsConn.suppressInvalidCalls = true;
wsConn.multipleSimultaneousAllowed = false;
wsConn.trigger();

WebServiceConnector.params
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.params

Description

Property; specifies data that will be sent to the server when the next trigger() operation is
executed. The data type is determined by the WSDL description of the web service.

When you call web service methods, the data type of the params property must be an
ActionScript object or array as follows:

■ If the web service is in document format, the data type of params is an XML document.
■ If you use the Property inspector or Component inspector to set the WSDL URL and

operation while authoring, you can provide params as an array of parameters in the same
order as required by the web service method, such as [1, "hello", 2432].

Example

The following example sets the params property for a web service component named wsc:
wsc.params = [param_txt.text];
WebServiceConnector.params 1455

WebServiceConnector.result
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("result", myListenerObject)

Description

Event; broadcast when a call to a web service completes successfully.

The parameter to the event handler is an object with the following fields:

■ type: the string "result"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve the actual result value using the results property.

Example

The following example defines a function res for the result event and assigns the function
to the addEventListener event handler:
var res = function (ev) {
trace(ev.target.results);
};
wsc.addEventListener("result", res);

This example returns data from a remote web service and traces a tip. Drag a
WebServiceConnector component into your library, and enter the following code on Frame 1
of the timeline:
import mx.data.components.WebServiceConnector;
var wscListener:Object = new Object();
wscListener.result = function(evt:Object) {

trace(evt.target.results);
};
var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("result", wscListener);
wsConn.WSDLURL = "http://www.flash-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
wsConn.params = ["Flash"];
wsConn.trigger();
1456 WebServiceConnector component (Flash Professional only)

WebServiceConnector.results
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.results

Description

Property; identifies data that was received from the server as a result of a trigger()
operation. Each WebServiceConnector component defines how this data is fetched, and what
the valid types are. This data appears when the RPC operation has successfully completed, as
signaled by the result event. It is available until the component is unloaded, or until the next
RPC operation.

The returned data can be large. You can manage this size in two ways:

■ Select an appropriate movie clip, timeline, or screen as the parent for the
WebServiceConnector component. The component’s storage memory becomes available
for garbage collection when the parent is destroyed.

■ In ActionScript, you can assign null to this property at any time.

WebServiceConnector.send
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("send", myListenerObject)
WebServiceConnector.send 1457

Description

Event; broadcast during the processing of a trigger() operation, after the parameter data has
been gathered but before the data is validated and the call to the web service is initiated. This
is a good place to put code that modifies the parameter data before the call.

The parameter to the event handler is an object with the following fields:

■ type: the string "send"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve or modify the actual parameter values by using the params property.

Example

The following example defines a function sendFunction for the send event and assigns the
function to the addEventListener event handler:
var sendFunction = function (sendEnv) {
sendEnv.target.params = [newParam_txt.text];
};
wsc.addEventListener("send", sendFunction);

WebServiceConnector.status
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("status", myListenerObject)

Description

Event; broadcast when a call to a web service is initiated, to inform the user of the status of
the operation.

The parameter to the event handler is an object with the following fields:

■ type: the string "status"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)
■ code: a string giving the name of the condition that occurred
■ data: an object whose contents depend on the code
1458 WebServiceConnector component (Flash Professional only)

The following are the codes and associated data available for the status event:

Here are the possible web service faults:

Code Data Description

StatusChange {callsInProgress:nnn} This event is emitted whenever a web
service call starts or finishes. The item nnn
gives the number of calls currently in
progress.

CallAlreadyInProgress No data This event is emitted if trigger() is called,
multipleSimultaneousAllowed is false, and a
call is already in progress. After this event
occurs, the attempted call is considered
complete, and there is no result or send
event.

InvalidParams No data This event is emitted if the trigger()
method found that the params property did
not contain valid data. If the
suppressInvalidCalls property is true, the
attempted call is considered complete, and
there is no result or send event.

WebServiceFault {faultcode: code,
faultstring: string,
detail: detail}

This event is emitted if other problems occur
during the processing of the call. The data is
a SOAPFault object. After this event occurs,
the attempted call is considered complete,
and there is no "result" or "send" event.
See the following table for a list of the faults
that can occur.

faultcode faultstring detail

Timeout Timeout while calling
method xxx

MustUnderstand No callback for header xxx

Server.Connection Unable to connect to
endpoint: xxx

VersionMismatch Request implements
version: xxx Response
implements version yyy
WebServiceConnector.status 1459

Client.Disconnected Could not load WSDL Unable to load
WSDL, if currently
online, please verify
the URI and/or format
of the WSDL xxx

Server Faulty WSDL format Definitions must be
the first element in a
WSDL document

Server.NoServicesInWSDL Could not load WSDL No elements found in
WSDL at xxx

WSDL.UnrecognizedNamespace The WSDL parser had no
registered document for the
namespace xxxx

WSDL.UnrecognizedBindingName The WSDL parser couldn’t
find a binding named xxx in
namespace yyy

WSDL.UnrecognizedPortTypeName The WSDL parser couldn’t
find a portType named xxx in
namespace yyy

WSDL.UnrecognizedMessageName The WSDL parser couldn’t
find a message named xxx in
namespace yyy

WSDL.BadElement Element xxx not resolvable

WSDL.BadType Type xxx not resolvable

Client.NoSuchMethod Couldn’t find method 'xxx' in
service

yyy yyy - errors reported from
server, this depends on
which server you talk to

No.WSDLURL.Defined The WebServiceConnector
component had no WSDL
URL defined

faultcode faultstring detail
1460 WebServiceConnector component (Flash Professional only)

Example

The following example defines a function fault for the status event and assigns the
function to the addEventListener event handler. The example intentionally misspells the
URI for the service to return a web service fault (the url should be "http://www.flash-
mx.com/mm/tips/tips.cfc?wsdl") and a message asking the user to verify the URI. With a
WebServiceConnector component in the library, add the following to the first frame of the
timeline:
import mx.data.components.WebServiceConnector;

var fault = function (stat) {
if (stat.code == "WebServiceFault"){

trace(stat.data.faultcode);
trace(stat.data.faultstring);
trace(stat.data.detail);

}
};

var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("status", fault);
wsConn.WSDLURL = "http://www.flasht-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
wsConn.params = ["Flash"];
wsConn.trigger();

WebServiceConnector.suppress
InvalidCalls
Availability

Flash Player 6 (6.0.79.0).

Unknown.Call.Failure WebService invocation
failed for unknown reasons

Client.Disconnected Could not load imported
schema

Unable to load
schema; if currently
online, please verify
the URI and/or format
of the schema at
(XXXX)

faultcode faultstring detail
WebServiceConnector.suppress InvalidCalls 1461

Edition

Flash MX Professional 2004.

Usage
componentInstance.suppressInvalidCalls

Description

Property; indicates whether to suppress a call if parameters are invalid. If this property is true,
the trigger() method does not perform a call if the bound parameters fail the validation. A
status event is emitted, with the code InvalidParams. If this property is false, the call
takes place, using the invalid data as required.

Example

This example displays an error because the required parameters are not being passed. Drag a
WebServiceConnector component into your library, and enter the following code on Frame 1
of the timeline:
import mx.data.components.WebServiceConnector;
var res:Function = function (evt:Object) {

trace(evt.target.results);
};
var stat:Function = function (error:Object) {

switch (error.code) {
case 'InvalidParams' :

trace("Unable to connect to remote Web Service: "+error.code);
break;

case 'StatusChange' :
break;

default :
trace("Error: "+error.code);
break;

}
};
var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("result", res);
wsConn.addEventListener("status", stat);
wsConn.WSDLURL = "http://www.flash-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
// wsConn.params = ["Flash"];
wsConn.suppressInvalidCalls = true;
wsConn.trigger();

To display a tip instead of an error, uncomment the line wsConn.params = ["Flash"];.
1462 WebServiceConnector component (Flash Professional only)

WebServiceConnector.trigger()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.trigger();

Description

Method; initiates a call to a web service. Each web service defines exactly what this involves. If
the operation is successful, the results of the operation appear in the results property for the
web service.

The trigger() method performs the following steps:

1. If any data is bound to the params property, the method executes all the bindings to ensure
that up-to-date data is available. This also causes data validation to occur.

2. If the data is not valid and suppressInvalidCalls is set to true, the operation
is discontinued.

3. If the operation continues, the send event is emitted.

4. The actual remote call is initiated using the connection method indicated (for
example, HTTP).

Example

This example returns data from a remote web service and traces a tip. Drag a
WebServiceConnector component into your library, and enter the following code on Frame 1
of the timeline:
import mx.data.components.WebServiceConnector;
var res:Function = function (evt:Object) {

trace(evt.target.results);
};
var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("result", res);
wsConn.WSDLURL = "http://www.flash-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
wsConn.params = ["Flash"];
wsConn.suppressInvalidCalls = true;
wsConn.trigger();
WebServiceConnector.trigger() 1463

WebServiceConnector.WSDLURL
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.WSDLURL

Description

Property; the URL of the WSDL file that defines the web service operation. When you set
this URL while authoring, the WSDL file is immediately fetched and parsed. The resulting
parameters and results appear in the Schema tab of the Component inspector. The service
description also appears in the Web Service panel.

Example

This example returns data from a remote web service and traces a tip. Drag a
WebServiceConnector component into your library, and enter the following code on Frame 1
of the timeline:
import mx.data.components.WebServiceConnector;
var res:Function = function (evt:Object) {

trace(evt.target.results);
};
var wsConn:WebServiceConnector = new WebServiceConnector();
wsConn.addEventListener("result", res);
wsConn.WSDLURL = "http://www.flash-mx.com/mm/tips/tips.cfc?wsdl";
wsConn.operation = "getTipByProduct";
wsConn.params = ["Flash"];
wsConn.suppressInvalidCalls = true;
wsConn.trigger();
1464 WebServiceConnector component (Flash Professional only)

58

CHAPTER 58

Window component
A Window component displays the contents of a movie clip inside a window with a title bar, a
border, and an optional close button.

A Window component can be modal or nonmodal. A modal window prevents mouse and
keyboard input from going to other components outside the window. The Window
component also supports dragging; a user can click the title bar and drag the window and its
contents to another location. Dragging the borders doesn’t resize the window.

A live preview of each Window instance reflects changes made to all parameters except
contentPath in the Property inspector or Component inspector during authoring.

When you add the Window component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.WindowAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you
have of the component. For more information, see Chapter 19, “Creating Accessible
Content,” in Using Flash.

Using the Window component
You can use a window in an application whenever you need to present a user with information
or a choice that takes precedence over anything else in the application. For example, you
might need a user to fill out a login window, or a window that changes and confirms a new
password.

There are several ways to add a window to an application. You can drag a window from the
Components panel to the Stage. You can also call createClassObject() (see
UIObject.createClassObject()) to add a window to an application. The third way of
adding a window to an application is to use the PopUpManager class. Use the Popup Manager
to create modal windows that overlap other objects on the Stage. For more information, see
“Window class” on page 1472.
1465

If you use the Popup Manager to add a Window component to a document, the Window
instance will have its own Focus Manager, distinct from the rest of the document. If you don’t
use the Popup Manager, the window’s contents participate in focus ordering with the other
components in the document. For more information about controlling focus, see
“FocusManager class” on page 721 or “Creating custom focus navigation” in Using
Components.

Components such as Loader, ScrollPane, and Window have events to determine when
content finishes loading. To set properties on the content of a Loader, ScrollPane, or Window,
add the property statement within a “complete” event handler, as shown in the following
example:
loadtest = new Object();
loadtest.complete = function(eventObject){
 content_mc._width= 100;
}
my_window.addEventListener("complete", loadtest)

For more information, see “Window.complete” on page 1479.

Window parameters
You can set the following authoring parameters for each Window component instance in the
Property inspector or in the Component inspector (Window > Component Inspector
menu option):

closeButton indicates whether a close button is displayed (true) or not (false). Clicking the
close button broadcasts a click event, but doesn’t close the window. You must write a handler
that calls Window.deletePopUp() to explicitly close the window. For more information about
the click event, see Window.click.

contentPath specifies the contents of the window. This can be the linkage identifier of the
movie clip or the symbol name of a screen, form, or slide that contains the contents of the
window. This can also be an absolute or relative URL for a SWF or JPEG file to load into the
window. The default value is "". Loaded content is clipped to fit the window.

title indicates the title of the window.

N
O

T
E

If a window was created by means other than PopUp Manager, you can’t close it.
N

O
T

E

The minHeight and minWidth properties are used by internal sizing routines. They are
defined in UIObject, and are overridden by different components as needed. These
properties can be used if you make a custom layout manager for your application.
Otherwise, setting these properties in the Component inspector has no visible effect.
1466 Window component

You can set the following additional parameters for each Window component instance in the
Component inspector (Window > Component Inspector):

enabled is a Boolean value that indicates whether the component can receive focus and input.
The default value is true.

visible is a Boolean value that indicates whether the object is visible (true) or not (false).
The default value is true.

skinCloseDisabled determines the close button in its disabled state. The default value is
CloseButtonDisabled.

skinCloseDown determines the close button in its down state. The default value is
CloseButtonDown.

skinCloseOver determines the close button in its over state. The default value is
CloseButtonOver.

skinCloseUp determines the close button in its up (default) state. The default value is
CloseButtonUp.

skinTitleBackground determines the title bar appearance. The default value is
TitleBackground.

titleStyleDeclaration assigns the name of the style declaration for the title text. The default
value is undefined, which causes the title bar to have white, bold text. See “Setting custom
styles for groups of components” in Using Components.

You can write ActionScript to control these and additional options for the Window
component using its properties, methods, and events. For more information, see “Window
class” on page 1472.

Creating an application with the Window component
The following procedure explains how to add a Window component to an application. In this
example, when the user clicks a button the window displays an image.

To create an application with the Window component:

1. Drag a Window component from the Components panel to the current document’s
library. This adds the component to the library but not to the Stage.

2. Drag a button component from the Components panel to the Stage; in the Property
inspector, give it the instance name my_button.

N
O

T
E

For more information about the following five skin parameters, see “Using skins with the
Window component” on page 1470.
Using the Window component 1467

3. Open the Actions panel, and enter the following click handler in Frame 1:
/**
 Requires:
 - Button component on Stage (instance name: my_button)
 - Window component in library
*/
import mx.containers.Window;

var my_button:mx.controls.Button;

System.security.allowDomain("http://www.helpexamples.com");

// Create listener object.
var buttonListener:Object = new Object();
buttonListener.click = function(evt_obj:Object) {
 // Instantiate Window.
 var my_win:MovieClip =

mx.managers.PopUpManager.createPopUp(evt_obj.target, Window, true,
{title:"Sample Image", contentPath:"http://www.helpexamples.com/
flash/images/image1.jpg"});

 my_win.setSize(320, 240);
};
// Add listener.
my_button.addEventListener("click", buttonListener);

This example creates a click() function that the buttonListener event listener calls
when the user clicks the button my_button. The click event handler,
buttonListener.click(), calls PopUpManager.createPopUp() to instantiate a window
that displays an image. To close the window when the OK or Cancel button is clicked,
you would need to write another handler.

Customizing the Window component
You can transform a Window component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use UIObject.setSize().

Resizing the window does not change the size of the close button or title caption. The title
caption is aligned to the left and the close bar to the right.
1468 Window component

Using styles with the Window component
A Window component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and "haloOrange".
The default value is "haloGreen".

backgroundColor Both The background color. The default value is white for the
Halo theme and 0xEFEBEF (light gray) for the Sample
theme.

borderStyle Both The Window component uses a RectBorder instance as
its border and responds to the styles defined on that
class. See “RectBorder class” on page 1063.
The Window component has a component-specific
border style of “default” with the Halo theme and
“outset” with the Sample theme.

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This style
must be set to true if fontFamily refers to an embedded
font. Otherwise, the embedded font is not used. If this
style is set to true and fontFamily does not refer to an
embedded font, no text is displayed. The default value is
false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() return "none".

textAlign Both The text alignment: either "left", "right", or "center".
The default value is "left".
Customizing the Window component 1469

Text styles can be set on the Window component itself, or they can be set on the
_global.styles.windowStyles class style declaration (text styles, only, not other styles like
themeColor or backgroundColor, which come from the _global.styles.Window class style
declaration). This has the advantage of not causing style settings to propagate to child
components through style inheritance.

The following example demonstrates how to italicize the title of a Window component
without having this setting propagate to child components.
import mx.containers.Window;
_global.styles.windowStyles.setStyle("fontStyle", "italic");
createClassObject(Window, "window", 1, {title: "A Window"});

Notice that this example sets the property before instantiating the window through
createClassObject(). For the styles to take effect, they must be set before the window
is created.

Using skins with the Window component
The Window component uses skins for its title background and close button, and a
RectBorder instance for the border. The Window skins are found in the Flash UI
Components 2/Themes/ MMDefault/Window Assets folder in each of the theme files. For
more information about skinning, see “About skinning components” in Using Components.
For more information about the RectBorder class and using it to customize borders, see
“RectBorder class” on page 1063.

The title background skin is always displayed. The height of the background is determined by
the skin graphics. The width of the skin is set by the Window component according to the
Window instance’s size. The close skins are displayed when the closeButton property is set
to true and when a change state results from user interaction.

A Window component uses the following skin properties:

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value is
0.

Property Description

skinTitleBackground The title bar. The default value is TitleBackground.

skinCloseUp The close button. The default value is CloseButtonUp.

Style Theme Description
1470 Window component

The following example demonstrates how to create a new movie clip symbol to use as the
title background.

To set the title of a Window component to a custom movie clip symbol:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to TitleBackground.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

6. The identifier is automatically filled out with TitleBackground.

7. Set the AS 2.0 class to mx.skins.SkinElement.

SkinElement is a simple class that can be used for all skin elements that don’t provide their
own ActionScript implementation. It provides movement and sizing functionality
required by the version 2 of the Macromedia Component Architecture component
framework.

8. Make sure that Export in First Frame is already selected, and click OK.

9. Open the new symbol for editing.

10. Use the drawing tools to create a box with a red fill and black line.

11. Set the border style to hairline.

12. Set the box, including the border, so that it is positioned at (0,0) and has a width of 100
and height of 22.

The Window component sets the proper width of the skin as needed but it uses the
existing height as the height of the title.

13. Click the Back button to return to the main timeline.

14. Drag the Window component to the Stage.

15. Select Control > Test Movie.

skinCloseDown The close button in its down state. The default value is
CloseButtonDown.

skinCloseDisabled The close button in its disabled state. The default value is
CloseButtonDisabled.

skinCloseOver The close button in its over state. The default value is
CloseButtonOver.

Property Description
Customizing the Window component 1471

Window class
Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
Window

ActionScript Class Name mx.containers.Window

The properties of the Window class let you do the following at runtime: set the title caption,
add a close button, and set the display content. Setting a property of the Window class with
ActionScript overrides the parameter of the same name set in the Property inspector or
Component Inspector panel.

The best way to instantiate a window is to call PopUpManager.createPopUp(). This method
creates a window that can be modal (overlapping and disabling existing objects in an
application) or nonmodal. For example, the following code creates a modal Window instance
(the last parameter indicates modality):
var newWindow = PopUpManager.createPopUp(this, Window, true);

Flash simulates modality by creating a large transparent window underneath the Window
component. Because of the way transparent windows are rendered, you may notice a slight
dimming of the objects under the transparent window. You can set the effective transparency
by changing the _global.style.modalTransparency value from 0 (fully transparent) to
100 (opaque). If you make the window partially transparent, you can also set the color of the
window by changing the Modal skin in the default theme.

If you use PopUpManager.createPopUp() to create a modal window, you must call
Window.deletePopUp() to remove it so that the transparent window is also removed. For
example, if you use the close button in the window, you would write the following code:
var win = PopUpManager.createPopUp(_root, Window, true,

{closeButton:true});
function click(evt){

evt.target.deletePopUp();
}
win.addEventListener("click", this);

Code does not stop executing when a modal window is created. In other environments (for
example, Microsoft Windows), if you create a modal window, the lines of code that follow the
creation of the window do not run until the window is closed. In Flash, the lines of code are
run after the window is created and before it is closed.
1472 Window component

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the
version of the component. To access this property, use the following code:
trace(mx.containers.Window.version);

Method summary for the Window class
The following table lists the method of the Window class.

Methods inherited from the UIObject class
The following table lists the methods the Window class inherits from the UIObject class.
When calling these methods from the Window object, use the form
WindowInstance.methodName.

N
O

T
E

The code trace(myWindowInstance.version); returns undefined.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it is redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the
current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
Window class 1473

Methods inherited from the UIComponent class
The following table lists the methods the Window class inherits from the UIComponent
class. When calling these methods from the Window object, use the form
WindowInstance.methodName.

Property summary for the Window class
The following table lists properties of the Window class.

Properties inherited from the UIObject class
The following table lists the properties the Window class inherits from the UIObject class.
When accessing these properties from the Window object, use the form
WindowInstance.propertyName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Window.closeButton Indicates whether a close button is (true) or is not (false)
included on the title bar.

Window.content A reference to the content (root movie clip) of the window
(read-only).

Window.contentPath Sets the name of the content to display in the window.

Window.title The text that appears in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Property Description

UIObject.bottom Read-only; the position of the bottom edge of the object,
relative to the bottom edge of its parent.

UIObject.height Read-only; the height of the object, in pixels.

UIObject.left Read-only; the left edge of the object, in pixels.

UIObject.right Read-only.The position of the right edge of the object,
relative to the right edge of its parent.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.
1474 Window component

Properties inherited from the UIComponent class
The following table lists the properties the Window class inherits from the UIComponent
class. When accessing these properties from the Window object, use the form
WindowInstance.propertyName.

Event summary for the Window class
The following table lists the events of the Window class.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top Read-only; the position of the top edge of the object, relative
to its parent.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width Read-only; the width of the object, in pixels.

UIObject.x Read-only; the left edge of the object, in pixels.

UIObject.y Read-only; the top edge of the object, in pixels.

Property Description

UIComponent.enabled Indicates whether the component can receive focus
and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

Window.click Broadcast when the close button is clicked (released).

Window.complete Broadcast when a window is created.

Window.mouseDownOutside Broadcast when the mouse is clicked (released) outside the
modal window.

Property Description
Window class 1475

Events inherited from the UIObject class
The following table lists the events the Window class inherits from the UIObject class.

Events inherited from the UIComponent class
The following table lists the events the Window class inherits from the UIComponent class.

Window.click
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
1476 Window component

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.click = function(eventObject:Object) {

// ...
};
windowInstance.addEventListener("click", listenerObject);

Usage 2:
on (click) {

// ...
}

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the
close button.

The first usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. The event object has properties that
contain information about the event. You can use these properties to write code that handles
the event. Finally, you call the EventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When
the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

The second usage example uses an on() handler and must be attached directly to a Window
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the Window instance
myWindow, sends “_level0.myWindow” to the Output panel:
on(click){

trace(this);
}

Window.click 1477

Example

The following example creates a modal window with a close button. It defines a click handler
that calls the click() method to delete the window when the user clicks the button. You drag
a Window component from the Components panel to the current document’s library; then
add the following code to Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,
{closeButton:true, contentPath:"http://www.flash-mx.com/images/
image1.jpg"});

var winListener:Object = new Object();
winListener.click = function() {
 my_win.deletePopUp();
};
my_win.addEventListener("click", winListener);

See also

EventDispatcher.addEventListener(), Window.closeButton

Window.closeButton
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.closeButton

Description

Property; a Boolean value that indicates whether the title bar should have a close button
(true) or not (false). This property must be set in the initObject parameter of the
PopUpManager.createPopUp() method. The default value is false.
1478 Window component

Clicking the close button broadcasts a click event, but doesn’t close the window. You must
write a handler that calls Window.deletePopUp() to explicitly close the window. For more
information about the click event, see Window.click.

Example

The following example creates a pop-up window and sets the closeButton property to add a
close button to it. You drag a Window component from the Components panel to the current
document’s library, and then add the following code to Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,
{closeButton:true, contentPath:"http://www.flash-mx.com/images/
image1.jpg"});

See also

PopUpManager.createPopUp(), Window.click

Window.complete
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
windowInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when a window is created. Use this event to size a
window to fit its contents.
Window.complete 1479

A component instance (windowInstance) dispatches an event (in this case, complete) and
the event is handled by a function, also called a handler, on a listener object
(listenerObject) that you create. You define a method with the same name as the event on
the listener object; the method is called when the event is triggered. When the event is
triggered, it automatically passes an event object (eventObject) to the listener object
method. The event object has properties that contain information about the event. You can
use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches
the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.

Example

The following example creates a window and then defines a complete handler that resizes the
window to fit its contents. You drag a Window component from the Components panel to
the current document’s library, and then add the following code to Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,
{closeButton:true, contentPath:"http://www.flash-mx.com/images/
image1.jpg"});

var winListener:Object = new Object();
winListener.click = function(evt_obj:Object) {
 my_win.deletePopUp();
};
winListener.complete = function(evt_obj:Object) {
 my_win.setSize(my_win.content._width, my_win.content._height + 25);
}
my_win.addEventListener("click", winListener);
my_win.addEventListener("complete", winListener);

See also

EventDispatcher.addEventListener()
1480 Window component

Window.content
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.content

Description

Read-only property; a reference to the content (root movie clip) of the window. This property
returns a MovieClip object. When you attach a symbol from the library, the default value is an
instance of the attached symbol. When you load content from a URL, the default value is
undefined until the load operation has started.

Example

The following example creates a window and then defines a complete handler that resizes the
window to fit its contents. It uses the content property to reference the width of the
window’s movie clip content. You drag a Window component from the Components panel to
the current document’s library, and then add the following code to Frame 1:
/**

 Requires:

 - Window component in library

*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,
{closeButton:true, contentPath:"http://www.flash-mx.com/images/
image1.jpg"});

var winListener:Object = new Object();
winListener.click = function(evt_obj:Object) {
 my_win.deletePopUp();
};
winListener.complete = function(evt_obj:Object) {
 my_win.setSize(my_win.content._width, my_win.content._height + 25);
}
my_win.addEventListener("click", winListener);
my_win.addEventListener("complete", winListener);
Window.content 1481

Window.contentPath
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.contentPath

Description

Property; sets the name of the content to display in the window. This value can be the linkage
identifier of a movie clip in the library, or the absolute or relative URL of a SWF or JPEG file
to load. The default value is "" (an empty string).

Example

The following example creates a window and uses the contentPath property to specify the
location of the image to display in the window. You drag a Window component from the
Components panel to the current document’s library, and then add the following code to
Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

// Create window.
var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true, {

contentPath:"http://www.flash-mx.com/images/image2.jpg"});
1482 Window component

Window.deletePopUp()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.deletePopUp()

Parameters

None.

Returns

Nothing.

Description

Method; deletes the window instance and removes the modal state. This method can be called
only on Window instances that were created by PopUpManager.createPopUp().

Example

The following example creates a modal window and then defines a click handler that calls the
deletePopUp() function to delete the window. You drag a Window component from the
Components panel to the current document’s library, and then add the following code to
Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,
{closeButton:true, contentPath:"http://www.flash-mx.com/images/
image1.jpg"});

var winListener:Object = new Object();
winListener.click = function() {
 my_win.deletePopUp();
};
my_win.addEventListener("click", winListener);
Window.deletePopUp() 1483

Window.mouseDownOutside
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
var listenerObject:Object = new Object();
listenerObject.mouseDownOutside = function(eventObject:Object) {

// ...
};
windowInstance.addEventListener("mouseDownOutside", listenerObject);

Usage 2:
on (mouseDownOutside) {

// ...
}

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) outside the
modal window. This event is rarely used, but you can use it to dismiss a window if the user
tries to interact with something outside it.

The first usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, mouseDownOutside) and the event is
handled by a function, also called a handler, on a listener object (listenerObject) that you
create. You define a method with the same name as the event on the listener object; the
method is called when the event is triggered. When the event is triggered, it automatically
passes an event object (eventObject) to the listener object method. The event object has
properties that contain information about the event. You can use these properties to write
code that handles the event. Finally, you call the EventDispatcher.addEventListener()
method on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 499.
1484 Window component

The second usage example uses an on() handler and must be attached directly to a Window
instance. The keyword this, used inside an on() handler attached to a component, refers to
the component instance. For example, the following code, attached to the Window instance
myWindowComponent, sends “_level0.myWindowComponent” to the Output panel:
on (mouseDownOutside) {

trace(this);
}

Example

The following example creates a window instance and defines a mouseDownOutside handler
that displays a message if the user clicks outside the window. You drag a Window component
from the Components panel to the current document’s library, and then add the following
code to Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager;
import mx.containers.Window;

System.security.allowDomain("http://www.flash-mx.com");

// Create window.
var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,

undefined, true);

// Create a listener object.
var winListener:Object = new Object();
winListener.mouseDownOutside = function(evt_obj:Object)
{
 trace("mouseDownOutside event triggered.");
}
// Add listener.
my_win.addEventListener("mouseDownOutside", winListener);

See also

EventDispatcher.addEventListener()
Window.mouseDownOutside 1485

Window.title
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.title

Description

Property; a string indicating the text of the title bar. The default value is "" (an empty string).

Example

The following example creates a pop-up window and uses the title property to set the title
to “Hello World”. You drag a Window component from the Components panel to the current
document’s library, and then add the following code to Frame 1:
/**
 Requires:
 - Window component in library
*/

import mx.managers.PopUpManager
import mx.containers.Window

// Create window.
var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true);

// Set window attributes.
my_win.title = "Hello World!";
my_win.setSize(200, 100);
my_win.move(20, 20);
1486 Window component

Window.titleStyleDeclaration
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX 2004.

Usage
windowInstance.titleStyleDeclaration

Description

Property; a string indicating the style declaration that formats the title bar of a window. The
default value is undefined, which indicates bold, white text.

Example

The following example creates a CSS style declaration to make text 14 points in size, italicized
and underlined. It uses the titleStyleDeclaration property to apply that style to the title
of the pop-up window that it creates. You drag a Window component from the Components
panel to the current document’s library, and then add the following code to Frame 1.
/**
 Requires:
 - Window component in library
*/

import mx.styles.CSSStyleDeclaration
import mx.managers.PopUpManager
import mx.containers.Window

// Create a new CSSStyleDeclaration named TitleStyles
// and list it with the global styles list.
_global.styles.TitleStyles = new CSSStyleDeclaration();

// Customize styles.
_global.styles.TitleStyles.fontStyle = "italic";
_global.styles.TitleStyles.textDecoration = "underline";
_global.styles.TitleStyles.color = 0xff0000;
_global.styles.TitleStyles.fontSize = 14;

// Create window.
var my_win:MovieClip = PopUpManager.createPopUp(this, Window, true,

{closeButton:true, titleStyleDeclaration:"TitleStyles"});
Window.titleStyleDeclaration 1487

// Set window attributes.
my_win.title = "Testing Styles";
my_win.setSize(200, 100);
my_win.move(20, 20);

// Create listener object.
var winListener:Object = new Object();
winListener.click = function(evt_obj:Object) {
 trace("closing window");
 evt_obj.target.deletePopUp();
};
// Add listener.
my_win.addEventListener("click", winListener);

For more information about styles, see “Using styles to customize component color and text”
in Using Components.
1488 Window component

59

CHAPTER 59

XMLConnector component
(Flash Professional only)
The XMLConnector component lets you read or write XML documents using HTTP GET
and POST operations. It acts as a connector between other components and external XML data
sources. The XMLConnector component communicates with other components in your
application using either ActionScript code or data binding features in the Flash authoring
environment. The XMLConnector component has properties, methods, and events, but it
has no visual appearance at runtime.

Using the XMLConnector component
(Flash Professional only)
The XMLConnector component provides your application with access to any external data
source that returns or receives XML through HTTP. The easiest way to connect with an
external XML data source and use the parameters and results of that data source for your
application is to specify a schema, the structure of the XML document that identifies the data
elements in the document to which you can bind.

For more information on working with the XMLConnector component, see “Connecting to
XML data with the XMLConnector component (Flash Professional only)” in Using Flash.

XMLConnector parameters
You can set the following authoring parameters for each XMLConnector component instance
in the Parameters tab of the Component inspector:

URL is a string that points to an external XML data source.

direction is a string that defines what HTTP operation to perform when the
XMLConnector.trigger() method is called. This parameter can have the value "send",
"receive", or "send/receive".
1489

A value of "send" means that the XML data is sent (via HTTP POST) to the URL, but Flash
ignores any data that comes back. The XMLConnector.results property is never set to
anything, and no result event occurs.

A value of "receive" means that no data is sent out to the XML URL. Flash accesses the
URL via HTTP GET, and expects valid XML data to come back.

A value of "send/receive" means that Flash sends the XML data via HTTP POST, and
expects valid XML data to come back.

If the direction parameter is null, or unrecognized, the default value is "send/receive".

ignoreWhite is a Boolean value; the default setting is false. When this parameter is set to
true, the text nodes that contain only white space are discarded during the parsing process.
Text nodes with leading or trailing white space are unaffected.

multipleSimultaneousAllowed is a Boolean value; when set to true, it allows a trigger()
operation to initiate when another trigger() operation is already in progress. Multiple
simultaneous trigger() operations may not be completed in the same order they were
called. Also, Flash Player may place limits on the number of simultaneous network
operations. This limit varies by version and platform. When the parameter is set to false, a
trigger() operation cannot initiate if another one is in progress.

suppressInvalidCall is a Boolean value; when set to true, it suppresses the trigger()
operation if the data parameters are invalid. When suppressInvalidCall is set to false, the
trigger() operation executes and uses invalid data if necessary.

Common workflow for the XMLConnector
component
The following procedure outlines the typical workflow for the XMLConnector component.

To use an XMLConnector component:

1. Add an instance of the XMLConnector component to your application and give it an
instance name.

2. Use the Parameters tab of the Component inspector to enter the URL for the external XML
data source that you want to access.

3. Use the Schema tab of the Component inspector to specify a schema for the
XML document.

N
O

T
E

You can use the Import Sample Schema button to automate this process.
1490 XMLConnector component (Flash Professional only)

4. Use the Bindings tab of the Component inspector to bind data elements (params and
results) from the XML document to properties of the visual components in your
application.

For example, you can connect to an XML document that provides weather data and bind
the Location and Temperature data elements to label components in your application.
The name and temperature of a specified city appears in the application at runtime.

5. Add a trigger to initiate the data binding operation by using one of the following methods:

■ Attach the Trigger Data Source behavior to a button.
■ Add your own ActionScript to call the trigger() method on the XMLConnector

component.
■ Create a binding between an XML parameter and a UI control and set its Kind

property to AutoTrigger. For more information, see “Schema kinds” in Using Flash.

For a step-by-step example that connects and displays XML using the XMLConnector
component, see “XML Tutorial: Timesheet” in the Data Integration tutorials at
www.macromedia.com/go/data_integration.

XMLConnector class (Flash Professional
only)
Inheritance RPCCall > XMLConnector

ActionScript Class Name mx.data.components.XMLConnector

The XMLConnector class lets you send or receive XML files using HTTP. You can use
ActionScript to bind other components to a data source that returns XML data, allowing
communication between the components.

Method summary for the XMLConnector class
The following table lists the method of the XMLConnector class.

Method Description

XMLConnector.trigger() Initiates a remote procedure call.
XMLConnector class (Flash Professional only) 1491

http://www.macromedia.com/go/data_integration

Property summary for the XMLConnector class
The following table lists properties of the XMLConnector class.

Event summary for the XMLConnector class
The following table lists events of the XMLConnector class.

Property Description

XMLConnector.direction Indicates whether data is being sent, received,
or both.

XMLConnector.ignoreWhite Indicates whether text nodes containing only
white space are discarded during the parsing
process.

XMLConnector.multipleSimultaneousAllowed Indicates whether multiple calls can take place
at the same time.

XMLConnector.params Specifies data that is sent to the server when
the next trigger() operation is executed.

XMLConnector.results Identifies data that was received from the server
as a result of the trigger() operation.

XMLConnector.suppressInvalidCalls Indicates whether to suppress a call if
parameters are invalid.

XMLConnector.URL The URL used by the component in HTTP
operations.

Event Description

XMLConnector.result Broadcast when a remote procedure call
completes successfully.

XMLConnector.send Broadcast when the trigger() method is in
process, after the parameter data has been
gathered but before the data is validated and
the remote procedure call is initiated.

XMLConnector.status Broadcast when a remote procedure call is
initiated, to inform the user of the status of the
operation.
1492 XMLConnector component (Flash Professional only)

XMLConnector.direction
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.direction

Description

Property; indicates whether data is being sent, received, or both. The values are the following:

■ send XML data for the params property is sent by HTTP POST method to the URL for
the XML document. Any data that is returned is ignored. The results property is not set
to anything, and there is no result event.

■ receive No params data is sent to the URL. The URL for the XML document is
accessed through HTTP GET, and valid XML data is expected from the URL.

■ send/receive The params data is sent to the URL, and valid XML data is expected
from the URL.

Example

The following example sets the direction to receive for the document mysettings.xml:
myXMLConnector.direction = "receive";
myXMLConnector.URL = "mysettings.xml";
myXMLConnector.trigger();

XMLConnector.ignoreWhite
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

N
O

T
E

The params and results properties and the result event are inherited from the RPC
component API.
XMLConnector.ignoreWhite 1493

Usage
componentInstance.ignoreWhite

Description

Property; a Boolean value. When this parameter is set to true, the text nodes that contain
only white space are discarded during the parsing process. Text nodes with leading or trailing
white space are unaffected. The default setting is false.

Example

The following code sets the ignoreWhite property to true:
myXMLConnector.ignoreWhite = true;

XMLConnector.multipleSimultaneousAll
owed
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.multipleSimultaneousAllowed

Description

Property; indicates whether multiple calls can take place at the same time. If this property is
false, the XMLConnector.trigger() method performs a call if another call is already in
progress. A status event is emitted, with the code CallAlreadyInProgress. If this property
is true, the call takes place.

When multiple calls are simultaneously in progress, there is no guarantee that they will be
completed in the order in which they were triggered. Also, the browser and/or operating
system may place limits on the number of simultaneous network operations. The most likely
limit you may encounter is the browser enforcing a maximum number of URLs that can be
downloaded simultaneously. This is something that is often configurable in a browser.
However, even in this case, the browser should queue streams, and this should not interfere
with the expected behavior of the Flash application.
1494 XMLConnector component (Flash Professional only)

Example

This example retrieves a remote XML file using the XMLConnector component by setting
the direction property to receive. Drag an XMLConnector component into your library,
and enter the following code on Frame 1 of the timeline:
import mx.data.components.XMLConnector;
var xmlListener:Object = new Object();
xmlListener.result = function(evt:Object) {

trace("results:");
trace(evt.target.results);
trace("");

};
xmlListener.status = function(evt:Object) {

trace("status::"+evt.code);
};
var myXMLConnector:XMLConnector = new XMLConnector();
myXMLConnector.addEventListener("result", xmlListener);
myXMLConnector.addEventListener("status", xmlListener);
myXMLConnector.direction = "receive";
myXMLConnector.URL = "http://www.flash-mx.com/mm/tips/tips.xml";
myXMLConnector.multipleSimultaneousAllowed = false;
myXMLConnector.suppressInvalidCalls = true;
myXMLConnector.trigger();
myXMLConnector.trigger();
myXMLConnector.trigger();

This example specifies the URL of the XML file, and sets multipleSimultaneousAllowed to
false. It triggers the XMLConnector instance three times, which causes the event listener's
status method to display the error code CallAlreadyInProgress two times in the Output
panel. The first attempt is successfully sent from Flash to the server. When the first trigger
successfully receives a result, the result event is broadcast and the XML packet you receive is
displayed in the Output panel.

XMLConnector.params
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.params
XMLConnector.params 1495

Description

Property; specifies data that will be sent to the server when the next trigger() operation is
executed. Each RPC component defines how this data is used, and what the valid types are.

Example

The following example defines name and city parameters for myXMLConnector:
myXMLConnector.params = new XML("<mydoc><name>Bob</name><city>Oakland</

city></mydoc>");

XMLConnector.result
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("result", myListenerObject)

Description

Event; broadcast when a remote procedure call completes successfully.

The parameter to the event handler is an object with the following fields:

■ type: the string "result"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve the actual result value using the results property.

Example

The following example defines a function res for the result event and assigns the function
to the addEventListener event handler:
var res = function (ev) {
trace(ev.target.results);
};
xcon.addEventListener("result", res);
1496 XMLConnector component (Flash Professional only)

XMLConnector.results
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.results

Description

Property; identifies data that was received from the server as a result of a trigger()
operation. Each RPC component defines how this data is fetched, and what the valid types
are. This data appears when the RPC operation has successfully completed, as signaled by the
result event. It is available until the component is unloaded, or until the next RPC
operation.

It is possible for the returned data to be very large. You can manage this in two ways:

■ Select an appropriate movie clip, timeline, or screen as the parent for the RPC
component. The component’s memory becomes available for garbage collection when the
parent is destroyed.

■ In ActionScript, you can assign null to this property at any time.

Example

The following example traces the results property for myXMLConnector:
trace(myXMLConnector.results);

XMLConnector.send
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("send", myListenerObject)
XMLConnector.send 1497

Description

Event; broadcast when the trigger() operation is in process, after the parameter data has
been gathered but before the data is validated and the remote procedure call is initiated. This
is a good place to put code that modifies the parameter data before the call.

The parameter to the event handler is an object with the following fields:

■ type: the string "send"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve or modify the actual parameter values by using the params property.

Example

The following example defines a function sendFunction for the send event and assigns the
function to the addEventListener event handler:
var sendFunction = function (sendEnv) {
sendEnv.target.params = [newParam_txt.text];
};
xcon.addEventListener("send", sendFunction);

XMLConnector.status
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.addEventListener("status", myListenerObject)

Description

Event; broadcast when a remote procedure call is initiated, to inform the user of the status of
the operation.

The parameter to the event handler is an object with the following fields:

■ type: the string "status"
■ target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)
■ code: a string giving the name of the specific condition that occurred
■ data: an object whose contents depend on the code
1498 XMLConnector component (Flash Professional only)

The code field for the status event is set to Fault if problems occur with the call, as follows:

The following are the faults that can occur with the status event:

Code Data Description

Fault {faultcode: code,
faultstring: string,
detail: detail,
element: element,
faultactor: actor}

This event is emitted if other
problems occur during the
processing of the call. The data is
a SOAPFault object. After this
event occurs, the attempted call
is considered complete, and
there is no result or send event.

FaultCode FaultString Notes

XMLConnector.Not.XML params is not an XML
object

The params value must be an
ActionScript XML object.

XMLConnector.Parse.Error params had XML
parsing error NN.

The status property of the params
XML object had a nonzero value
NN. To see the possible errors
NN, see XML.status in
ActionScript 2.0 Language
Reference.

XMLConnector.No.Data.Received no data was received
from the server

Due to various browser
limitations, this message can
mean either (a) the server URL
was invalid, did not respond, or
returned an HTTP error code; or
(b) the server request succeeded
but the response was 0 bytes of
data. To work around this
restriction, design your
application so that the server
never returns 0 bytes of data. If
you receive the fault code
XMLConnector.No.Data.Received,
you will know that there was a
server error, and can inform the
user accordingly.
XMLConnector.status 1499

Example

The following example defines a function statusFunction for the status event and assigns
the function to the addEventListener event handler:
var statusFunction = function (stat) {
trace(stat.code);
trace(stat.data.faultcode);
trace(stat.data.faultstring);
};
xcon.addEventListener("status", statusFunction);

XMLConnector.suppressInvalidCalls
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.suppressInvalidCalls

Description

Property; indicates whether to suppress a call if parameters are invalid. If this property is true,
the trigger() method does not perform a call if the bound parameters fail the validation. A
status event is emitted, with the code InvalidParams. If this property is false, the call
takes place, using the invalid data as required.

XMLConnector.Results.Parse.Error received data had an
XML parsing error
NN

The received XML was not valid,
as determined by the Flash
Player built-in XML parser. To
see the possible errors NN, see
XML.status in ActionScript 2.0
Language Reference.

XMLConnector.Params.Missing Direction is 'send' or
'send/receive', but
params are null.

FaultCode FaultString Notes
1500 XMLConnector component (Flash Professional only)

Example

This example displays an error because the required parameters are not being passed. Drag an
XMLConnector component into your library, and enter the following code on Frame 1 of
the timeline:
import mx.data.components.XMLConnector;
var xmlListener:Object = new Object();
xmlListener.result = function(evt:Object) {

trace("results:");
trace(evt.target.results);
trace("");

};
xmlListener.status = function(evt:Object) {

switch (evt.code) {
case 'Fault' :

trace("ERROR! ["+evt.data.faultcode+"]");
trace("\t"+evt.data.faultstring);
break;

case 'InvalidParams' :
trace("ERROR! ["+evt.code+"]");
break;

}
};
var myXMLConnector:XMLConnector = new XMLConnector();
myXMLConnector.addEventListener("result", xmlListener);
myXMLConnector.addEventListener("status", xmlListener);
myXMLConnector.direction = "send/receive";
myXMLConnector.URL = "http://www.flash-mx.com/mm/login_xml.cfm";
myXMLConnector.multipleSimultaneousAllowed = false;
myXMLConnector.suppressInvalidCalls = false;
// myXMLConnector.params = new XML("<login username='Mort'

password='Guacamole' />");
myXMLConnector.trigger();

Remove the comments from the second to last line of code for the snippet to work correctly.
XMLConnector.suppressInvalidCalls 1501

XMLConnector.trigger()
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.trigger()

Description

Method; initiates a remote procedure call by the XMLConnector component. This can be
either getting or posting to the specified XML file. If the operation is successful, the results of
the operation appear in the RPC component’s results property.

The trigger() method performs the following steps:

1. If any data is bound to the params property, the method executes all the bindings to ensure
that up-to-date data is available. This also causes data validation to occur.

2. If the data is not valid and suppressInvalidCalls is set to true, the operation
is discontinued.

3. If the operation continues, the send event is emitted.

4. The actual remote call is initiated using the connection method indicated (for example,
HTTP).
1502 XMLConnector component (Flash Professional only)

Example

This example retrieves a remote XML file using the XMLConnector by setting the direction
property to receive. Drag an XMLConnector component into your library, and enter the
following code on Frame 1 of the timeline:
import mx.data.components.XMLConnector;
var xmlListener:Object = new Object();
xmlListener.result = function(evt:Object) {

trace("results:");
trace(evt.target.results);
trace("");

};
xmlListener.status = function(evt:Object) {

trace("status::"+evt.code);
};
var myXMLConnector:XMLConnector = new XMLConnector();
myXMLConnector.addEventListener("result", xmlListener);
myXMLConnector.addEventListener("status", xmlListener);
myXMLConnector.direction = "receive";
myXMLConnector.URL = "http://www.flash-mx.com/mm/tips/tips.xml";
myXMLConnector.multipleSimultaneousAllowed = false;
myXMLConnector.suppressInvalidCalls = true;
myXMLConnector.trigger();
myXMLConnector.trigger();
myXMLConnector.trigger();

This code specifies the URL of the XML file and sets multipleSimultaneousAllowed to
false. It triggers the XMLConnector instance three times, which causes the event listener's
status method to display the error code CallAlreadyInProgress two times in the Output
panel. The first attempt is successfully sent from Flash to the server. When the first trigger
successfully receives a result, the result event is broadcast and the XML packet you receive is
displayed in the Output panel.

XMLConnector.URL
Availability

Flash Player 6 (6.0.79.0).

Edition

Flash MX Professional 2004.

Usage
componentInstance.URL
XMLConnector.URL 1503

Description

Property; the URL that this component uses when carrying out HTTP operations. This URL
may be an absolute or relative URL. The URL is subject to all the standard Flash Player
security protections (for more information about Flash Player security protections, see
“Understanding Security” in Learning ActionScript 2.0 in Flash).

Example

This example retrieves a remote XML file using the XMLConnector component by setting
the direction property to receive. Drag an XMLConnector component into your library,
and enter the following code on Frame 1 of the timeline:
import mx.data.components.XMLConnector;
var xmlListener:Object = new Object();
xmlListener.result = function(evt:Object) {

trace("results:");
trace(evt.target.results);
trace("");

};
xmlListener.status = function(evt:Object) {

trace("status::"+evt.code);
};
var myXMLConnector:XMLConnector = new XMLConnector();
myXMLConnector.addEventListener("result", xmlListener);
myXMLConnector.addEventListener("status", xmlListener);
myXMLConnector.direction = "receive";
myXMLConnector.URL = "http://www.flash-mx.com/mm/tips/tips.xml";
myXMLConnector.multipleSimultaneousAllowed = false;
myXMLConnector.suppressInvalidCalls = true;
myXMLConnector.trigger();
myXMLConnector.trigger();
myXMLConnector.trigger();

This code specifies the URL of the XML file and sets multipleSimultaneousAllowed to
false. It triggers the XMLConnector instance three times, which causes the event listener’s
status() method to display the error code CallAlreadyInProgress two times in the
Output panel. The first attempt is successfully sent from Flash to the server. When the first
trigger successfully receives a result, the result event is broadcast and the XML packet you
receive is displayed in the Output panel.
1504 XMLConnector component (Flash Professional only)

60

CHAPTER 60

XPathAPI class
ActionScript Class Name mx.xpath.XPathAPI

The XPathAPI class allows you to do simple XPath searches within Macromedia Flash. This
can be very useful for searching XML packets based on node names and attribute values. In
other words, you can quickly find nodes and attributes in an XML document using the
XpathAPI methods.

In order to use XPath searches within Flash, you first need to include the XPathAPI class into
your Flash library by adding the DataBindingClass (if it hasn't been added already). If you’ve
already set up bindings, this class may have been included automatically; otherwise, you need
to select the class from the common libraries (Window > Common Libraries > Classes). From
the Classes.fla library panel, you can simply drag a copy of the DataBindingClasses
component into your current Flash document’s library. Now, you can import the class by
typing import mx.xpath.XPathAPI or by using the classes fully qualified name when
accessing its methods by prefixing the class methods with
mx.xpath.XPathAPI.method_name.

For more information about this class, see the Flash Documentation Resource Center at
www.macromedia.com/go/xpathapi.
1505

http://www.macromedia.com/go/xpathapi

1506 XPathAPI class

61

CHAPTER 61

XUpdateResolver component (Flash
Professional only)
Resolver components are used with the DataSet component (part of the data management
functionality in the Flash data architecture) to save changes to an external data source.
Resolvers take a DataSet.deltaPacket object and convert it to an update packet in a format
appropriate to the type of resolver. The update packet can then be transmitted to the external
data source by one of the connector components. Resolver components have no visual
appearance at runtime.

For general information on how to manage data in Flash using the DataSet component, see
“Data management (Flash Professional only)” in Using Flash.

XUpdate is a standard for describing changes that are made to an XML document and is
supported by a variety of XML databases, such as Xindice and XHive. The XUpdateResolver
component translates the changes made to a DataSet component into XUpdate statements.
The updates from the XUpdateResolver component are sent in the form of an XUpdate data
packet, which is communicated to the database or server through a connection object. The
XUpdateResolver component gets a delta packet from a DataSet component, sends its own
update packet to a connector, receives server errors back from the connection, and
communicates them back to the DataSet component—all using bindable properties.

For information about the working draft of the XUpdate language specification, see http://
xmldb-org.sourceforge.net/xupdate/xupdate-wd.html. For information about the Flash data
architecture, see “Data resolution (Flash Professional only)” in Using Flash; for information
about resolving XML data, see “Resolving XML data with the XUpdateResolver component
(Flash Professional only)” in Using Flash.

N
O

T
E

You can also use the XUpdateResolver component to send data updates to any external
data source that can parse the XUpdate language—for example, an ASP page, a Java
servlet, or a ColdFusion component.
1507

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

Using the XUpdateResolver component
(Flash Professional only)
The XUpdateResolver component is used only when your Flash application contains a
DataSet component and must send an update back to an external data source.

The XUpdateResolver component communicates with the DataSet component by using the
DataSetDeltaToXUpdateDelta encoder. This encoder creates XPath statements that uniquely
identify nodes within an XML file according to the information contained in the DataSet
component’s delta packet. This information is used by the XUpdateResolver component to
generate XUpdate statements. For more information on the DataSetDeltaToXUpdateDelta
encoder, see “Schema encoders” in Using Flash.

For more information on working with the XUpdateResolver component, see “Data
resolution (Flash Professional only)” in Using Flash.

XUpdateResolver component parameter
The XUpdateResolver component has one authoring parameter, the Boolean
includeDeltaPacketInfo parameter. When this parameter is set to true, the update packet
includes additional information that can be used by an external data source to generate results
that can be sent back to your application. This information includes a unique transaction and
operation ID that is used internally by the data set.

The following is an example of an XML update packet when the includeDeltaPacketInfo
parameter is set to false:
<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/

xupdate">
 <xupdate:remove select="/datapacket/row[@id='100']"/>
</xupdate:modifications>

N
O

T
E

The additional information that is included in the update packet invalidates the XUpdate.
You would choose to add this information only if you were going to store it in a server
object and use it to generate a result packet. In this scenario, your server object would
pull the information out of the update packet for it s own needs and then pass on the
(now valid) XUpdate to the database.
1508 XUpdateResolver component (Flash Professional only)

The following is an example of an XML update packet when the includeDeltaPacketInfo
parameter is set to true:
<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/

xupdate"
 transId="46386292065:Wed Jun 25 15:52:34 GMT-0700 2003">
 <xupdate:remove select="/datapacket/row[@id='100']" opId="0123456789"/>
</xupdate:modifications>

Common workflow for the XUpdateResolver
component
The following procedure outlines the typical workflow for the XUpdateResolver component.

To use an XUpdateResolver component:

1. Add two instances of the XMLConnector component and one instance each of the DataSet
component and the XUpdateResolver component to your application, and give them
instance names.

2. Select the first XMLConnector component, and use the Parameters tab of the Component
inspector to enter the URL for the external XML data source that you want to access.

3. With the XMLConnector component still selected, click the Schema tab of the
Component inspector and import a sample XML file to generate your schema.

4. Use the Bindings tab of the Component inspector to bind an array in the XMLConnector
component to the dataProvider property of the DataSet component.

5. Select the DataSet component and use the Schema tab of the Component inspector to
create the DataSet fields that will be bound to the fields of the object within the array.

6. Use the Bindings tab of the Component inspector to bind data elements (DataSet fields)
to the visual components in your application.

7. Select the Schema tab of the XUpdateResolver component. With the deltaPacket
component property selected, use the Schema Attributes pane to set the encoder property
to the DataSetDeltaToXUpdateDelta encoder.

N
O

T
E

You may need to create a virtual schema for your XML file if you want to access a
subelement of the array that you are binding to the data set. For more information,
see “Virtual schemas” in Using Flash.
Using the XUpdateResolver component (Flash Professional only) 1509

8. Select Encoder Options and enter the rowNodeKey value that uniquely identifies the row
node within the XML file.

9. Click the Bindings tab and create a binding between the XUpdateResolver component’s
deltaPacket property and the DataSet component’s deltaPacket property.

10. Create another binding from the xupdatePacket property to the second XMLConnector
component to send the data back to the external data source.

11. Add a trigger to initiate the data binding operation: use the Trigger Data Source behavior
attached to a button, or add ActionScript.

In addition to these steps, you can also create bindings to apply the result packet sent back
from the server to the data set by the XUpdateResolver component.

For a step-by-step example that resolves data to an external data source using XUpdate, see
“Update the timesheet” in the Data Integration tutorials at www.macromedia.com/go/
data_integration.

N
O

T
E

The rowNodeKey value combines an XPath statement with a field parameter to define
how unique XPath statements should be generated for the update data contained
within the delta packet. See information on the DataSetDeltaToXUpdateDelta
encoder in “Schema encoders” in Using Flash.

N
O

T
E

The xupdatePacket property contains the formatted delta packet (XUpdate
statements) that will be sent to the server.
1510 XUpdateResolver component (Flash Professional only)

http://www.macromedia.com/go/data_integration
http://www.macromedia.com/go/data_integration

XUpdateResolver class (Flash
Professional only)
Inheritance MovieClip > XUpdateResolver

ActionScript Class Name mx.data.components.XUpdateResolver

The properties and events of the XUpdateResolver class allow you to work with the DataSet
component to save changes to external data sources.

Property summary for the XUpdateResolver class
The following table lists properties of the XUpdateResolver class.

Event summary for the XUpdateResolver class
The following table lists events of the XUpdateResolver class.

Property Description

XUpdateResolver.deltaPacket Contains a description of the changes to the
DataSet component. The DataSet component’s
deltaPacket property should be bound to this
property so that when DataSet.applyUpdates() is
called, the binding copies it across and the
resolver creates the XUpdate packet.

XUpdateResolver.includeDeltaPacketInfo Includes additional information from the delta
packet in attributes on the XUpdate nodes.

XUpdateResolver.updateResults Describes results of an update.

XUpdateResolver.xupdatePacket Contains the XUpdate translation of the changes
to the DataSet component.

Event Description

XUpdateResolver.beforeApplyUpdates Called by the resolver component to make
custom modifications immediately after the XML
packet has been created and immediately before
that packet is sent.

XUpdateResolver.reconcileResults Called by the resolver component to compare
two packets.
XUpdateResolver class (Flash Professional only) 1511

XUpdateResolver.beforeApplyUpdates
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.beforeApplyUpdates(eventObject)

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before
the update is sent through the connector to the database. This event object should contain the
following properties:

Returns

None.

Description

Event; called by the resolver component to make custom modifications immediately after the
XML packet has been created for a new delta packet, and immediately before that packet is
sent out using data binding. You can use this event handler to make custom modifications to
the XML before sending the updated data to a connector.

Example

The following example adds the user authentication data to the XML packet:
on (beforeApplyUpdates) {

 // Add user authentication data.
 var userInfo = new XML(""+getUserId()+" "+getPassword()+"");
 xupdatePacket.firstChild.appendChild(userInfo);

}

Property Description

target Object; the resolver generating this event.

type String; the name of the event.

updatePacket XML object; the XML object that is about to be
applied.
1512 XUpdateResolver component (Flash Professional only)

XUpdateResolver.deltaPacket
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.deltaPacket

Description

Property; contains a description of the changes to the DataSet component. This property is of
type deltaPacket and receives a delta packet to be translated into an XUpdate packet, and
outputs a delta packet from any server results placed in the updateResults property. This
property provides a way for you to make custom modifications to the XML before sending the
updated data to a connector.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the delta packet again so it can be re-sent the next time the delta packet is
sent to the server. You must write code that handles deltas that have messages so that the
messages are presented to the user and the deltas can be modified before being added to the
next delta packet.

The DataSet component’s deltaPacket property should be bound to this property so that
when DataSet.applyUpdates() is called, the binding copies it across and the resolver creates
the XUpdate packet.
XUpdateResolver.deltaPacket 1513

XUpdateResolver.includeDeltaPacketInfo
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.includeDeltaPacketInfo

Description

Property; a Boolean property that, if true, includes additional information from the delta
packet in attributes on the XUpdate nodes. This information consists of the transaction ID
and operation ID.

For an example of the resulting XML, see “XUpdateResolver component parameter”
on page 1508.

XUpdateResolver.reconcileResults
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.reconcileResults(eventObject)

Parameters

eventObject ResolverEvent object; describes the event object used to compare two update
packets. This event object should contain the following properties:

Returns

None.

Property Description

target Object; the resolver generating this event.

type String; the name of the event.
1514 XUpdateResolver component (Flash Professional only)

Description

Event; called by the resolver component to compare two packets. Use this callback to insert
any code after the results have been received from the server and immediately before the
transmission, through data binding, of the delta packet that contains operation results. This is
a good place to put code that handles messages from the server.

Example

The following example reconciles two update packets and clears the updates on success:
on (reconcileResults) {

 // Examine results.
 if(examine(updateResults))
 myDataSet.purgeUpdates();
 else
 displayErrors(results);

}

XUpdateResolver.updateResults
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.updateResults

Description

Property; property of type deltaPacket that contains the results of an update returned from
the server using a connector. Use this property to transmit errors and updated data from the
server to a DataSet component—for example, when the server assigns new IDs for an auto-
assigned field. Bind this property to a connector’s results property so that it can receive the
results of an update and transmit the results back to the DataSet component.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the delta packet again so it can be re-sent the next time the delta packet is
sent to the server. You must write code that handles deltas that have messages so that the
messages are presented to the user and the deltas can be modified before being added to the
next delta packet.
XUpdateResolver.updateResults 1515

XUpdateResolver.xupdatePacket
Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage
resolveData.xupdatePacket

Description

Property; property of type xml that contains the XUpdate translation of the changes to the
DataSet component. Bind this property to the connector component’s property that transmits
the translated update packet of changes back to the DataSet component.
1516 XUpdateResolver component (Flash Professional only)

Index
A
Accordion component

applying easing methods to 1315
creating applications 37
customizing 40
events 50
inheritance 47
methods 47
package 47
parameters 36
properties 49
using skins 42
using styles 41

activators, menu 945
Alert component

creating applications 66
customizing 67
events 74
inheritance 71
methods 71
package 71
parameters 66
properties 73
using skins 69
using styles 67

authentication and WebService class 1441

B
behaviors and video playback 841
Binding class

about 208
methods 209

borders. See RectBorder class

Button component
about 89
creating applications 91
customizing 94
events 105
inheritance 101
methods 102, 1125
package 101
parameters 90
properties 103
using skins 95
using styles 94

C
CellRenderer API

about 109
example 112
methods 117, 118
properties 118
using 111

CheckBox component
about 129
creating applications 130
events 139
inheritance 135
methods 136
package 135
parameters 130
properties 137
using skins 134
using styles 132

classes
Accordion 47
Alert 71
Binding 208
Button 101
1517

CheckBox 135
ComboBox 165
ComponentMixins 226
CustomFormatter 212
CustomValidator 216
data binding 207
DataGrid 262
DataGridColumn 300
DataHolder 315
DataSet 335
DataType 233
DateChooser 417
DateField 439
Delegate 461
DeltaItem 463
DepthManager 487
EndPoint 220
EventDispatcher 499
FLVPlayback 539
FocusManager 721
Form 735
Label 755
List 770
Loader 817
Log 1414
Media 847
Menu 883
MenuBar 951
MenuDataProvider 933
NumericStepper 975
PendingCall 1423
PopUpManager 987
ProgressBar 999
RadioButton 1029
RDBMSResolver 1051
RectBorder 1063
Screen 1071
ScrollPane 1098
SimpleButton 1125
Slide 1138
SOAPCall 1434
StyleManager 1171
SystemManager 1175
TextArea 1182
TextInput 1214
Tree 1278
TypedValue 245

UIEventDispatcher 1351
UIScrollBar 1395
web service 1413
WebService 1437
WebServiceConnector 1451
Window 1472
XMLConnector 1491
XUpdateResolver 1507

Collection interface
about 147
methods 148

columns, DataGridColumn class 300
ComboBox component

about 157
applying easing methods to 1316
creating applications 160
events 169
inheritance 165
methods 166
package 165
parameters 159
properties 168
using skins 164
using styles 162

component categories
data 31
managers 32
media 32
other 33
screens 32
UI components 30

Component inspector, media components 840
ComponentMixins class

about 226
methods 227

components, applying easing methods to 1315
cue points, using 513
CustomFormatter class

about 212
methods 214
sample 212

CustomValidator class
about 216
methods 216
1518 Index

D
data binding classes

about 207
Binding class 208
ComponentMixins class 226
CustomValidator class 216
DataType class 233
EndPoint class 220
package 208
TypedValue class 245
using at runtime 207

data components 31
data models

DataGrid component 252
Menu component 886

data sets. See DataSet component
data types, supported by web services classes 1438
DataGrid component

about 249
animating 1317
creating applications 254
customizing 258
data model 251, 252
DataGridColumn class 302
design 252
events 267
events, inherited 267, 268
inheritance 262
interacting with 250
methods 262
methods, inherited 263
package 262
parameters 253
performance strategies 256
properties 264, 265
properties inherited 265
properties, inherited 266
using 251
using skins 261
using styles 258, 259
view, data 251, 252

DataGridColumn class
about 300
properties 301

DataHolder component
about 313
creating applications 314
inheritance 315
package 315
properties 315

DataProvider API
about 317
events 318
methods 318
package 317
properties 318

DataSet component
about 331
common workflow 333
creating applications 333
events 338
inheritance 335
methods 336
package 335
parameters 332
properties 337

DataType class
about 233
methods 234
properties 234

date field component
customizing 435

DateChooser component
about 411
class 417
creating applications 412
customizing 413
events 420
inheritance 417
methods 418
package 417
parameters 411
properties 419
using skins 415
using styles 413

DateField component
about 433
creating applications 434
events 442
inheritance 439
methods 439
package 439
parameters 434
properties 441
using skins 438
using styles 436

Delegate class
about 461
methods 461
Index 1519

Delta interface
about 469
methods 469

DeltaItem class
about 463
properties 463

DeltaPacket interface
about 479
methods 480

DepthManager class 487
methods 488

detail property
PendingCall.onFault 1431
WebService.onFault 1446

E
easing classes and methods, Tween class 1314
element

PendingCall.onFault 1431
WebService.onFault 1446

EndPoint class
about 220
methods 221

event object 499
EventDispatcher class

about 499
methods 500
package 500

events
event object 499

F
faultactor property

PendingCall.onFault 1431
WebService.onFault 1446

faultcode property
PendingCall.onFault 1431
WebService.onFault 1446

faultstring property
PendingCall.onFault 1431
WebService.onFault 1446

FLVPlayback component 505
class 539
component parameters 510

creating a new skin 532
creating applications 507
customizing 524
events 546
methods 539
playing multiple FLVs 521
properties 541
using 507
using a SMIL file 712
using cue points 513
VideoError class 698
VideoPlayer class 706

FLVs, playing 505
FocusManager class

about 721
creating applications 724
customizing 725
events 728
inheritance 725
methods 726
package 725
properties 727

Form class
about 735
events 741
inheritance 736
methods 737
package 736
parameters 736
properties 738

I
interfaces

Collection 147
Delta 469
DeltaPacket 479
Iterator 749
TransferObject 1233
TreeDataProvider 1257

Iterator interface
about 749
methods 749
package 749
1520 Index

L
Label component

about 751
creating applications 753
customizing 753
events 757
inheritance 755
methods 755
package 755
parameters 752
properties 756
using styles 753

List component
about 761
creating applications 764
customizing 766
design 109
events 775
inheritance 770
methods 771
package 770
parameters 764
properties 773
scrolling behavior 110
using skins 770
using styles 766

Loader component
about 813
creating applications 815
customizing 816
events 820
inheritance 817
methods 817
package 817
parameters 814
properties 818
using skins 816
using styles 816

loading external content 1072
Log class 1414

M
manager components 32
Media components

about 32, 831
behaviors 841
Component inspector 840
creating applications 846

customizing 847
design 833
events 850
inheritance 847
MediaController component 831
MediaDisplay component 831
MediaPlayback component 831
methods 848
packages 847
parameters 843
properties 849
using skins 847
using styles 847

MediaController component
about 836
parameters 844

MediaDisplay component
about 836
parameters 843

MediaPlayback component
about 836
parameters 845

Menu component
about 883
about XML attributes 887
adding hierarchical menus 886
creating applications 892
customizing 897
data model 886
events 904
exposing items to ActionScript 890
initialization object properties 891
menu item types 888
methods 902
parameters 892
properties 903
using skins 900
using styles 897
view 886

MenuBar component
about 945
class 951
creating applications 947
customizing 948
events 954
methods 951
parameters 946
properties 953
using skins 950
using styles 949
Index 1521

MenuDataProvider class
about 933
events 934
methods 934

multipleSimultaneousAllowed parameter 1450

N
NumericStepper component

about 969
creating applications 971
customizing 972
events 978
methods 976
parameters 970
properties 977
using skins 974
using styles 973

O
onFault callback function 1446
operation parameter 1450

P
PendingCall class

about 1423
callbacks 1425
methods 1424
properties 1424

PopUpManager class 987
ProgressBar component

about 991
creating applications 993
customizing 996
events 1002
methods 999
parameters 992
properties 1000
using skins 998
using styles 996

R
RadioButton component

about 1023
creating applications 1024
customizing 1025

events 1033
methods 1029
parameters 1024
properties 1030
using skins 1027
using styles 1026

RDBMSResolver component
about 1047
common workflow 1050
events 1052
methods 1051
parameters 1048
properties 1051

RectBorder class
about 1063
using styles 1064

S
schema types, XML 1438
Screen class

about 1071
events 1078
loading external content 1072
methods 1074
properties 1076
referencing screens 1073

screen components 32
ScrollPane component

about 1093
creating applications 1095
customizing 1096
events 1102
methods 1098
parameters 1094
properties 1100
using skin 1097
using styles 1097

security, and WebService class 1441
separator menu items 888
SimpleButton class 1125

about 1125
events 1128
methods 1125
properties 1126

skin, customizing FLVPlatyback 524
Slide class 1135

events 1143
example 1137
1522 Index

inheritance 1138
methods 1138
package 1138
parameters 1136
properties 1140

SOAPCall class
about 1434
properties 1435

SOAPFault object 1446
StyleManager class

about 1171
methods 1171

styles
RectBorder class 1064
See also individual component names

suppressInvalidCalls parameter 1450
SystemManager class

about 1175
properties 1175

T
tab order, for components 721
tables. See DataGrid component
TextArea component

about 1177
creating applications 1179
customizing 1180
events 1186
inheritance 1182
methods 1183
package 1182
parameters 1178
properties 1184
using skins 1182
using styles 1180

TextArea.styleSheet 1202
TextInput component 1209

about 1209
class 1214
creating applications 1211
customizing 1212
events 1218
methods 1215
parameters 1210
properties 1216
using 1210
using styles 1212

TransferObject interface
about 1233
methods 1233

TransitionManager class
Blinds transition 1250
events 1239
Fade transition 1251
Fly transition 1251
Iris transition 1252
methods 1239
parameters 1238
Photo transition 1253
PixelDissolve transition 1253
properties 1239
Rotate transition 1254
Squeeze transition 1255
transition-based classes 1249
Wipe transition 1255
Zoom transition 1256

Tree component
creating applications 1268
customizing 1273
events 1283
inheritance 1278
methods 1280
package 1278
parameters 1268
properties 1281
using skins 1278
using styles 1274
XML formatting 1266

TreeDataProvider interface
about 1257
methods 1257
properties 1258

Tween class
Accordion component 1315
applying easing methods to components 1315
ComboBox component 1316
DataGrid component 1317
easing classes and methods 1314
events 1312
methods 1311
parameters 1313
properties 1312

TypedValue class
about 245
properties 245

types. See data types
Index 1523

U
UI components 30
UIComponent class

about 1339
events 1342
inheritance 1339
methods 1340
package 1339
properties 1341

UIEventDispatcher class
about 1351
events 1352
methods 1351

UIObject class 1359
about 1311, 1359
events 1312, 1361
inheritance 1359
methods 1311, 1360
package 1359
properties 1312, 1360

UIScrollBar component
about 1389
creating applications 1390
customizing 1393
events 1399
inheritance 1395
methods 1396
package 1395
parameters 1390
properties 1397
using skins 1394
using styles 1393

user interface components 30

V
video playback 841
VideoError class

defined 698
properties 698

VideoPlayer class 706
events 711
methods 707
properties 707

view, Menu component 886

W
web service classes

about 1413
Log class 1414
PendingCall class 1423
SOAPCall class 1434
using at runtime 1414
WebService class 1437

WebService class
about 1437
callbacks 1438
methods 1438
security 1441
supported types 1438

WebServiceConnector component
about 1449
common workflow 1450
events 1453
methods 1452
parameters 1450
properties 1452

Window component
about 1465
creating applications 1467
customizing 1468
events 1475
inheritance 1472
methods 1473
package 1472
parameters 1466
properties 1474
using skins 1470
using styles 1469

WSDLURL parameter 1450

X
XML

attributes of menu item 887
formatting for the Tree component 1266
schema types 1438

XMLConnector component
about 1489
common workflow 1490
events 1492
methods 1491
parameters 1489
properties 1492
schemas and 1489
1524 Index

XUpdateResolver component
about 1507
common workflow 1509
events 1511
parameters 1508
properties 1511
Index 1525

1526 Index

	Components Dictionary
	Types of components
	User interface (UI) components
	Data handling
	Media components
	Managers
	Screens

	Other listings in this chapter

	Accordion component (Flash Professional only)
	Using the Accordion component (Flash Professional only)
	Accordion parameters
	Creating an application with the Accordion component

	Customizing the Accordion component (Flash Professional only)
	Using styles with the Accordion component
	Using skins with the Accordion component
	Using ActionScript to draw the Accordion header
	Using movie clips to customize the Accordion header skin

	Accordion class (Flash Professional only)
	Method summary for the Accordion class
	Methods inherited from the UIObject class
	Methods inherited from UIComponent class

	Property summary for the Accordion class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Accordion class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Accordion.change
	Accordion.createChild()
	Accordion.createSegment()
	Accordion.destroyChildAt()
	Accordion.getChildAt()
	Accordion.getHeaderAt()
	Accordion.numChildren
	Accordion.selectedChild
	Accordion.selectedIndex

	Alert component (Flash Professional only)
	Using the Alert component (Flash Professional only)
	Alert parameters
	Creating an application with the Alert component

	Customizing the Alert component (Flash Professional only)
	Using styles with the Alert component
	Using skins with the Alert component

	Alert class (Flash Professional only)
	Method summary for the Alert class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the Window class

	Property summary for the Alert class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the Window class

	Event summary for the Alert class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the Window class

	Alert.buttonHeight
	Alert.buttonWidth
	Alert.CANCEL
	Alert.cancelLabel
	Alert.click
	Alert.NO
	Alert.noLabel
	Alert.NONMODAL
	Alert.OK
	Alert.okLabel
	Alert.show()
	Alert.YES
	Alert.yesLabel

	Button component
	Using the Button component
	Button parameters
	Creating an application with the Button component

	Customizing the Button component
	Using styles with the Button component
	Using skins with the Button component
	Using ActionScript to draw Button skins
	Using movie clips to customize Button skins

	Button class
	Method summary for the Button class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Button class
	Properties inherited from the SimpleButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Button class
	Events inherited from the SimpleButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Button.icon
	Button.label
	Button.labelPlacement

	CellRenderer API
	Understanding the List class
	About the composition of the List component
	About the scrolling behavior of the List component

	Using the CellRenderer API
	Simple cell renderer example
	Creating the MultiLineCell cell renderer class
	Creating an application to test the MultiLineCell cell renderer class

	Additional cell renderer examples
	Methods to implement for the CellRenderer API
	Methods provided by the CellRenderer API
	Properties provided by the CellRenderer API

	CellRenderer.getCellIndex()
	CellRenderer.getDataLabel()
	CellRenderer.getPreferredHeight()
	CellRenderer.getPreferredWidth()
	CellRenderer.listOwner
	CellRenderer.owner
	CellRenderer.setSize()
	CellRenderer.setValue()

	CheckBox component
	Using the CheckBox component
	CheckBox parameters
	Creating an application with the CheckBox component

	Customizing the CheckBox component
	Using styles with the CheckBox component
	Using skins with the CheckBox component

	CheckBox class
	Method summary for the CheckBox class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the CheckBox class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the SimpleButton class
	Properties inherited from the Button class

	Event summary for the CheckBox class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the SimpleButton class

	CheckBox.click
	CheckBox.label
	CheckBox.labelPlacement
	CheckBox.selected

	Collection interface (Flash Professional only)
	Collection class (Flash Professional only)
	Method summary for the Collection interface

	Collection.addItem()
	Collection.contains()
	Collection.clear()
	Collection.getItemAt()
	Collection.getIterator()
	Collection.getLength()
	Collection.isEmpty()
	Collection.removeItem()

	ComboBox component
	Using the ComboBox component
	ComboBox parameters
	Creating an application with the ComboBox component

	Customizing the ComboBox component
	Using styles with the ComboBox component
	Using skins with the ComboBox component

	ComboBox class
	Method summary for the ComboBox class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the ComboBox class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the ComboBox class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	ComboBox.addItem()
	ComboBox.addItemAt()
	ComboBox.change
	ComboBox.close()
	ComboBox.close
	ComboBox.dataProvider
	ComboBox.dropdown
	ComboBox.dropdownWidth
	ComboBox.editable
	ComboBox.enter
	ComboBox.getItemAt()
	ComboBox.itemRollOut
	ComboBox.itemRollOver
	ComboBox.labelField
	ComboBox.labelFunction
	ComboBox.length
	ComboBox.open()
	ComboBox.open
	ComboBox.removeAll()
	ComboBox.removeItemAt()
	ComboBox.replaceItemAt()
	ComboBox.restrict
	ComboBox.rowCount
	ComboBox.scroll
	ComboBox.selectedIndex
	ComboBox.selectedItem
	ComboBox.sortItems()
	ComboBox.sortItemsBy()
	ComboBox.text
	ComboBox.textField
	ComboBox.value

	Data binding classes (Flash Professional only)
	Making data binding classes available at runtime (Flash Professional only)
	Classes in the mx.data.binding package (Flash Professional only)
	Binding class (Flash Professional only)
	Method summary for the Binding class

	Constructor for the Binding class
	Binding.execute()
	CustomFormatter class (Flash Professional only)
	Sample custom formatter
	Method summary for the CustomFormatter class

	CustomFormatter.format()
	CustomFormatter.unformat()
	CustomValidator class (Flash Professional only)
	Method summary for the CustomValidator class

	CustomValidator.validate()
	CustomValidator.validationError()
	EndPoint class (Flash Professional only)
	Property summary for the EndPoint class

	Constructor for the EndPoint class
	EndPoint.component
	EndPoint.constant
	EndPoint.event
	EndPoint.location
	EndPoint.property
	ComponentMixins class (Flash Professional only)
	Method summary for the ComponentMixins class

	ComponentMixins.getField()
	ComponentMixins.initComponent()
	ComponentMixins.refreshDestinations()
	ComponentMixins.refreshFromSources()
	ComponentMixins.validateProperty()
	DataType class (Flash Professional only)
	Method summary for the DataType class
	Property summary for the DataType class

	DataType.encoder
	DataType.formatter
	DataType.getAnyTypedValue()
	DataType.getAsBoolean()
	DataType.getAsNumber()
	DataType.getAsString()
	DataType.getTypedValue()
	DataType.kind
	DataType.setAnyTypedValue()
	DataType.setAsBoolean()
	DataType.setAsNumber()
	DataType.setAsString()
	DataType.setTypedValue()
	TypedValue class (Flash Professional only)
	Property summary for the TypedValue class

	Constructor for the TypedValue class
	TypedValue.type
	TypedValue.typeName
	TypedValue.value

	DataGrid component (Flash Professional only)
	Interacting with the DataGrid component (Flash Professional only)
	Using the DataGrid component (Flash Professional only)
	Understanding the design of the DataGrid component
	Understanding the DataGrid component: data model and view
	DataGrid parameters
	Creating an application with the DataGrid component

	DataGrid performance strategies
	Customizing the DataGrid component (Flash Professional only)
	Using styles with the DataGrid component
	Setting styles for an individual column
	Setting header styles
	Setting styles for all DataGrid components in a document

	Using skins with the DataGrid component

	DataGrid class (Flash Professional only)
	Method summary for the DataGrid class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the List class

	Property summary for the DataGrid class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the List class

	Event summary for the DataGrid class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the List class

	DataGrid.addColumn()
	DataGrid.addColumnAt()
	DataGrid.addItem()
	DataGrid.addItemAt()
	DataGrid.cellEdit
	DataGrid.cellFocusIn
	DataGrid.cellFocusOut
	DataGrid.cellPress
	DataGrid.change
	DataGrid.columnCount
	DataGrid.columnNames
	DataGrid.columnStretch
	DataGrid.dataProvider
	DataGrid.editable
	DataGrid.editField()
	DataGrid.focusedCell
	DataGrid.getColumnAt()
	DataGrid.getColumnIndex()
	DataGrid.headerHeight
	DataGrid.headerRelease
	DataGrid.hScrollPolicy
	DataGrid.removeAllColumns()
	DataGrid.removeColumnAt()
	DataGrid.replaceItemAt()
	DataGrid.resizableColumns
	DataGrid.selectable
	DataGrid.showHeaders
	DataGrid.sortableColumns
	DataGrid.spaceColumnsEqually()
	DataGridColumn class (Flash Professional only)
	Property summary for the DataGridColumn class

	Constructor for the DataGridColumn class
	DataGridColumn.cellRenderer
	DataGridColumn.columnName
	DataGridColumn.editable
	DataGridColumn.headerRenderer
	DataGridColumn.headerText
	DataGridColumn.labelFunction
	DataGridColumn.resizable
	DataGridColumn.sortable
	DataGridColumn.sortOnHeaderRelease
	DataGridColumn.width

	DataHolder component (Flash Professional only)
	Creating an application with the DataHolder component (Flash Professional only)
	DataHolder class
	Property summary for the DataHolder class

	DataHolder.data

	DataProvider API
	DataProvider class
	Method summary for the DataProvider API
	Property summary for the DataProvider API
	Event summary for the DataProvider API

	DataProvider.addItem()
	DataProvider.addItemAt()
	DataProvider.editField()
	DataProvider.getEditingData()
	DataProvider.getItemAt()
	DataProvider.getItemID()
	DataProvider.length
	DataProvider.modelChanged
	DataProvider.removeAll()
	DataProvider.removeItemAt()
	DataProvider.replaceItemAt()
	DataProvider.sortItems()
	DataProvider.sortItemsBy()

	DataSet component (Flash Professional only)
	Using the DataSet component
	DataSet parameters
	Common workflow for the DataSet component
	Creating an application with the DataSet component

	DataSet class (Flash Professional only)
	Method summary for the DataSet class
	Property summary for the DataSet class
	Event summary for the DataSet class

	DataSet.addItem
	DataSet.addItem()
	DataSet.addItemAt()
	DataSet.addSort()
	DataSet.afterLoaded
	DataSet.applyUpdates()
	DataSet.calcFields
	DataSet.changesPending()
	DataSet.clear()
	DataSet.createItem()
	DataSet.currentItem
	DataSet.dataProvider
	DataSet.deltaPacket
	DataSet.deltaPacketChanged
	DataSet.disableEvents()
	DataSet.enableEvents()
	DataSet.filtered
	DataSet.filterFunc
	DataSet.find()
	DataSet.findFirst()
	DataSet.findLast()
	DataSet.first()
	DataSet.getItemId()
	DataSet.getIterator()
	DataSet.getLength()
	DataSet.hasNext()
	DataSet.hasPrevious()
	DataSet.hasSort()
	DataSet.isEmpty()
	DataSet.items
	DataSet.itemClassName
	DataSet.iteratorScrolled
	DataSet.last()
	DataSet.length
	DataSet.loadFromSharedObj()
	DataSet.locateById()
	DataSet.logChanges
	DataSet.modelChanged
	DataSet.newItem
	DataSet.next()
	DataSet.previous()
	DataSet.properties
	DataSet.readOnly
	DataSet.removeAll()
	DataSet.removeItem
	DataSet.removeItem()
	DataSet.removeItemAt()
	DataSet.removeRange()
	DataSet.removeSort()
	DataSet.resolveDelta
	DataSet.saveToSharedObj()
	DataSet.schema
	DataSet.selectedIndex
	DataSet.setIterator()
	DataSet.setRange()
	DataSet.skip()
	DataSet.useSort()

	DateChooser component (Flash Professional only)
	Using the DateChooser component (Flash Professional only)
	DateChooser parameters
	Creating an application with the DateChooser component

	Customizing the DateChooser component (Flash Professional only)
	Using styles with the DateChooser component
	Using skins with the DateChooser component

	DateChooser class (Flash Professional only)
	Method summary for the DateChooser class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the DateChooser class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the DateChooser class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	DateChooser.change
	DateChooser.dayNames
	DateChooser.disabledDays
	DateChooser.disabledRanges
	DateChooser.displayedMonth
	DateChooser.displayedYear
	DateChooser.firstDayOfWeek
	DateChooser.monthNames
	DateChooser.scroll
	DateChooser.selectableRange
	DateChooser.selectedDate
	DateChooser.showToday

	DateField component (Flash Professional only)
	Using the DateField component (Flash Professional only)
	DateField parameters
	Creating an application with the DateField component

	Customizing the DateField component (Flash Professional only)
	Using styles with the DateField component
	Using skins with the DateField component

	DateField class (Flash Professional only)
	Method summary for the DateField class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the DateField class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the DateField class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	DateField.change
	DateField.close()
	DateField.close
	DateField.dateFormatter
	DateField.dayNames
	DateField.disabledDays
	DateField.disabledRanges
	DateField.displayedMonth
	DateField.displayedYear
	DateField.firstDayOfWeek
	DateField.monthNames
	DateField.open()
	DateField.open
	DateField.pullDown
	DateField.scroll
	DateField.selectableRange
	DateField.selectedDate
	DateField.showToday

	Delegate class
	Method summary for the Delegate class
	Delegate.create()

	DeltaItem class (Flash Professional only)
	Property summary for the DeltaItem class
	DeltaItem.argList
	DeltaItem.curValue
	DeltaItem.delta
	DeltaItem.kind
	DeltaItem.message
	DeltaItem.name
	DeltaItem.newValue
	DeltaItem.oldValue

	Delta interface (Flash Professional only)
	Method summary for the Delta interface
	Delta.addDeltaItem()
	Delta.getChangeList()
	Delta.getDeltaPacket()
	Delta.getId()
	Delta.getItemByName()
	Delta.getMessage()
	Delta.getOperation()
	Delta.getSource()

	DeltaPacket interface (Flash Professional only)
	Method summary for the DeltaPacket interface
	DeltaPacket.getConfigInfo()
	DeltaPacket.getIterator()
	DeltaPacket.getSource()
	DeltaPacket.getTimestamp()
	DeltaPacket.getTransactionId()
	DeltaPacket.logChanges()

	DepthManager class
	Method summary for the DepthManager class
	Property summary for the DepthManager class
	DepthManager.createChildAtDepth()
	DepthManager.createClassChildAtDepth()
	DepthManager.createClassObjectAtDepth()
	DepthManager.createObjectAtDepth()
	DepthManager.kBottom
	DepthManager.kCursor
	DepthManager.kNotopmost
	DepthManager.kTooltip
	DepthManager.kTop
	DepthManager.kTopmost
	DepthManager.setDepthAbove()
	DepthManager.setDepthBelow()
	DepthManager.setDepthTo()

	EventDispatcher class
	Event objects
	EventDispatcher class (API)
	Method summary for the EventDispatcher class

	EventDispatcher.addEventListener()
	EventDispatcher.dispatchEvent()
	EventDispatcher.removeEventListener()

	FLVPlayback Component (Flash Professional Only)
	Using the FLVPlayback component
	Creating an application with the FLVPlayback component
	FLVPlayback component parameters
	Specifying the contentPath parameter
	The content path
	The FLV file options

	Using cue points
	Using the Flash Video Cue Points dialog box
	Using ActionScript with cue points
	Adding ActionScript cue points
	Listening for cuePoint events
	Finding cue points
	Seeking navigation cue points
	Enabling and disabling embedded FLV file cue points
	Removing an ActionScript cue point

	Playing multiple FLV files
	Using multiple video players

	Streaming FLV files from a FCS
	Customizing the FLVPlayback component
	Selecting a predesigned skin
	Skinning FLV Playback Custom UI components individually
	Button components
	BufferingBar component
	SeekBar and VolumeBar components
	Connecting your FLV Playback Custom UI components

	Creating a new skin
	Using layout_mc
	Button states
	Buffering bar
	Seek bar and volume bar
	Background and foreground clips

	Modifying skin behavior

	FLVPlayback class
	Method summary for the FLVPlayback class
	Property summary for the FLVPlayback class
	FLVPlayback Class properties
	Instance properties

	Event summary for the FLVPlayback class
	FLVPlayback.ACTIONSCRIPT
	FLVPlayback.activeVideoPlayerIndex
	FLVPlayback.addASCuePoint()
	FLVPlayback.addEventListener()
	FLVPlayback.ALL
	FLVPlayback.autoPlay
	FLVPlayback.autoRewind
	FLVPlayback.autoSize
	FLVPlayback.backButton
	FLVPlayback.bitrate
	FLVPlayback.bringVideoPlayerToFront()
	FLVPlayback.buffering
	FLVPlayback.BUFFERING
	FLVPlayback.buffering
	FLVPlayback.bufferingBar
	FLVPlayback.bufferingBarHidesAndDisablesOthers
	FLVPlayback.bufferTime
	FLVPlayback.bytesLoaded
	FLVPlayback.bytesTotal
	FLVPlayback.close
	FLVPlayback.closeVideoPlayer()
	FLVPlayback.complete
	FLVPlayback.CONNECTION_ERROR
	FLVPlayback.contentPath
	FLVPlayback.cuePoint
	FLVPlayback.cuePoints
	FLVPlayback.DISCONNECTED
	FLVPlayback.EVENT
	FLVPlayback.fastForward
	FLVPlayback.findCuePoint()
	FLVPlayback.findNearestCuePoint()
	FLVPlayback.findNextCuePointWithName()
	FLVPlayback.FLV
	FLVPlayback.forwardButton
	FLVPlayback.getVideoPlayer()
	FLVPlayback.height
	FLVPlayback.idleTimeout
	FLVPlayback.isFLVCuePointEnabled()
	FLVPlayback.isLive
	FLVPlayback.isRTMP
	FLVPlayback.load()
	FLVPlayback.LOADING
	FLVPlayback.maintainAspectRatio
	FLVPlayback.metadata
	FLVPlayback.metadataLoaded
	FLVPlayback.metadataReceived
	FLVPlayback.muteButton
	FLVPlayback.NAVIGATION
	FLVPlayback.ncMgr
	FLVPlayback.pause()
	FLVPlayback.pauseButton
	FLVPlayback.PAUSED
	FLVPlayback.paused
	FLVPlayback.paused
	FLVPlayback.play()
	FLVPlayback.playButton
	FLVPlayback.playheadPercentage
	FLVPlayback.playheadTime
	FLVPlayback.playheadUpdate
	FLVPlayback.playheadUpdateInterval
	FLVPlayback.PLAYING
	FLVPlayback.playing
	FLVPlayback.playing
	FLVPlayback.playPauseButton
	FLVPlayback.preferredHeight
	FLVPlayback.preferredWidth
	FLVPlayback.progress
	FLVPlayback.progressInterval
	FLVPlayback.ready
	FLVPlayback.removeASCuePoint()
	FLVPlayback.removeEventListener()
	FLVPlayback.resize
	FLVPlayback.rewind
	FLVPlayback.REWINDING
	FLVPlayback.scaleX
	FLVPlayback.scaleY
	FLVPlayback.scrubbing
	FLVPlayback.scrubFinish
	FLVPlayback.scrubStart
	FLVPlayback.seek
	FLVPlayback.seek()
	FLVPlayback.seekBar
	FLVPlayback.seekBarInterval
	FLVPlayback.seekBarScrubTolerance
	FLVPlayback.SEEKING
	FLVPlayback.seekPercent()
	FLVPlayback.seekSeconds()
	FLVPlayback.seekToNavCuePoint()
	FLVPlayback.seekToNextNavCuePoint()
	FLVPlayback.seekToPrevNavCuePoint()
	FLVPlayback.seekToPrevOffset
	FLVPlayback.setFLVCuePointEnabled()
	FLVPlayback.setScale()
	FLVPlayback.setSize()
	FLVPlayback.skin
	FLVPlayback.skinAutoHide
	FLVPlayback.skinError
	FLVPlayback.skinLoaded
	FLVPlayback.state
	FLVPlayback.stateChange
	FLVPlayback.stateResponsive
	FLVPlayback.stop()
	FLVPlayback.stopButton
	FLVPlayback.STOPPED
	FLVPlayback.stopped
	FLVPlayback.stopped
	FLVPlayback.totalTime
	FLVPlayback.transform
	FLVPlayback.version
	FLVPlayback.visible
	FLVPlayback.visibleVideoPlayerIndex
	FLVPlayback.volume
	FLVPlayback.volumeBar
	FLVPlayback.volumeBarInterval
	FLVPlayback.volumeBarScrubTolerance
	FLVPlayback.volumeUpdate
	FLVPlayback.width
	FLVPlayback.x
	FLVPlayback.y

	VideoError class
	Property summary for the VideoError class
	VideoError.code
	VideoError.DELETE_DEFAULT_PLAYER
	VideoError.ILLEGAL_CUE_POINT
	VideoError.INVALID_CONTENT_PATH
	VideoError.INVALID_SEEK
	VideoError.INVALID_XML
	VideoError.NO_BITRATE_MATCH
	VideoError.NO_CONNECTION
	VideoError.NO_CUE_POINT_MATCH

	VideoPlayer class
	Method summary for the VideoPlayer class
	Property summary for the VideoPlayer class
	Class properties
	Instance Properties

	Event summary for the VideoPlayer class

	Using a SMIL file
	<smil>
	<head>
	<meta>
	<layout>
	<root-layout>
	<body>
	<video>
	<ref>
	<switch>

	FocusManager class
	Using Focus Manager
	Using Focus Manager to allow tabbing
	Creating an application with Focus Manager

	Customizing Focus Manager
	FocusManager class (API)
	Method summary for the FocusManager class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the FocusManager class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the FocusManager class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	FocusManager.defaultPushButton
	FocusManager.defaultPushButtonEnabled
	FocusManager.enabled
	FocusManager.getFocus()
	FocusManager.nextTabIndex
	FocusManager.sendDefaultPushButtonEvent()
	FocusManager.setFocus()

	Form class (Flash Professional only)
	Using the Form class (Flash Professional only)
	Form parameters

	Form class (Flash Professional only)
	Method summary for the Form class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the Loader class
	Methods inherited from the Screen class

	Property summary for the Form class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the Loader class
	Properties inherited from the Screen class

	Event summary for the Form class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the Loader class
	Events inherited from the Screen class

	Form.currentFocusedForm
	Form.getChildForm()
	Form.indexInParentForm
	Form.numChildForms
	Form.parentIsForm
	Form.parentForm
	Form.rootForm
	Form.visible

	Iterator interface (Flash Professional only)
	Method summary for the Iterator interface
	Iterator.hasNext()
	Iterator.next()

	Label component
	Using the Label component
	Label parameters
	Creating an application with the Label component

	Customizing the Label component
	Using styles with the Label component
	Using skins with the Label component

	Label class
	Method summary for the Label class
	Methods inherited from the UIObject class

	Property summary for the Label class
	Properties inherited from the UIObject class

	Event summary for the Label class
	Events inherited from the UIObject class

	Label.autoSize
	Label.html
	Label.text

	List component
	Using the List component
	Understanding the design of the List component
	List parameters
	Creating an application with the List component

	Customizing the List component
	Using styles with the List component
	Setting styles for all List components in a document
	Using skins with the List component

	List class
	Method summary for the List class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the List class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the List class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	List.addItem()
	List.addItemAt()
	List.cellRenderer
	List.change
	List.dataProvider
	List.getItemAt()
	List.hPosition
	List.hScrollPolicy
	List.iconField
	List.iconFunction
	List.itemRollOut
	List.itemRollOver
	List.labelField
	List.labelFunction
	List.length
	List.maxHPosition
	List.multipleSelection
	List.removeAll()
	List.removeItemAt()
	List.replaceItemAt()
	List.rowCount
	List.rowHeight
	List.scroll
	List.selectable
	List.selectedIndex
	List.selectedIndices
	List.selectedItem
	List.selectedItems
	List.setPropertiesAt()
	List.sortItems()
	List.sortItemsBy()
	List.vPosition
	List.vScrollPolicy

	Loader component
	Using the Loader component
	Loader parameters
	Creating an application with the Loader component

	Customizing the Loader component
	Using styles with the Loader component
	Using skins with the Loader component

	Loader class
	Method summary for the Loader class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Loader class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Loader class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Loader.autoLoad
	Loader.bytesLoaded
	Loader.bytesTotal
	Loader.complete
	Loader.content
	Loader.contentPath
	Loader.load()
	Loader.percentLoaded
	Loader.progress
	Loader.scaleContent

	Media components (Flash Professional only)
	Interacting with media components (Flash Professional only)
	Understanding media components (Flash Professional only)
	Understanding the MediaDisplay component
	Understanding the MediaController component
	Understanding the MediaPlayback component

	Using media components (Flash Professional only)
	Using the MediaPlayback component
	Using the MediaDisplay and MediaController components
	Using the Component inspector with media components
	Controlling media components by using behaviors

	Media component parameters (Flash Professional only)
	MediaDisplay parameters
	MediaController parameters
	MediaPlayback parameters

	Creating applications with media components (Flash Professional only)
	Customizing media components (Flash Professional only)
	Using styles with media components
	Using skins with media components

	Media class (Flash Professional only)
	Method summary for the Media class
	Property summary for the Media class
	Event summary for the Media class

	Media.activePlayControl
	Media.addCuePoint()
	Media.aspectRatio
	Media.associateController()
	Media.associateDisplay()
	Media.autoPlay
	Media.autoSize
	Media.backgroundStyle
	Media.bytesLoaded
	Media.bytesTotal
	Media.change
	Media.click
	Media.complete
	Media.contentPath
	Media.controllerPolicy
	Media.controlPlacement
	Media.cuePoint
	Media.cuePoints
	Media.displayFull()
	Media.displayNormal()
	Media.getCuePoint()
	Media.horizontal
	Media.mediaType
	Media.pause()
	Media.play()
	Media.playheadChange
	Media.playheadTime
	Media.playing
	Media.preferredHeight
	Media.preferredWidth
	Media.progress
	Media.scrubbing
	Media.removeAllCuePoints()
	Media.removeCuePoint()
	Media.setMedia()
	Media.stop()
	Media.totalTime
	Media.volume
	Media.volume

	Menu component (Flash Professional only)
	Interacting with the Menu component (Flash Professional only)
	Using the Menu component (Flash Professional only)
	Understanding the Menu component: view and data
	About hierarchical menus
	About menu item XML attributes

	About menu item types (Flash Professional only)
	Normal menu items
	Separator menu items
	Check box menu items
	Radio button menu items
	Exposing menu items to ActionScript

	About initialization object properties (Flash Professional only)
	Menu parameters (Flash Professional only)
	Creating an application with the Menu component (Flash Professional only)
	Customizing the Menu component (Flash Professional only)
	Using styles with the Menu component
	Setting styles for all Menu components in a document
	Using skins with the Menu component

	Menu class (Flash Professional only)
	Method summary for the Menu class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Menu class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Menu class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Menu.addMenuItem()
	Menu.addMenuItemAt()
	Menu.change
	Menu.createMenu()
	Menu.dataProvider
	Menu.getMenuItemAt()
	Menu.hide()
	Menu.indexOf()
	Menu.menuHide
	Menu.menuShow
	Menu.removeAll()
	Menu.removeMenuItem()
	Menu.removeMenuItemAt()
	Menu.rollOut
	Menu.rollOver
	Menu.setMenuItemEnabled()
	Menu.setMenuItemSelected()
	Menu.show()
	MenuDataProvider class
	Method summary for the MenuDataProvider class

	MenuDataProvider.addMenuItem()
	MenuDataProvider.addMenuItemAt()
	MenuDataProvider.getMenuItemAt()
	MenuDataProvider.indexOf()
	MenuDataProvider.removeMenuItem()
	MenuDataProvider.removeMenuItemAt()

	MenuBar component (Flash Professional only)
	Interacting with the MenuBar component (Flash Professional only)
	Using the MenuBar component (Flash Professional only)
	MenuBar parameters
	Creating an application with the MenuBar component

	Customizing the MenuBar component (Flash Professional only)
	Using styles with the MenuBar component
	Using skins with the MenuBar component

	MenuBar class (Flash Professional only)
	Method summary for the MenuBar class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the MenuBar class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the MenuBar class
	Events inherited from the Menu class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	MenuBar.addMenu()
	MenuBar.addMenuAt()
	MenuBar.dataProvider
	MenuBar.getMenuAt()
	MenuBar.getMenuEnabledAt()
	MenuBar.labelField
	MenuBar.labelFunction
	MenuBar.removeAll()
	MenuBar.removeMenuAt()
	MenuBar.setMenuEnabledAt()

	NumericStepper component
	Using the NumericStepper component
	NumericStepper parameters
	Creating an application with the NumericStepper component

	Customizing the NumericStepper component
	Using styles with the NumericStepper component
	Using skins with the NumericStepper component

	NumericStepper class
	Method summary for the NumericStepper class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the NumericStepper class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the NumericStepper class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	NumericStepper.change
	NumericStepper.maximum
	NumericStepper.minimum
	NumericStepper.nextValue
	NumericStepper.previousValue
	NumericStepper.stepSize
	NumericStepper.value

	PopUpManager class
	Method summary for the PopUpManager class
	PopUpManager.createPopUp()
	PopUpManager.deletePopUp()

	ProgressBar component
	Using the ProgressBar component
	ProgressBar parameters
	Creating an application with the ProgressBar component

	Customizing the ProgressBar component
	Using styles with the ProgressBar component
	Using skins with the ProgressBar component

	ProgressBar class
	Method summary for the ProgressBar class
	Methods inherited from the UIObject class

	Property summary for the ProgressBar class
	Properties inherited from the UIObject class

	Event summary for the ProgressBar class
	Events inherited from the UIObject class

	ProgressBar.complete
	ProgressBar.conversion
	ProgressBar.direction
	ProgressBar.indeterminate
	ProgressBar.label
	ProgressBar.labelPlacement
	ProgressBar.maximum
	ProgressBar.minimum
	ProgressBar.mode
	ProgressBar.percentComplete
	ProgressBar.progress
	ProgressBar.setProgress()
	ProgressBar.source
	ProgressBar.value

	RadioButton component
	Using the RadioButton component
	RadioButton parameters
	Creating an application with the RadioButton component

	Customizing the RadioButton component
	Using styles with the RadioButton component
	Using skins with the RadioButton component

	RadioButton class
	Method summary for the RadioButton class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the RadioButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the SimpleButton class
	Properties inherited from the Button class

	Event summary for the RadioButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the SimpleButton class

	RadioButton.click
	RadioButton.data
	RadioButton.groupName
	RadioButton.label
	RadioButton.labelPlacement
	RadioButton.selected
	RadioButton.selectedData
	RadioButton.selection

	RadioButtonGroup component
	RDBMSResolver component (Flash Professional only)
	Using the RDBMSResolver component (Flash Professional only)
	RDBMSResolver parameters
	Common workflow for the RDBMSResolver component

	RDBMSResolver class (Flash Professional only)
	Method summary for the RDBMSResolver component
	Property summary for the RDBMSResolver component
	Event summary for the RDBMSResolver component

	RDBMSResolver.addFieldInfo()
	RDBMSResolver.beforeApplyUpdates
	RDBMSResolver.deltaPacket
	RDBMSResolver.fieldInfo
	RDBMSResolver.nullValue
	RDBMSResolver.reconcileResults
	RDBMSResolver.reconcileUpdates
	RDBMSResolver.tableName
	RDBMSResolver.updateMode
	RDBMSResolver.updatePacket
	RDBMSResolver.updateResults

	RectBorder class
	Using styles with the RectBorder class
	Creating a custom RectBorder implementation
	RectBorder global registration
	Custom RectBorder example

	Screen class (Flash Professional only)
	Loading external content into screens (Flash Professional only)
	Referencing loaded screens with ActionScript

	Screen class (API) (Flash Professional only)
	Method summary for the Screen class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the Loader class

	Property summary for the Screen class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the Loader class

	Event summary for the Screen class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the Loader class

	Screen.allTransitionsInDone
	Screen.allTransitionsOutDone
	Screen.currentFocusedScreen
	Screen.getChildScreen()
	Screen.indexInParent
	Screen.mouseDown
	Screen.mouseDownSomewhere
	Screen.mouseMove
	Screen.mouseOut
	Screen.mouseOver
	Screen.mouseUp
	Screen.mouseUpSomewhere
	Screen.numChildScreens
	Screen.parentIsScreen
	Screen.parentScreen
	Screen.rootScreen

	ScrollPane component
	Using the ScrollPane component
	ScrollPane parameters
	Creating an application with the ScrollPane component

	Customizing the ScrollPane component
	Using styles with the ScrollPane component
	Using skins with the ScrollPane component

	ScrollPane class
	Method summary for the ScrollPane class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the ScrollPane class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the ScrollPane class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	ScrollPane.complete
	ScrollPane.content
	ScrollPane.contentPath
	ScrollPane.getBytesLoaded()
	ScrollPane.getBytesTotal()
	ScrollPane.hLineScrollSize
	ScrollPane.hPageScrollSize
	ScrollPane.hPosition
	ScrollPane.hScrollPolicy
	ScrollPane.progress
	ScrollPane.refreshPane()
	ScrollPane.scroll
	ScrollPane.scrollDrag
	ScrollPane.vLineScrollSize
	ScrollPane.vPageScrollSize
	ScrollPane.vPosition
	ScrollPane.vScrollPolicy

	SimpleButton class
	Method summary for the SimpleButton class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the SimpleButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the SimpleButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	SimpleButton.click
	SimpleButton.emphasized
	SimpleButton.emphasizedStyleDeclaration
	SimpleButton.selected
	SimpleButton.toggle

	Slide class (Flash Professional only)
	Using the Slide class (Flash Professional only)
	Slide parameters
	Using the Slide class to create a slide presentation

	Slide class (API) (Flash Professional only)
	Method summary for the Slide class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the Loader class
	Methods inherited from the Screen class

	Property summary for the Slide class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the Loader class
	Properties inherited from the Screen class

	Event summary for the Slide class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the Loader class
	Events inherited from the Screen class

	Slide.autoKeyNav
	Slide.currentChildSlide
	Slide.currentFocusedSlide
	Slide.currentSlide
	Slide.defaultKeydownHandler
	Slide.firstSlide
	Slide.getChildSlide()
	Slide.gotoFirstSlide()
	Slide.gotoLastSlide()
	Slide.gotoNextSlide()
	Slide.gotoPreviousSlide()
	Slide.gotoSlide()
	Slide.hideChild
	Slide.indexInParentSlide
	Slide.lastSlide
	Slide.nextSlide
	Slide.numChildSlides
	Slide.overlayChildren
	Slide.parentIsSlide
	Slide.parentSlide
	Slide.playHidden
	Slide.previousSlide
	Slide.revealChild
	Slide.rootSlide

	StyleManager class
	Method summary for the StyleManager class
	StyleManager.registerColorName()
	StyleManager.registerColorStyle()
	StyleManager.registerInheritingStyle()

	SystemManager class
	Property summary for the SystemManager class
	SystemManager.screen

	TextArea component
	Using the TextArea component
	TextArea parameters
	Creating an application with the TextArea component

	Customizing the TextArea component
	Using styles with the TextArea component
	Using skins with the TextArea component

	TextArea class
	Method summary for the TextArea class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the TextArea class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the TextArea class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	TextArea.change
	TextArea.editable
	TextArea.hPosition
	TextArea.hScrollPolicy
	TextArea.html
	TextArea.length
	TextArea.maxChars
	TextArea.maxHPosition
	TextArea.maxVPosition
	TextArea.password
	TextArea.restrict
	TextArea.scroll
	TextArea.styleSheet
	TextArea.text
	TextArea.vPosition
	TextArea.vScrollPolicy
	TextArea.wordWrap

	TextInput component
	Using the TextInput component
	TextInput parameters
	Creating an application with the TextInput component

	Customizing the TextInput component
	Using styles with the TextInput component
	Using skins with the TextInput component

	TextInput class
	Method summary for the TextInput class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the TextInput class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the TextInput class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	TextInput.change
	TextInput.editable
	TextInput.enter
	TextInput.hPosition
	TextInput.length
	TextInput.maxChars
	TextInput.maxHPosition
	TextInput.password
	TextInput.restrict
	TextInput.text

	TransferObject interface
	Method summary for the TransferObject interface
	TransferObject.clone()
	TransferObject.getPropertyData()
	TransferObject.setPropertyData()

	TransitionManager class
	Using the TransitionManager class
	TransitionManager class parameters
	Specifying an easing class and method in a transition

	TransitionManager class summary
	Method summary for the TransitionManager class
	Property summary for the TransitionManager class
	Event summary for the TransitionManager class

	TransitionManager.allTransitionsInDone
	TransitionManager.allTransitionsOutDone
	TransitionManager.content
	TransitionManager.contentAppearance
	TransitionManager.start()
	TransitionManager.startTransition()
	TransitionManager.toString()
	Transition-based classes
	Blinds transition
	Fade transition
	Fly transition
	Iris transition
	Photo transition
	PixelDissolve transition
	Rotate transition
	Squeeze transition
	Wipe transition
	Zoom transition

	TreeDataProvider interface (Flash Professional only)
	Method summary for the TreeDataProvider interface
	Property summary for the TreeDataProvider interface
	TreeDataProvider.addTreeNode()
	TreeDataProvider.addTreeNodeAt()
	TreeDataProvider.attributes.data
	TreeDataProvider.attributes.label
	TreeDataProvider.getTreeNodeAt()
	TreeDataProvider.removeTreeNode()
	TreeDataProvider.removeTreeNodeAt()

	Tree component (Flash Professional only)
	Using the Tree component (Flash Professional only)
	Formatting XML for the Tree component
	Tree parameters
	Creating an application with the Tree component

	Customizing the Tree component (Flash Professional only)
	Using styles with the Tree component
	Setting styles for all Tree components in a document
	Using skins with the Tree component

	Tree class (Flash Professional only)
	Method summary for the Tree class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the List class

	Property summary for the Tree class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the List class

	Event summary for the Tree class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the List class

	Tree.addTreeNode()
	Tree.addTreeNodeAt()
	Tree.dataProvider
	Tree.firstVisibleNode
	Tree.getDisplayIndex()
	Tree.getIsBranch()
	Tree.getIsOpen()
	Tree.getNodeDisplayedAt()
	Tree.getTreeNodeAt()
	Tree.nodeClose
	Tree.nodeOpen
	Tree.refresh()
	Tree.removeAll()
	Tree.removeTreeNodeAt()
	Tree.selectedNode
	Tree.selectedNodes
	Tree.setIcon()
	Tree.setIsBranch()
	Tree.setIsOpen()

	Tween class
	Method summary for the Tween class
	Property summary for the Tween class
	Event handler summary for the Tween class
	Using the Tween class
	Tween class parameters
	About easing classes and methods

	Applying easing methods to components
	Applying easing methods to an Accordion component
	Applying easing methods to the ComboBox component
	Animating the DataGrid component

	Tween.continueTo()
	Tween.duration
	Tween.fforward()
	Tween.finish
	Tween.FPS
	Tween.nextFrame()
	Tween.onMotionChanged
	Tween.onMotionFinished
	Tween.onMotionResumed
	Tween.onMotionStarted
	Tween.onMotionStopped
	Tween.position
	Tween.prevFrame()
	Tween.resume()
	Tween.rewind()
	Tween.start()
	Tween.stop()
	Tween.time
	Tween.toString()
	Tween.yoyo()

	UIComponent class
	UIComponent class (API)
	Method summary for the UIComponent class
	Methods inherited from the UIObject class

	Property summary for the UIComponent class
	Properties inherited from the UIObject class

	Event summary for the UIComponent class
	Events inherited from the UIObject class

	UIComponent.enabled
	UIComponent.focusIn
	UIComponent.focusOut
	UIComponent.getFocus()
	UIComponent.keyDown
	UIComponent.keyUp
	UIComponent.setFocus()
	UIComponent.tabIndex

	UIEventDispatcher class
	Method summary for the UIEventDispatcher class
	Methods inherited from the EventDispatcher class

	Event summary for the UIEventDispatcher class
	UIEventDispatcher.keyDown
	UIEventDispatcher.keyUp
	UIEventDispatcher.load
	UIEventDispatcher.mouseDown
	UIEventDispatcher.mouseOut
	UIEventDispatcher.mouseOver
	UIEventDispatcher.mouseUp
	UIEventDispatcher.removeEventListener()
	UIEventDispatcher.unload

	UIObject class
	Method summary for the UIObject class
	Property summary for the UIObject class
	Event summary for the UIObject class
	UIObject.bottom
	UIObject.createClassObject()
	UIObject.createLabel()
	UIObject.createObject()
	UIObject.destroyObject()
	UIObject.doLater()
	UIObject.draw
	UIObject.getStyle()
	UIObject.height
	UIObject.hide
	UIObject.invalidate()
	UIObject.left
	UIObject.load
	UIObject.move
	UIObject.move()
	UIObject.redraw()
	UIObject.resize
	UIObject.reveal
	UIObject.right
	UIObject.scaleX
	UIObject.scaleY
	UIObject.setSize()
	UIObject.setSkin()
	UIObject.setStyle()
	UIObject.top
	UIObject.unload
	UIObject.visible
	UIObject.width
	UIObject.x
	UIObject.y

	UIScrollBar Component
	Using the UIScrollBar component
	UIScrollBar parameters
	Creating an application with the UIScrollBar component

	Customizing the UIScrollBar component
	Using styles with the UIScrollBar component
	Using skins with the UIScrollBar component

	UIScrollBar class
	Method summary for the UIScrollBar class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the UIScrollBar class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the UIScrollBar class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	UIScrollBar.horizontal
	UIScrollBar.lineScrollSize
	UIScrollBar.pageScrollSize
	UIScrollBar.scroll
	UIScrollBar.scrollPosition
	UIScrollBar.setScrollProperties()
	UIScrollBar.setScrollTarget()
	UIScrollBar._targetInstanceName

	Web service classes (Flash Professional only)
	Making web service classes available at runtime (Flash Professional only)
	Log class (Flash Professional only)
	Method summary for the Log class
	Property summary for the Log object
	Callback summary for the Log object

	Constructor for the Log class
	Log.getDateString()
	Log.logInfo()
	Log.logDebug()
	Log.level
	Log.name
	Log.onLog()
	PendingCall class (Flash Professional only)
	Method summary for the PendingCall class
	Property summary for the PendingCall object
	Callback summary for the PendingCall object

	PendingCall.getOutputParameter()
	PendingCall.getOutputParameterByName()
	PendingCall.getOutputParameters()
	PendingCall.getOutputValue()
	PendingCall.getOutputValues()
	PendingCall.myCall
	PendingCall.onFault
	PendingCall.onResult
	PendingCall.request
	PendingCall.response
	SOAPCall class (Flash Professional only)
	Property summary for the SOAPCall object

	SOAPCall.concurrency
	SOAPCall.doDecoding
	SOAPCall.doLazyDecoding
	WebService class (Flash Professional only)
	Method summary for the WebService object
	Callback summary for the WebService object

	Supported types (Flash Professional only)
	Numeric Simple types
	Date and Time Simple types
	Name and String Simple types
	Boolean type
	Object types
	Supported XML schema object elements

	WebService security (Flash Professional only)
	Constructor for the WebService class
	WebService.getCall()
	WebService.myMethodName()
	WebService.onFault
	WebService.onLoad

	WebServiceConnector component (Flash Professional only)
	Using the WebServiceConnector component (Flash Professional only)
	WebServiceConnector parameters
	Common workflow for the WebServiceConnector component

	WebServiceConnector class (Flash Professional only)
	Method summary for the WebServiceConnector class
	Property summary for the WebServiceConnector class
	Event summary for the WebServiceConnector class

	WebServiceConnector.multiple SimultaneousAllowed
	WebServiceConnector.operation
	WebServiceConnector.params
	WebServiceConnector.result
	WebServiceConnector.results
	WebServiceConnector.send
	WebServiceConnector.status
	WebServiceConnector.suppress InvalidCalls
	WebServiceConnector.trigger()
	WebServiceConnector.WSDLURL

	Window component
	Using the Window component
	Window parameters
	Creating an application with the Window component

	Customizing the Window component
	Using styles with the Window component
	Using skins with the Window component

	Window class
	Method summary for the Window class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Window class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Window class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Window.click
	Window.closeButton
	Window.complete
	Window.content
	Window.contentPath
	Window.deletePopUp()
	Window.mouseDownOutside
	Window.title
	Window.titleStyleDeclaration

	XMLConnector component (Flash Professional only)
	Using the XMLConnector component (Flash Professional only)
	XMLConnector parameters
	Common workflow for the XMLConnector component

	XMLConnector class (Flash Professional only)
	Method summary for the XMLConnector class
	Property summary for the XMLConnector class
	Event summary for the XMLConnector class

	XMLConnector.direction
	XMLConnector.ignoreWhite
	XMLConnector.multipleSimultaneousAll owed
	XMLConnector.params
	XMLConnector.result
	XMLConnector.results
	XMLConnector.send
	XMLConnector.status
	XMLConnector.suppressInvalidCalls
	XMLConnector.trigger()
	XMLConnector.URL

	XPathAPI class
	XUpdateResolver component (Flash Professional only)
	Using the XUpdateResolver component (Flash Professional only)
	XUpdateResolver component parameter
	Common workflow for the XUpdateResolver component

	XUpdateResolver class (Flash Professional only)
	Property summary for the XUpdateResolver class
	Event summary for the XUpdateResolver class

	XUpdateResolver.beforeApplyUpdates
	XUpdateResolver.deltaPacket
	XUpdateResolver.includeDeltaPacketInfo
	XUpdateResolver.reconcileResults
	XUpdateResolver.updateResults
	XUpdateResolver.xupdatePacket

