
Using Components

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Encoder, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in
the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases
mentioned within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and
may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Macromedia Flash 8 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights
Reserved. http://www.on2.com.

Visual SourceSafe is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Sheila McGinn

Writing: Bob Berry, Jen deHaan, Peter deHaan, David Jacowitz, Wade Pickett

Managing Editor: Rosana Francescato

Lead Editor: Lisa Stanziano

Editing: Mary Ferguson, Mary Kraemer, Lisa Stanziano

Production Management: Patrice O’Neill, Kristin Conradi, Yuko Yagi

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman. John Francis, Geeta Karmarkar, Masayo Noda,
Paul Rangel, Arena Reed, Mario Reynoso

Special thanks to Jody Bleyle, Mary Burger, Lisa Friendly, Stephanie Gowin, Bonnie Loo, Nivesh Rajbhandari, Mary Ann Walsh,
Erick Vera, the beta testers, and the entire Flash and Flash Player engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.
San Francisco, CA 94103

Contents
Intended audience . 8
System requirements. 8
About the documentation . 8
Typographical conventions .9
Terms used in this manual .9
Additional resources .9

Chapter 1: About Components. .11

Installing components . 12
Where component files are stored . 14
Modifying the component files . 15
Benefits of using components. 16
Component categories . 16
About version 2 component architecture . 17
Version 2 component features . 18
About compiled clips and SWC files . 19
Accessibility and components. 20

Chapter 2: Creating an Application with Components
(Flash Professional Only) . 21

About the Fix Your Mistake tutorial . 21
Build the main page . 23
Bind data components to display gift ideas . 29
Display gift details . 33
Create the checkout screen . 39
Test the application .47
Viewing the completed application .47
3

Chapter 3: Working with Components. .49

The Components panel . 50
Adding components to Flash documents . 50
Components in the Library panel . 54
Setting component parameters . 55
Sizing components . 56
Deleting components from Flash documents . 57
Using code hints . 58
Creating custom focus navigation . 58
Managing component depth in a document . 59
Components in Live Preview . 60
Using a preloader with components . 60
About loading components . 62
Upgrading version 1 components to version 2 architecture 62

Chapter 4: Handling Component Events .63

Using listeners to handle events. 64
Delegating events . 73
About the event object . 77
Using the on() event handler . 78

Chapter 5: Customizing Components . 81

Using styles to customize component color and text 82
About skinning components . 96
About themes . 108
Combining skinning and styles to customize a component118

Chapter 6: Creating Components . 125

Component source files . 125
Overview of component structure . 126
Building your first component. 127
Selecting a parent class . 136
Creating a component movie clip. 138
Creating the ActionScript class file . 143
Incorporating existing components within your component 173
Exporting and distributing a component . 182
Final steps in component development . 185
4 Contents

Chapter 7: Collection Properties . 187

Defining a collection property .188
Simple collection example .189
Defining the class for a collection item . 191
Accessing collection information programmatically 191
Exporting components that have collections to SWC files194
Using a component that has a collection property194

Index . 197
Contents 5

6 Contents

Introduction
Macromedia Flash Basic 8 and Macromedia Flash Professional 8 are the standard authoring
tools for producing high-impact web experiences. Components are the building blocks for the
Rich Internet Applications that provide these experiences. A component is a movie clip with
parameters that are set during authoring in Macromedia Flash, and with ActionScript
methods, properties, and events that allow you to customize the component at runtime.
Components are designed to allow developers to reuse and share code, and to encapsulate
complex functionality that designers can use and customize without using ActionScript.

Components are built on version 2 of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. This book describes how to build applications with version 2 components. The
related Components Language Reference describes each component’s application programming
interface (API). It includes usage scenarios and procedural samples for using the Flash version
2 components, as well as descriptions of the component APIs, in alphabetical order.

You can use components created by Macromedia, download components created by other
developers, or create your own components.

This chapter contains the following sections:
Intended audience . 8

System requirements. 8

About the documentation . 8

Typographical conventions . 9

Terms used in this manual . 9

Additional resources . 9
7

Intended audience
This book is for developers who are building Flash applications and want to use components
to speed development. You should already be familiar with developing applications in Flash
and writing ActionScript.

If you are less experienced with writing ActionScript, you can add components to a
document, set their parameters in the Property inspector or Component inspector, and use
the Behaviors panel to handle their events. For example, you could attach a Go To Web Page
behavior to a Button component that opens a URL in a web browser when the button is
clicked without writing any ActionScript code.

If you are a programmer who wants to create more robust applications, you can create
components dynamically, use ActionScript to set properties and call methods at runtime, and
use the listener event model to handle events.

For more information, see Chapter 3, “Working with Components,” on page 49.

System requirements
Macromedia components do not have any system requirements in addition to Flash.

Any SWF file that uses version 2 components must be viewed with Flash Player 6 (6.0.79.0)
or later, and must be published for ActionScript 2.0 (you can set this through File > Publish
Settings, in the Flash tab).

About the documentation
This document explains the details of using components to develop Flash applications. It
assumes that you have general knowledge of Macromedia Flash and ActionScript. Specific
documentation about Flash and related products is available separately.

This document is available as a PDF file and as online help. To view the online help, start
Flash and select Help > Using Components.

For information about Macromedia Flash, see the following documents:

■ Using Flash
■ Learning ActionScript 2.0 in Flash
■ ActionScript 2.0 Language Reference
■ Components Language Reference
8 Introduction

Typographical conventions
The following typographical conventions are used in this book:

■ Italic font indicates a value that should be replaced (for example, in a folder path).
■ Code font indicates ActionScript code, including method and property names.
■ Code font italic indicates a code item that should be replaced (for example, an

ActionScript parameter).
■ Bold font indicates a value that you enter.

Terms used in this manual
The following terms are used in this manual:

at runtime When the code is running in Flash Player.

while authoring While you are working in the Flash authoring environment.

Additional resources
For the latest information on Flash, plus advice from expert users, advanced topics, examples,
tips, and other updates, see the Macromedia DevNet website at www.macromedia.com/
devnet, which is updated regularly. Check the website often for the latest news on Flash and
how to get the most out of the program.

For TechNotes, documentation updates, and links to additional resources in the Flash
Community, see the Macromedia Flash Support Center at www.macromedia.com/support/
flash.

For detailed information on ActionScript terms, syntax, and usage, see Learning ActionScript
2.0 in Flash and the ActionScript 2.0 Language Reference.

For an introduction to using components, see the Macromedia On Demand Seminar, Using
UI Components at www.macromedia.com/macromedia/events/online/ondemand/
index.html.
Additional resources 9

http://www.macromedia.com/devnet
http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash
http://www.macromedia.com/support/flash
http://www.macromedia.com/macromedia/events/online/ondemand/index.html
http://www.macromedia.com/macromedia/events/online/ondemand/index.html

10 Introduction

1

CHAPTER 1

About Components
Macromedia Flash components are movie clips with parameters that allow you to modify
their appearance and behavior. A component can be a simple user interface control, such as a
radio button or a check box, or it can contain content, such as a scroll pane; a component can
also be non-visual, like the FocusManager that allows you to control which object receives
focus in an application.

Components enable you to build complex Macromedia Flash applications, even if you don’t
have an advanced understanding of ActionScript. Rather than creating custom buttons,
combo boxes, and lists, you can drag these components from the Components panel to add
functionality to your applications. You can also easily customize the look and feel of
components to suit your design needs.

Components are built on version 2 of the Macromedia Component Architecture, which
allows you to build robust applications, easily and quickly, with a consistent appearance and
behavior. The version 2 architecture includes classes on which all components are based, styles
and skins mechanisms that allow you to customize component appearance, a broadcaster/
listener event model, depth and focus management, accessibility implementation, and more.

Each component has predefined parameters that you can set while authoring in Flash. Each
component also has a unique set of ActionScript methods, properties, and events, also called
an API (application programming interface), that allows you to set parameters and additional
options at runtime.

For a complete list of components included with Flash Basic 8 and Flash Professional 8, see
“Installing components” on page 12. You can also download components built by members of
the Flash community at the Macromedia Exchange at www.macromedia.com/cfusion/
exchange/index.cfm.

N
O

T
E

When publishing version 2 components, you must set your publish settings to publish for
ActionScript 2.0 (File > Publish Settings, Flash tab). The version 2 components will not
run correctly if published using ActionScript 1.0.
11

http://www.macromedia.com/cfusion/exchange/index.cfm
http://www.macromedia.com/cfusion/exchange/index.cfm

This chapter contains the following sections:
Installing components . 12

Where component files are stored . 14

Modifying the component files . 15

Benefits of using components. 16

Component categories . 16

About version 2 component architecture .17

Version 2 component features . 18

About compiled clips and SWC files . 19

Accessibility and components. 20

Installing components
A set of Macromedia components is already installed when you start Flash for the first time.
You can view them in the Components panel.

Flash Basic 8 includes the following components:

■ Button component
■ CheckBox component
■ ComboBox component
■ Label component
■ List component
■ Loader component
■ NumericStepper component
■ ProgressBar component
■ RadioButton component
■ ScrollPane component
■ TextArea component
■ TextInput component
■ Window component
12 About Components

Flash Professional 8 includes the Flash Basic 8 components plus the following additional
components and classes:

■ Accordion component (Flash Professional only)
■ Alert component (Flash Professional only)
■ Data binding classes (Flash Professional only)
■ DateField component (Flash Professional only)
■ DataGrid component (Flash Professional only)
■ DataHolder component (Flash Professional only)
■ DataSet component (Flash Professional only)
■ DateChooser component (Flash Professional only)
■ FLVPlayback Component (Flash Professional Only)
■ Form class (Flash Professional only)
■ Media components (Flash Professional only)
■ Menu component (Flash Professional only)
■ MenuBar component (Flash Professional only)
■ RDBMSResolver component (Flash Professional only)
■ Screen class (Flash Professional only)
■ Slide class (Flash Professional only)
■ Tree component (Flash Professional only)
■ WebServiceConnector component (Flash Professional only)
■ XMLConnector component (Flash Professional only)
■ XUpdateResolver component (Flash Professional only)

To view the Flash Basic 8 or Flash Professional 8 components:

1. Start Flash.

2. Select Window > Components to open the Components panel if it isn’t already open.

3. Select User Interface to expand the tree and view the installed components.

You can also download components from the Macromedia Exchange at
www.macromedia.com/exchange. To install components downloaded from the Exchange,
download and install the Macromedia Extension Manager at www.macromedia.com/
exchange/em_download/

Any component can appear in the Components panel in Flash. Follow these steps to install
components on either a Windows or Macintosh computer.
Installing components 13

http://www.macromedia.com/exchange/em_download/
http://www.macromedia.com/exchange/em_download/
http://www.macromedia.com/exchange

To install components on a Windows-based or a Macintosh computer:

1. Quit Flash.

2. Place the SWC or FLA file containing the component in the following folder on your
hard disk:

■ In Windows: C:\Program Files\Macromedia\
Flash 8\language\Configuration\Components

■ On the Macintosh: Macintosh HD/Applications/Macromedia Flash 8/Configuration/
Components (Macintosh)

3. Start Flash.

4. Select Window > Components to view the component in the Components panel if it isn’t
already open.

Where component files are stored
Flash components are stored in the application-level Configuration folder.

Components are installed in the following locations:

■ Windows 2000 or Windows XP: C:\Program Files\Macromedia\
Flash 8\language\Configuration\Components

■ Mac OS X: Macintosh HD/Applications/Macromedia Flash 8/Configuration/
Components

N
O

T
E

For information about these folders, see “Configuration folders instal led
with Flash” in Getting Started with Flash.
14 About Components

Modifying the component files
The source ActionScript files for components are located in:

■ Windows 2000 or Windows XP: C:\Program Files\Macromedia\Flash 8\language\
First Run\Classes\mx

■ Mac OS X: Macintosh HD/Applications/Macromedia Flash 8/First Run/Classes/mx

The files in the First Run directory are copied to your Documents and Settings path when
Flash is first lunched. The Documents and Settings paths are:

■ Windows 2000 or Windows XP: C:\Documents and Settings\username\Local
settings\Application Data\Macromedia\Flash 8\language\Configuration\Classes\mx

■ Mac OS X: Username/Library/Application Support/Macromedia/Flash 8/language/
Configuration/Classes/mx

When Flash starts, if a file is missing from the Document and Settings path, Flash copies it
over from the First Run directory to your Documents and Settings path.

If you’ve added components, you’ll need to refresh the Components panel.

To refresh the contents of the Components panel:

■ Select Reload from the Components panel menu.

To remove a component from the Components panel:

■ Remove the MXP or FLA file from the Configuration folder.

N
O

T
E

If you want to modify the source ActionScript files, modify the ones in the Documents
and Settings path. If any of your modifications “break” a component, Flash will restore
the original functionality when you close and relaunch Flash by copying the functional file
from the First Run directory. However if you modify the files in the First run directory and
that “breaks” a component, then you may need to reinstall Flash to restore the source
files back to the functional ones.
Modifying the component files 15

Benefits of using components
Components enable you to separate the process of designing your application from the
process of coding. They also let you to reuse code, either in components that you create, or by
downloading and installing components created by other developers.

Components allow coders to create functionality that designers can use in applications.
Developers can encapsulate frequently used functionality into components and designers can
customize the look and behavior of components by changing parameters in the Property
inspector or the Component inspector.

Flash developers can use the Macromedia Exchange at www.macromedia.com/go/exchange to
exchange components. By using components, you no longer need to build each element in a
complex web application from scratch. You can find the components you need and put them
together in a Flash document to create a new application.

Components that are based on the version 2 architecture share core functionality such as
styles, event handling, skinning, focus management, and depth management. When you add
the first version 2 component to an application, there is approximately 25K added to the
document that provides this core functionality. When you add additional components, that
same 25K is reused for them as well, resulting in a smaller increase in size to your document
than you may expect. For information about upgrading components, see “Upgrading version
1 components to version 2 architecture” on page 62.

Component categories
Components included with Flash fall into the following five categories (the locations of their
ActionScript source files roughly correspond to these categories as well and are listed in
parentheses):

■ Data components (mx.data.*)
Data components allow you to load and manipulate information from data sources; the
WebServiceConnector and XMLConnector components are data components.

■ FLVPlayback component (mx.video.FLVPlayback)
The FLVPlayback component lets you readily include a video player in your Flash
application to play progressive streaming video over HTTP, from a Flash Video Streaming
Service (FVSS), or from Flash Communication Server (FCS).

N
O

T
E

The source files for the data components aren’t installed with Flash. However, some
of the supporting ActionScript files are installed.
16 About Components

http://www.macromedia.com/go/exchange

■ Media components (mx.controls.*)
Media components let you play back and control streaming media; MediaController,
MediaPlayback, and MediaDisplay are media components.

■ User interface components (mx.controls.*)
User interface components (often referred to as “UI Components”) allow you to interact
with an application; for example, the RadioButton, CheckBox, and TextInput
components are user interface controls.

■ Managers (mx.managers.*)
Managers are nonvisual components that allow you to manage a feature, such as focus or
depth, in an application; the FocusManager, DepthManager, PopUpManager,
StyleManager, and SystemManager components are manager components.

■ Screens (mx.screens.*)
The screens category includes the ActionScript classes that allow you to control forms and
slides in Flash.

For a complete list of components, see Components Language Reference.

About version 2 component architecture
You can use the Property inspector or the Component inspector to change component
parameters to make use of the basic functionality of components. However, if you want
greater control over components, you need to use their APIs and understand a little bit about
the way they were built.

Flash components are built with version 2 of the Macromedia Component Architecture.
Version 2 components are supported by Flash Player 6 (6.0.79.0) and later, and ActionScript
2.0. These components are not always compatible with components built using version 1
architecture (all components released before Flash MX 2004). Also, the original version 1
components are not supported by Flash Player 7. For more information, see “Upgrading
version 1 components to version 2 architecture” on page 62.

Version 2 components are included in the Components panel as compiled clip (SWC)
symbols. A compiled clip is a component movie clip whose code has been compiled.
Compiled clips cannot be edited, but you can change their parameters in the Property
inspector and Component inspector, just as you would with any component. For more
information, see “About compiled clips and SWC files” on page 19.

N
O

T
E

Flash MX UI components have been updated to work with Flash Player 7 or later. These
updated components are still based on version 1 architecture. You can download them
from the Macromedia Flash Exchange at www.macromedia.com/go/v1_components.
About version 2 component architecture 17

http://www.macromedia.com/go/v1_components

Version 2 components are written in ActionScript 2.0. Each component is a class and each
class is in an ActionScript package. For example, a radio button component is an instance of
the RadioButton class whose package name is mx.controls. For more information about
packages, see “About packages” in Learning ActionScript 2.0 in Flash.

Most UI components built with version 2 of the Macromedia Component Architecture are
subclasses of the UIObject and UIComponent classes and inherit all properties, methods, and
events from those classes. Many components are also subclasses of other components. The
inheritance path of each component is indicated in its entry in the Components Language
Reference.

All components also use the same event model, CSS-based styles, and built-in themes and
skinning mechanisms. For more information on styles and skinning, see Chapter 5,
“Customizing Components,” on page 81. For more information on event handling, see
Chapter 3, “Working with Components,” on page 49.

For a detailed explanation of the version 2 component architecture, see Chapter 6, “Creating
Components,” on page 125.

Version 2 component features
This section outlines the features of version 2 components (compared to version 1
components) from the perspective of a developer using components to build Flash
applications. For detailed information about the differences between the version 1 and version
2 architectures for building components, see Chapter 6, “Creating Components,” on
page 125.

The Component inspector allows you to change component parameters while authoring in
Macromedia Flash and Macromedia Dreamweaver. (See “Setting component parameters”
on page 55.)

The listener event model allows listeners to handle events. (See Chapter 4, “Handling
Component Events,” on page 63.) Flash doesn’t have a clickHandler parameter in the
Property inspector, as there was in Flash MX; you must write ActionScript code to
handle events.

Skin properties let you load individual skins (for example, up and down arrows or the check
for a check box) at runtime. (See “About skinning components” on page 96.)

CSS-based styles allow you to create a consistent look and feel across applications. (See
“Using styles to customize component color and text” on page 82.)

N
O

T
E

The class hierarchy is also available as a FlashPaper file in the installation location: Flash
8\Samples and Tutorials\Samples\Components\arch_diagram.swf.
18 About Components

Themes allow you to drag a predesigned appearance from the library onto a set of
components. (See “About themes” on page 108.)

The Halo theme is the default theme that the version 2 components use. (See “About themes”
on page 108.)

Manager classes provide an easy way to handle focus and depth in a application. (See
“Creating custom focus navigation” on page 58 and “Managing component depth in a
document” on page 59.)

The base classes UIObject and UIComponent provide core methods, properties, and events
to components that extend them. (See “UIComponent class” and “UIObject class” in the
Components Language Reference.)

Packaging as a SWC file allows easy distribution and concealable code. See Chapter 6,
“Creating Components,” on page 125.

Built-in data binding is available through the Component inspector. For more information,
see “Data Integration (Flash Professional Only)” in Using Flash.

An easily extendable class hierarchy using ActionScript 2.0 allows you to create unique
namespaces, import classes as needed, and subclass easily to extend components. See Chapter
6, “Creating Components,” on page 125 and the ActionScript 2.0 Language Reference.

About compiled clips and SWC files
A compiled clip is a package of precompiled Flash symbols and ActionScript code. It’s used to
avoid recompiling symbols and code that will not be changed. A movie clip can also be
“compiled” in Flash and converted to a compiled clip. For example, a movie clip with a lot of
ActionScript code that doesn’t change often could be converted to a compiled clip. The
compiled clip behaves just like the movie clip from which it was compiled, but compiled clips
appear and publish much faster than regular movie clips. Compiled clips can’t be edited, but
they do have properties that appear in the Property inspector and the Component inspector.

Components included with Flash are not FLA files—they are compiled clips (that have been
packaged into compiled clip (SWC) files. SWC is the Macromedia file format for distributing
components; it contains a compiled clip, the component’s ActionScript class file, and other
files that describe the component. For details about SWC files, see “Exporting and
distributing a component” on page 182.

N
O

T
E

Flash 8 has several features that are not supported by the v2 components, including 9-
slice (sometimes referred to as “scale-9”), FlashType, and bitmap caching.
About compiled clips and SWC files 19

When you place a SWC file in the First Run/Components folder, the component appears in
the Components panel. When you add a component to the Stage from the Components
panel, a compiled clip symbol is added to the library.

To compile a movie clip:

■ Right-click (Windows) or Control-click (Macintosh) the movie clip in the Library panel,
and then select Convert to Compiled Clip.

To export a SWC file:

■ Select the movie clip in the Library panel and right-click (Windows) or Control-click
(Macintosh), and then select Export SWC File.

Accessibility and components
A growing requirement for web content is that it should be accessible; that is, usable for
people with a variety of disabilities. Visual content in Flash applications can be made
accessible to the visually impaired with the use of screen reader software, which provides a
spoken audio description of the contents of the screen.

When a component is created, the author can write ActionScript that enables communication
between the component and a screen reader. When a developer uses that component to
build an application in Flash, the developer uses the Accessibility panel to configure each
component instance.

Most components built by Macromedia are designed for accessibility. To find out whether a
component is accessible, see its entry in the Components Language Reference. When you’re
building an application in Flash, you’ll need to add one line of code for each component
(mx.accessibility.ComponentNameAccImpl.enableAccessibility();), and set the
accessibility parameters in the Accessibility panel. Accessibility for components works the
same way as it works for all Flash movie clips.

Most components built by Macromedia are also navigable by the keyboard. Each component’s
entry in the Components Language Reference indicates whether you can control the component
with the keyboard.

N
O

T
E

Flash Basic 8 and Flash Professional 8 continue to support FLA components.
20 About Components

2

CHAPTER 2

Creating an Application with
Components (Flash Professional Only)
Components are prebuilt Flash elements that you can use when creating Macromedia Flash
applications. Components include user interface controls, data access and connectivity
mechanisms, and media-related elements. Components save you work when building a Flash
application by providing you with elements and behavior that you would need to create from
scratch otherwise.

This chapter contains a tutorial that shows you how to build a Flash application using
components that are available in Macromedia Flash Professional 8. You will learn how to work
with components in the Flash authoring environment and also learn how to make them
interactive with ActionScript code.

About the Fix Your Mistake tutorial
This tutorial takes you through the steps to create a basic online shopping application for the
“Fix Your Mistake” gift service. This service helps a user select an appropriate gift to make
amends to someone whom the user has offended. The application filters a list of gifts to those
choices that match the severity of the user’s offense. From that list the user can add items to
the shopping cart and then proceed to the checkout page to provide billing, shipping, and
credit card information.

This chapter contains the following sections:
About the Fix Your Mistake tutorial . 21

Build the main page . 23

Bind data components to display gift ideas . 29

Display gift details . 33

Create the checkout screen . 39

Test the application . 47

Viewing the completed application . 47
21

The application uses the ComboBox, DataGrid, TextArea, and Button components, as well as
others, to create the application interface. The main page of the interface looks like this:

The application uses the ActionScript WebService class to connect dynamically to a web
service to retrieve the list of offenses (problems.xml) that appear in the combo box. It also uses
ActionScript to handle the user’s interactions with the application.

The application uses data components to connect the interface to another data source. It uses
the XMLConnector component to connect to an XML data file (products.xml) for the list of
gifts and it uses the DataSet component to filter the data and present it to the data grid.

The tutorial requires some familiarity with the Flash authoring environment and some
experience with ActionScript. In the authoring environment, you should have some
experience using panels, tools, the timeline, and the library. All the ActionScript needed for
creating the sample application is provided here within the tutorial. To understand the
scripting concepts and create your own applications, however, you will need additional
experience writing ActionScript.

To see a working version of the completed application, see “Viewing the completed
application” on page 47

Keep in mind that the sample application is for demonstration purposes and therefore is not
as complete as a real-world application.
22 Creating an Application with Components (Flash Professional Only)

Build the main page
Follow these steps to create the application’s main page by adding components to a skeletal
starter page. Then add ActionScript code to customize the components, import the
ActionScript classes that allow you to manipulate the application’s components, and access a
web service to populate the combo box with a list of offenses. The code populates the combo
box by setting its dataProvider property to receive the results from the web service.

1. Open the first_app_start.fla file, which you can find at one of the following locations:

■ In Windows: install drive:\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\ComponentsApplication

■ On the Macintosh: Macintosh HD/Applications/Macromedia Flash 8/Samples and
Tutorials/Samples/Components/ComponentsApplication

The file contains a start page that looks like the following:

The start_app.fla file contains three layers: a background layer with a black background
image and text titles, a text layer with text labels for sections of the application, and a
labels layer with labels on the first frame (Home) and the tenth frame (Checkout).

2. Select File > Save As. Rename the file and save it to your hard disk.

3. In the Timeline, select the Labels layer and click the Add Layer button to add a new layer
above it. Name the new layer Form. You will place the component instances in this layer.
Build the main page 23

4. Make sure the Form layer is selected. In the Components panel (Window > Components),
locate the ComboBox component in the User Interface tree. Drag an instance of
ComboBox onto the Stage. Place it below the What Did You Do? text. In the Property
inspector (Window > Properties > Properties), enter problems_cb for the instance name.
Enter 400 (pixels) for the width. Enter 76.0 for the x location and 82.0 for the y location.

5. Drag an instance of the DataGrid component from the User Interface tree in the
Components panel onto the Stage. Place it below the Gift Ideas text. Enter products_dg
for the instance name. Enter 400 (pixels) for the width and 130 for the height. Enter 76.0
for the x location and 128.0 for the y location.

6. Drag an instance of the DataSet component from the Data tree in the Components panel
onto the side of the Stage. (The DataSet component does not appear in the application at
runtime. The DataSet icon is simply a placeholder that you work with in the Flash
authoring environment.) Enter products_ds for the instance name.

Drag an instance of the XMLConnector component from the Data tree in the
Components panel to the side of the Stage. (Like the DataSet component, the
XMLConnector component does not appear in the application at runtime.) Enter
products_xmlcon for the instance name. Click the Parameters tab in the Property
inspector, and enter www.flash-mx.com/mm/firstapp/products.xml for the URL property.
Click the value for the direction property to activate the combo box, click the down-arrow
and select receive from the list.

The URL specifies an external XML file with data about the products that appear in the
Gift Ideas section of the application. Later in the tutorial you will use data binding to bind
the XMLConnector, DataSet, and DataGrid components together; the DataSet
component filters data from the external XML file, and the DataGrid component will
display it.

7. Drag an instance of the Button component from the User Interface tree in the Components
panel onto the Stage. Place it in the lower-right corner of the Stage. Enter checkout_button
for the instance name. Click the Parameters tab and enter Checkout for the label
property. For the x and y coordinates, enter 560.3 and 386.0, respectively.

N
O

T
E

The ComboBox component symbol is added to the library (Window > Library). When
you drag an instance of a component to the Stage, the compiled clip symbol for the
component is added to the library. As with all symbols in Flash, you can create
additional instances of the component by dragging the library symbol onto
the Stage.

N
O

T
E

You can also use the Component inspector (Window > Component Inspector) to set
parameters for components. The Parameters tab in the Property inspector and the
Component inspector work in the same way.
24 Creating an Application with Components (Flash Professional Only)

http://www.flash-mx.com/mm/firstapp/products.xml

Import the component classes
Each component is associated with an ActionScript class file that defines its methods and
properties. In this section of the tutorial, you will add ActionScript code to import the classes
associated with the application’s components. For some of these components, you have
already added instances to the Stage. For others, you will add ActionScript later in the tutorial
to create instances dynamically.

The import statement creates a reference to the class name and makes it easier to write
ActionScript for the component. The import statement enables you to refer to the class by its
class name rather than its complete name, which includes the package name. For example,
after you create a reference to the ComboBox class file with an import statement, you can
refer to instances of the combo box with the syntax instanceName:ComboBox, rather than
instanceName:mx.controls.ComboBox.

A package is a directory that contains class files and resides in a designated classpath directory.
You can use a wild card character to create references to all the classes in a package: for
example, the syntax mx.controls.* creates references to all classes in the controls package.
(When you create a reference to a package with a wild card, the unused classes are dropped
from the application when it is compiled, so they don’t add any extra size.)

For the application in this tutorial, you need the following packages and individual classes:

UI Components Controls package This package contains classes for the user interface
control components, including ComboBox, DataGrid, Loader, TextInput, Label,
NumericStepper, Button, and CheckBox.

UI Components Containers package This package contains classes for the user interface
container components, including Accordion, ScrollPane, and Window. As with the controls
package, you can create a reference to this package by using a wild card.

DataGridColumn class This class lets you add columns to the DataGrid instance and
control their appearance.

WebService class This class populates the ComboBox instance with a list of problems or
offenses. For this class, you will also need to import the WebServiceClasses item from the
Classes common library. This item contains compiled clip (SWC) files that you will need in
order to compile and generate the SWF file for your application.

Cart class A custom class provided with this tutorial, the Cart class defines the functioning
of the shopping cart that you will create later. (To examine the code in the Cart class file, open
the cart.as file located in the component_application folder with the application FLA and
SWF files).
Build the main page 25

To import these classes, you will create an Actions layer and add the ActionScript code to the
first frame of the main timeline. All the code that you will add to the application in the
remaining steps of the tutorial should be placed in the Actions layer.

1. To import the WebServiceClasses item from the Classes library, select Window > Common
Libraries > Classes.

2. Drag the WebServiceClasses item from the Classes library into the library for
the application.

Importing an item from the Classes library is similar to adding a component to the
library: it adds the SWC files for the class to the library. The SWC files need to be in the
library in order for you to use the class in an application.

3. In the Timeline, select the Form layer and click the Add New Layer button. Name the new
layer Actions.

4. With the Actions layer selected, select Frame 1 and press F9 to open the Actions panel.

5. In the Actions panel, enter the following code to create a stop() function that prevents the
application from looping during playback:
stop();

6. With Frame 1 in the Actions layer still selected, add the following code in the Actions panel
to import the classes:
// Import necessary classes.
import mx.services.WebService;
import mx.controls.*;
import mx.containers.*;
import mx.controls.gridclasses.DataGridColumn;
// Import the custom Cart class.
import Cart;
26 Creating an Application with Components (Flash Professional Only)

Set the data types of component instances
Next you will assign data types to each of the component instances you dragged to the Stage
earlier in the tutorial.

ActionScript 2.0 uses strict data typing, which means that you assign the data type when
you create a variable. Strict data typing makes code hints available for the variable in the
Actions panel.

■ In the Actions panel, add the following code to assign data types to the four component
instances that you already created.
/* Data type instances on the Stage; other instances might be added at

runtime from the Cart class.*/
var problems_cb:ComboBox;
var products_dg:DataGrid;
var cart_dg:DataGrid;
var products_xmlcon:mx.data.components.XMLConnector;

Customize the appearance of components
Each component has style properties and methods that let you customize its appearance,
including highlight color, font, and font size. You can set styles for individual component
instances, or set styles globally to apply to all component instances in an application. For this
tutorial you will set styles globally.

■ Add the following code to set styles:
// Define global styles and easing equations for the problems_cb

ComboBox.
_global.style.setStyle("themeColor", "haloBlue");
_global.style.setStyle("fontFamily", "Verdana");
_global.style.setStyle("fontSize", 10);
_global.style.setStyle("openEasing",

mx.transitions.easing.Bounce.easeOut);

This code sets the theme color (the highlight color on a selected item), font, and font size
for the components, and also sets the easing for the ComboBox—the way that the drop-
down list appears and disappears when you click the ComboBox title bar.

N
O

T
E

The instance names you specify here must agree with the instance names that you
assigned when you dragged the components to the Stage.
Build the main page 27

Display offenses in the combo box
In this section you will add code to connect to a web service that contains the list of offenses
(Forgot to Water Your Plants, and so on). The web service description language (WSDL) file
is located at www.flash-mx.com/mm/firstapp/problems.cfc?WSDL. To see how the WSDL is
structured, browse to the WSDL location.

The ActionScript code passes the web service results to the ComboBox instance for display. A
function sorts the offenses in order of severity. If no result is returned from the web service
(for example, if the service is down, or the function isn’t found), an error message appears in
the Output panel.

■ In the Actions panel, add the following code:
/* Define the web service used to retrieve an array of problems.
This service will be bound to the problems_cb ComboBox instance. */
var problemService:WebService = new WebService("http://www.flash-mx.com/

mm/firstapp/problems.cfc?WSDL");
var myProblems:Object = problemService.getProblems();

/* If you get a result from the web service, set the field that will be
used for the column label.

Set the data provider to the results returned from the web service. */
myProblems.onResult = function(wsdlResults:Array) {

problems_cb.labelField = "name";
problems_cb.dataProvider = wsdlResults.sortOn("severity",
Array.NUMERIC);

};

/* If you are unable to connect to the remote web service, display the
error messages in the Output panel. */
myProblems.onFault = function(error:Object) {

trace("error:");
for (var prop in error) {

trace(" "+prop+" -> "+error[prop]);
}

};

T
IP Press Control+S to save your work and then Control+Enter (or select Control > Test

Movie) to test the application. The combo box should be populated with a list of
offenses at this point and you should see the empty data grid that you created for Gift
Ideas, along with the checkout button.
28 Creating an Application with Components (Flash Professional Only)

http://www.flash-mx.com/mm/firstapp/problems.cfc?WSDL

Bind data components to display
gift ideas
In the beginning of the tutorial, you added instances of the DataGrid, DataSet, and
XMLConnector components to the Stage. You set the URL property for the XMLConnector
instance, named products_xmlcon, to the location of an XML file containing product
information for the Gift Ideas section of the application.

Now you will use data binding features in the Flash authoring environment to bind the
XMLConnector, DataSet, and DataGrid components together to use the XML data in the
application. For general information on working with data binding and other features of the
Flash data integration architecture, see Chapter 16, “Data Integration (Flash Professional
Only)” in Using Flash.

When you bind the components, the DataSet component filters the list of products in the
XML file according to the severity of the offense that the user selects in the What Did You
Do? section. The DataGrid component will display the list.

Use schema to describe the XML data source
When you connect to an external XML data source with the XMLConnector component,
you need to specify a schema—a schematic representation which describes the structure of the
XML document. The schema tells the XMLConnector component how to read the XML
data source. The easiest way to specify a schema is to import a copy of the XML file that
you’re going to connect to, and use that copy as a schema.

1. Open your web browser and go to www.flash-mx.com/mm/firstapp/products.xml (the
location you set for the XMLConnector URL parameter).

2. Select File > Save As.

3. Save products.xml to the same location as the FLA file that you’re working on.

4. Select Frame 1 in the main Timeline.

5. Select the products_xmlcon (XMLConnector) instance beside the Stage.

6. In the Component inspector, click the Schema tab. Click the Import button (on the right
side of the Schema tab, above the scroll pane). In the Open dialog box, locate the
products.xml file that you imported in step 3, and click Open. The schema for the
products.xml file appears in the scroll pane of the Schema tab.

In the top pane of the Schema tab, select the image element. In the bottom pane, select data
type and change the value from <empty> to String. Repeat this step for the description
element.
Bind data components to display gift ideas 29

http://www.flash-mx.com/mm/firstapp/problems.xml

Filter the gift ideas to match the offense
You will use the Binding tab in the Component inspector to bind the XMLConnector,
DataSet, and DataGrid component instances to one another.

For information on working with data binding, see “Data Integration (Flash Professional
Only)” in Using Flash.

1. With the products_xmlcon (XMLConnector) instance selected on the Stage, click the
Bindings tab in the Component inspector.

2. Click the Add Binding button.

3. In the Add Binding dialog box, select the results.products.product array item and
click OK.

4. In the Bindings tab, click the Bound To item in the Binding Attributes pane (the bottom
pane, showing attribute name-value pairs).

5. In the Value column for the Bound To item, click the magnifying glass icon to open the
Bound To dialog box.

6. In the Bound To dialog box, select the DataSet <products_ds> instance in the
Component Path pane. Select dataProvider:array in the Schema Location pane.
Click OK.

7. In the Bindings tab, click the Direction item in the Binding Attributes pane. From the pop-
up menu in the Value column, select Out.

This option means that the data will pass from the products_xmlcon instance to the
products_ds instance (rather than passing in both directions, or passing from the
DataSet instance to the XMLConnector instance).

8. On the Stage, select the products_ds instance. In the Bindings tab of the Component
inspector, notice that the component’s data provider appears in the Binding List (the top
pane of the Bindings tab). In the Binding Attributes pane, the Bound To parameter
indicates that the products_ds instance is bound to the products_xmlcom instance, and
the binding direction is In.

In the next few steps you will bind the DataSet instance to the DataGrid instance so that
the data that is filtered by the data set will be displayed in the data grid.

9. With the products_ds instance still selected, click the Add Binding button in the
Bindings tab.

10. In the Add Binding dialog box, select the dataProvider: array item and click OK.

11. In the Bindings tab, make sure the dataProvider: array item is selected in the
Binding List.

12. Click the Bound To item in the Binding Attributes pane.
30 Creating an Application with Components (Flash Professional Only)

13. In the Value column for the Bound To item, click the magnifying glass icon to open the
Bound To dialog box.

14. In the Bound To dialog box, select the products_dg (DataGrid) instance in the
Component Path pane. Select dataProvider:array in the Schema Location pane.
Click OK.

Add columns to the Gift Ideas section
Now you are ready to add columns to the data grid in the Gift Ideas section of the application,
for displaying product information and price.

■ Select the Actions layer. In the Actions panel, add the following code to create, configure,
and add a Name column and a Price column to the DataGrid instance:
// Define data grid columns and their default widths in the products_dg
// DataGrid instance.
var name_dgc:DataGridColumn = new DataGridColumn("name");
name_dgc.headerText = "Name";
name_dgc.width = 280;

// Add the column to the DataGrid.
products_dg.addColumn(name_dgc);
var price_dgc:DataGridColumn = new DataGridColumn("price");
price_dgc.headerText = "Price";
price_dgc.width = 100;

// Define the function that will be used to set the column’s label
// at runtime.
price_dgc.labelFunction = function(item:Object) {

if (item != undefined) {
return "$"+item.price+" "+item.priceQualifier;

}
};
products_dg.addColumn(price_dgc);

Trigger the XML Connector
Next you will add a line of code that causes the XMLConnector instance to load, parse, and
bind the contents of the remote products.xml file. This file is located at the URL you entered
for the URL property of the XMLConnector instance that you created earlier. The file contains
information on the products that will appear in the Gift Ideas section of the application.

■ Add the following code in the Actions panel:
products_xmlcon.trigger();
Bind data components to display gift ideas 31

Add an event listener to filter the gift ideas
In this section, you add an event listener to detect when a user selects an offense in the What
Did You Do? section (the problems_cb ComboBox instance). The listener includes a
function that filters the Gift Ideas list according to the offense the user chooses. Selecting a
minor offense displays a list of modest gifts (such as a CD or flowers); selecting a more serious
offense displays more opulent gifts.

For more information on working with event listeners, see “Using event listeners” in Learning
ActionScript 2.0 in Flash.

■ In the Actions panel, add the following code:
/* Define a listener for the problems_cb ComboBox instance.
This listener will filter the products in the DataSet (and DataGrid).
Filtering is based on the severity of the currently selected item in the

ComboBox. */
var cbListener:Object = new Object();
cbListener.change = function(evt:Object) {

products_ds.filtered = false;
products_ds.filtered = true;
products_ds.filterFunc = function(item:Object) {

// If the current item's severity is greater than or equal to the
// selected item in the ComboBox, return true.
return (item.severity>=evt.target.selectedItem.severity);

};
};

// Add the listener to the ComboBox.
problems_cb.addEventListener("change", cbListener);

Resetting the filtered property (setting it to false and then to true) at the beginning of
the change() function ensures that the function will work properly if the user changes the
What Did You Do? selection repeatedly.

The filterFunc() function checks whether a given item in the array of gifts falls within the
severity the user selected in the combo box. If the gift is within the selected severity range, it is
displayed in the DataGrid instance (which is bound to the DataSet instance).

The last line of code registers the listener to the problems_cb ComboBox instance.
32 Creating an Application with Components (Flash Professional Only)

Add the cart
The next code that you will add creates an instance of the custom Cart class and initializes it.

■ In the Actions panel, add the following code:
var myCart:Cart = new Cart(this);
myCart.init();

This code uses the init() method of the Cart class to add a DataGrid instance to the Stage,
define the columns, and position the DataGrid instance on the Stage. It also adds a Button
component instance and positions it, and adds an Alert handler for the button. (To see the
code for the Cart class init() method, open the Cart.as file.)

Display gift details
A pop-up window appears in the application when a user clicks a product in the Gift Ideas
section. The pop-up window contains component instances that display information about
the product, including a text description, an image, and the price. To make this pop-up
window, you will create a movie clip symbol and add instances of the Loader, TextArea, Label,
NumericStepper, and Button components. The product detail window for Bouquet of
Flowers Extreme looks like this:

T
IP Press Control+S to save your work and then Control+Enter (or select Control->Test

Movie) to test the application. When you select an offense in the combo box, the data
grid that you created for Gift Ideas should display a subset of gifts to match the
selected offense.
Display gift details 33

You will later add ActionScript that dynamically creates an instance of this movie clip for each
product. These movie clip instances will be displayed in the Window component, which you
added to the library earlier. The component instances will be populated with elements from
the external XML file.

1. Drag an instance of the Window component from the User Interface tree in the
Components panel to the library.

The Window component symbol is now added to the library. Later in the tutorial, you
will create instances of the Window component using ActionScript.

2. In the Library panel (Window > Library), click the options menu on the right side of the
title bar and select New Symbol.

3. In the Create New Symbol dialog box, enter ProductForm for Name and select Movie Clip
for Type.

4. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in
First Frame selected, and click OK. A document window for the new symbol opens in
symbol-editing mode.

For movie clip symbols that are in the library but not on the Stage, you must select Export
for ActionScript so that you can manipulate them using ActionScript. (Exporting in first
frame means that the movie clip is available as soon as the first frame loads.) Later in the
tutorial you will add ActionScript that will generate an instance of the movie clip
dynamically each time a user clicks a product in the Gift Ideas section.

5. In the Timeline for the new symbol, select Layer 1 and rename it Components.

6. Drag an instance of the Loader component from the User Interface tree in the Components
panel onto the Stage. Enter 5, 5 for the x, y coordinates respectively. Enter image_ldr for
the instance name. Click the Parameters tab in the Property inspector. Select false for
autoLoad and false for scaleContent.

The Loader component instance will be used to display an image of the product. The
false setting for autoLoad specifies that the image will not load automatically. The
false setting for scaleContent specifies that the image will not be scaled. Later in the
tutorial you will add code that loads the image dynamically, based on the product that the
user selects in the Gift Ideas section.
34 Creating an Application with Components (Flash Professional Only)

7. Drag an instance of the TextArea component from the User Interface tree in the
Components panel onto the Stage. Place it next to the Loader component. Enter 125, 5
for the x, y coordinates respectively. Enter description_ta for the instance name. Set the
Width to 200 and Height to 130. Click the Parameters tab in the Property inspector. For
editable, select false. For html, select true. For wordWrap, select true.

The TextArea component instance is used to display a text description of the selected
product. The selected settings specify that the text cannot be edited by a user, that it can
be formatted with HMTL tags, and that lines will wrap to fit the size of the text area.

8. Drag an instance of the Label component from the User Interface tree in the Components
panel onto the Stage. Place it below the Loader component. Set the x, y coordinates to 5,
145. Enter price_lbl for the instance name. Click the Parameters tab in the Property
inspector. For autoSize, select left. For html, select true.

The Label component instance will display the price of the product and the price qualifier
(the quantity of products indicated by the specified price, such as “each” or “one dozen.”)

9. Drag an instance of the NumericStepper component from the User Interface tree in the
Components panel onto the Stage. Place it below the TextArea component. Set the x, y
coordinates to 135, 145. Enter quantity_ns for the instance name. Click the Parameters
tab in the Property inspector. For minimum, enter 1.

Setting minimum to 1 specifies that the user must select at least one of the products in
order to add the item to the cart.

10. Drag an instance of the Button component from the User Interface tree in the Components
panel onto the Stage. Place it beside the NumericStepper component. Set the x, y
coordinates to 225, 145. Enter addToCart_button for the instance name. Click the
Parameters tab in the Property inspector. For label, enter Add To Cart.
Display gift details 35

Add an event listener to trigger the display of
gift details
Next you will add an event listener to the products_dg DataGrid instance to display
information about each product. When the user clicks a product in the Gift Ideas section, a
pop-up window appears with information about the product.

■ In the Actions panel of the main Timeline, add the following code:
// Create a listener for the DataGrid to detect when the row in the
// DataGrid is changed
var dgListener:Object = new Object();
dgListener.change = function(evt:Object) {

// When the current row changes in the DataGrid, launch a new pop-up
// window displaying the product's details.
myWindow = mx.managers.PopUpManager.createPopUp(_root,
mx.containers.Window, true, {title:evt.target.selectedItem.name,
contentPath:"ProductForm", closeButton:true});
// Set the dimensions of the pop-up window.
myWindow.setSize(340, 210);
// Define a listener that closes the pop-up window when the user
clicks
// the close button.
var closeListener:Object = new Object();
closeListener.click = function(evt) {

evt.target.deletePopUp();
};
myWindow.addEventListener("click", closeListener);

};
products_dg.addEventListener("change", dgListener);

This code creates a new event listener called dgListener, and creates instances of the Window
component you added to the library earlier. The title for the new window is set to the
product’s name. The content path for the window is set to the ProductForm movie clip. The
size of the window is set to 340 x 210 pixels.

The code also adds a close button to enable the user to close the window after viewing the
information.
36 Creating an Application with Components (Flash Professional Only)

Add code to the ProductForm movie clip
Next, you will add ActionScript to the ProductForm movie clip that you just created. The
ActionScript populates the components in the movie clip with information about the selected
gift, and adds an event listener to the Add to Cart button that adds the selected product to
the cart.

For more information on working with event listeners, see “Using event listeners” in Using
ActionScript in Flash.

1. In the Timeline of the ProductForm movie clip, create a new layer and name it Actions.
Select the first frame in the Actions layer.

2. In the Actions panel, add the following code:
// Create an object to reference the selected product item in the

DataGrid.
var thisProduct:Object = this._parent._parent.products_dg.selectedItem;
// Populate the description_ta TextArea and price_lbl Label instances

with
// data from the selected product.
description_ta.text = thisProduct.description;
price_lbl.text = "$"+thisProduct.price+"

"+thisProduct.priceQualifier+"";
// Load an image of the product from the application directory.
image_ldr.load(thisProduct.image);

First, the code defines a variable to refer to the selected product in the subsequent code.
Using the thisProduct variable means you don’t have to refer to the specified product
using the path this._parent._parent.products_dg.selectedItem.
Next, the code populates the TextArea and Label instances by using the description,
price, and priceQualifier properties of the thisProduct object. These properties
correspond to elements in the products.xml file that you linked to the products_xmlcon
XMLConnector instance at the beginning of the tutorial. Later in the tutorial, you will
bind the XMLConnector, DataSet, and DataGrid component instances together, and the
elements in the XML file will populate the other two component instances.
Finally, the code uses the image property of the thisProduct object instance to load an
image of the product into the Loader component.

N
O

T
E

The code includes comments explaining its purpose. It’s a good idea to include
comments like these in all the ActionScript code you write, so that you or anyone
else going back to the code later can easily understand what it was for.
Display gift details 37

3. Next you will add an event listener to add the product to the cart when the user clicks the
Add to Cart button. (You will add ActionScript to the main Timeline in the application
later in the tutorial, to create an instance of the Cart class.) Add the following code:
var cartListener:Object = new Object();
cartListener.click = function(evt:Object) {

var tempObj:Object = new Object();
tempObj.quantity = evt.target._parent.quantity_ns.value;
tempObj.id = thisProduct.id;
tempObj.productObj = thisProduct;
var theCart = evt.target._parent._parent._parent.myCart;
theCart.addProduct(tempObj.quantity, thisProduct);

};
addToCart_button.addEventListener("click", cartListener);

4. Click the Check Syntax button (the blue check mark above the Script pane) to make sure
there are no syntax errors in the code.

You should check syntax frequently as you add code to an application. Any errors found in
the code are listed in the Output panel. (When you check syntax, only the current script is
checked; other scripts that may be in the FLA file are not checked.) For more information,
see “Debugging your scripts” in Learning ActionScript 2.0 in Flash.

5. Click the arrow button at the upper left of the Document window or select View > Edit
Document to exit symbol editing mode and return to the main Timeline.

T
IP Press Control+S to save your work and then Control+Enter (or select Control >Test

Movie) to test your application. When you click a gift selection now, a window should
appear and display an image of the gift, accompanied by a description, the price, and
a numeric stepper that allows you to choose the quantity that you want.
38 Creating an Application with Components (Flash Professional Only)

Create the checkout screen
When the user clicks the Checkout button on the main screen, the Checkout screen appears.
The Checkout screen provides forms where the user can enter billing, shipping, and credit
card information. The checkout screen looks like the following:

The checkout interface consists of components placed on a keyframe at Frame 10 in the
application. You will use the Accordion component to create the checkout interface. The
Accordion component is a navigator that contains a sequence of children that it displays one
at a time. You will also add a Button component instance to create a Back button, so users can
return to the main screen.

Later in the tutorial, you will create movie clips to use as children in the Accordion instance,
to display the Billing, Shipping, and Credit Card Information panes.

1. In the main Timeline for the application, move the playhead to Frame 10 (labeled
Checkout). Make sure the Form layer is selected.

2. Insert a blank keyframe on Frame 10 in the Form layer (select the frame and select Insert
> Timeline > Blank Keyframe).

3. With the new keyframe selected, drag an instance of the Accordion component from the
User Interface tree in the Components panel onto the Stage. In the Property inspector,
enter checkout_acc for the instance name. Set the width to 300 pixels and the height to
200 pixels.
Create the checkout screen 39

4. Drag an instance of the Button component from the User Interface tree in the Components
panel onto the lower-right corner of the Stage. In the Property inspector, enter
back_button for the instance name. Click the Parameters tab, and enter Back for the
label property.

About the Billing, Shipping, and Credit Card panes
The Billing, Shipping, and Credit Card Information panes are built with movie clip instances
that are displayed in the Accordion component instance. Each pane consists of two nested
movie clips.

The parent movie clip contains a ScrollPane component, used to display content in a
scrollable area. The child movie clip contains Label and TextInput components where users
can enter personal data, such as name, address, and so on. You will use the ScrollPane
component to display the child movie clip so that the user can scroll through the information
fields.

Create the Billing Information pane
First you will create two movie clips that will display the Billing Information form fields: a
parent movie clip with the ScrollPane component instance, and a child movie clip with the
Label and TextArea component instances.

1. In the Library panel (Window > Library), click the options menu on the right side of the
title bar and select New Symbol.

2. In the Create New Symbol dialog box, enter checkout1_mc for Name and select Movie
Clip for Type.

3. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in
First Frame selected, and click OK.

A document window for the new symbol opens in symbol-editing mode.
4. Drag an instance of the ScrollPane component onto the Stage.

5. In the Property inspector, enter checkout1_sp for the instance name. Set the W and H
values to 300, 135. Set the x and y coordinates to 0, 0.

6. Click the Parameters tab. Set the contentPath property to checkout1_sub_mc.

The checkout1_sub_mc movie clip appears inside the scroll pane, and contains the Label
and TextInput components. You will create this movie clip next.

7. From the Library options menu, select New Symbol.
40 Creating an Application with Components (Flash Professional Only)

8. In the Create New Symbol dialog box, enter checkout1_sub_mc for Name and select
Movie Clip for Type.

9. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in
First Frame selected, and click OK.

A document window for the new symbol opens in symbol-editing mode.
10. Drag six instances of the Label component onto the Stage. Alternatively, you can drag one

instance onto the Stage, and Control-click (Windows) or Option-click (Macintosh) to drag
it on the Stage to make copies. Name and position the instances as follows:

■ For the first instance, enter firstname_lbl for the instance name and set the x and y
coordinates to 5, 5. Click the Parameters tab and enter First Name for text.

■ For the second instance, enter lastname_lbl for the instance name and set the x and y
coordinates to 5, 35. Click the Parameters tab and enter Last Name for text.

■ For the third instance, enter country_lbl for the instance name and set the x and y
coordinates to 5, 65. Click the Parameters tab and enter Country for text.

■ For the fourth instance, enter province_lbl for the instance name and set the x and y
coordinates to 5, 95. Click the Parameters tab and enter Province/State for text.

■ For the fifth instance, enter city_lbl for the instance name and set the x and y
coordinates to 5, 125. Click the Parameters tab and enter City for text.

■ For the sixth instance, enter postal_lbl for the instance name and set the x and y
coordinates to 5, 155. Click the Parameters tab and enter Postal/Zip Code for text.

11. Drag six instances of the TextInput component onto the Stage. Place a TextInput instance
immediately to the right of each Label instance. For example, the x, y coordinates of the
first TextInput instance should be 105, 5. Name the TextInput instances as follows:

■ Name the first instance billingFirstName_ti.
■ Name the second instance billingLastName_ti.
■ Name the third instance billingCountry_ti.
■ Name the fourth instance billingProvince_ti.
■ Name the fifth instance billingCity_ti.
■ Name the sixth instance billingPostal_ti.
Sometimes content in a scroll pane can be cropped if it’s too close to the border of the
pane. In the next few steps you will add a white rectangle to the checkout1_sub_mc
movie clip so that the Label and TextInput instances are displayed properly.

12. In the Timeline, click the Add New Layer button. Drag the new layer below the existing
layer. (The layer with the rectangle should be on the bottom, so that the rectangle doesn’t
interfere with the component display.)
Create the checkout screen 41

13. Select Frame 1 of the new layer.

14. In the Tools panel, select the Rectangle tool. Set the Stroke color to None and the Fill color
to white.

Click the Stroke Color control in the Tools panel and click the None button—the white
swatch with a red line through it. Click the Fill Color control and click the white color
swatch.

15. Drag to create a rectangle that extends beyond the bottom and right edges of the Label and
TextInput instances.

Create the Shipping Information pane
The movie clips for the Shipping Information pane are similar to those for the Billing
Information pane. You will also add a CheckBox component, enabling users to populate
the Shipping Information form fields with the same data they entered in the Billing
Information pane.

1. Follow the earlier instructions (see “Create the Billing Information pane” on page 40) to
create the movie clips for the Credit Card Information pane. Note these naming
differences:

■ For the first movie clip, enter checkout2_mc for the symbol name and checkout2_sp
for the instance name. In the Property inspector’s Parameters tab, set the contentPath
property to checkout2_sub_mc.

■ For the second movie clip, enter checkout2_sub_mc for the symbol name.
■ For the TextInput instances, change “billing” to “shipping” in the instance names.

2. With the checkout2_sub_mc movie clip open in symbol-editing mode, drag an instance
of the CheckBox component onto the Stage and position it just above the first
Label instance.

Make sure to place this instance in Layer 1, along with the other component instances.
3. In the Property inspector, enter sameAsBilling_ch for the instance name.

4. Click the Parameters tab. Set the label property to Same As Billing Info.
42 Creating an Application with Components (Flash Professional Only)

Create the Credit Card Information pane
The movie clips for the Credit Card Information pane are also similar to those for the Billing
and Shipping Information panes. However, the nested movie clip for the Credit Card
Information pane has somewhat different fields than the other two panes, for credit card
number and other card data.

1. Follow steps 1-9 of the Billing Information instructions (see “Create the Billing
Information pane” on page 40) to create the movie clips for the Credit Card Information
pane. Note these naming differences:

■ For the first movie clip, enter checkout3_mc for the symbol name and checkout3_sp
for the instance name. In the Property inspector’s Parameters tab, set the contentPath
property to checkout3_sub_mc.

■ For the second movie clip, enter checkout3_sub_mc for the symbol name.
2. Drag four instances of the Label component onto the Stage. Name and position the

instances as follows:

■ For the first instance, enter ccName_lbl for the instance name and set the x and y
coordinates to 5, 5. Click the Parameters tab and enter Name On Card for text.

■ For the second instance, enter ccType_lbl for the instance name and set the x and y
coordinates to 5, 35. Click the Parameters tab and enter Card Type for text.

■ For the third instance, enter ccNumber_lbl for the instance name and set the x and y
coordinates to 5, 65. Click the Parameters tab and enter Card Number for text.

■ For the fourth instance, enter ccExp_lbl for the instance name and set the x and y
coordinates to 5, 95. Click the Parameters tab and enter Expiration for text.

3. Drag an instance of the TextInput component onto the Stage and position it to the right
of the ccName_lbl instance. Name the new instance ccName_ti. Set the x and y
coordinates to 105, 5. Set the width to 140.

4. Drag an instance of the ComboBox component onto the Stage and position it to the right
of the ccType_lbl instance. Name the new instance ccType_cb. Set the x and y coordinates
to 105, 35. Set the width to 140.

5. Drag another instance of the TextInput component onto the Stage and position it to the
right of the ccNumber_lbl instance. Name the new instance ccNumber_ti. Set the x and
y coordinates to 105, 65. Set Width to 140.

6. Drag two instances of the ComboBox component onto the Stage. Position one to the right
of the ccExp_lbl instance, and position the other one to the right of that. Name the first
new instance ccMonth_cb. Set Width to 60 and the x and y coordinates to 105, 95. Name
the second ccYear_cb. Set Width to 70 and the x and y coordinates to 175, 95.
Create the checkout screen 43

7. Drag an instance of the Button component onto the Stage and position it at the bottom of
the form, below the ccMonth_cb instance. Name the new instance checkout_button. Set
the x and y coordinates to 125, 135. In the Property inspector’s Parameters tab, set the
label property to Checkout.

8. Follow the instructions in steps 14-15 of the Billing Information instructions (see “Create
the Billing Information pane” on page 40) to add a rectangle to the bottom of the form.

Add an event listener to the Checkout button
Now you will add code to display the Checkout screen when the user clicks the
Checkout button.

■ In the Actions panel for the main page, add the following code:
// When the Checkout button is clicked, go to the "checkout" frame label.
var checkoutBtnListener:Object = new Object();
checkoutBtnListener.click = function(evt:Object) {

evt.target._parent.gotoAndStop("checkout");
};
checkout_button.addEventListener("click", checkoutBtnListener);

This code specifies that, when the user clicks the Checkout button, the playhead moves to the
Checkout label in the Timeline.

Add code for the Checkout screen
Now you’re ready to add code to the Checkout screen of the application, on Frame 10 in the
main Timeline. This code processes the data that users enter in the Billing, Shipping, and
Credit Card Information panes that you created earlier with the Accordion component and
other components.

1. In the Timeline, select Frame 10 in the Actions layer and insert a blank keyframe (select
Insert > Timeline > Blank Keyframe)

2. Open the Actions panel (F9).

3. In the Actions panel, add the following code:
stop();
import mx.containers.*;

// Define the Accordion component on the Stage.
var checkout_acc:Accordion;
44 Creating an Application with Components (Flash Professional Only)

4. Next you will add the first child to the Accordion component instance, to accept billing
information from the user. Add the following code:
// Define the children for the Accordion component.
var child1 = checkout_acc.createChild("checkout1_mc", "child1_mc",

{label:"1. Billing Information"});
var thisChild1 = child1.checkout1_sp.spContentHolder;

The first line calls the createChild() method of the Accordion component and creates
an instance of the checkout1_mc movie clip symbol (which you created earlier) with the
instance name child1_mc and the label “1. Billing Information”. The second line of code
creates a shortcut to an embedded ScrollPane component instance.

5. Create the second child for the Accordion instance, to accept shipping information:
/* Add the second child to the Accordion.
Add an event listener for the sameAsBilling_ch CheckBox.
This copies the form values from the first child into the second child.

*/
var child2 = checkout_acc.createChild("checkout2_mc", "child2_mc",

{label:"2. Shipping Information"});
var thisChild2 = child2.checkout2_sp.spContentHolder;
var checkboxListener:Object = new Object();
checkboxListener.click = function(evt:Object) {

if (evt.target.selected) {
thisChild2.shippingFirstName_ti.text =

thisChild1.billingFirstName_ti.text;
thisChild2.shippingLastName_ti.text =

thisChild1.billingLastName_ti.text;
thisChild2.shippingCountry_ti.text =

thisChild1.billingCountry_ti.text;
thisChild2.shippingProvince_ti.text =

thisChild1.billingProvince_ti.text;
thisChild2.shippingCity_ti.text = thisChild1.billingCity_ti.text;
thisChild2.shippingPostal_ti.text =

thisChild1.billingPostal_ti.text;
}

};
thisChild2.sameAsBilling_ch.addEventListener("click", checkboxListener);

The first two lines of code are similar to the code for creating the Billing Information
child: you create an instance of the checkout2_mc movie clip symbol, with the instance
name child2_mc and the label “2. Shipping Information”. The second line of code creates
a shortcut to an embedded ScrollPane component instance.
Beginning with the third line of code, you add an event listener to the CheckBox instance.
If the user clicks the check box, the shipping information uses the data the user entered in
the Billing Information pane.
Create the checkout screen 45

6. Next, create a third child for the Accordion instance, for credit card information:
// Define the third Accordion child.
var child3 = checkout_acc.createChild("checkout3_mc", "child3_mc",

{label:"3. Credit Card Information"});
var thisChild3 = child3.checkout3_sp.spContentHolder;

7. Add this code to create ComboBox instances for the credit card month, year, and type, and
populate each with a statically defined array:
/* Set the values in the three ComboBox instances on the Stage:
ccMonth_cb, ccYear_cb and ccType_cb */
thisChild3.ccMonth_cb.labels = ["01", "02", "03", "04", "05", "06",

"07", "08", "09", "10", "11", "12"];
thisChild3.ccYear_cb.labels = [2004, 2005, 2006, 2007, 2008, 2009,

2010];
thisChild3.ccType_cb.labels = ["VISA", "MasterCard", "American Express",

"Diners Club"];

8. Finally, add the following code to add event listeners to the Checkout button and the Back
button. When the user clicks the Checkout button, the listener object copies the form fields
from the Billing, Shipping, and Credit Card Information panes into a LoadVars object that
is sent to the server. (The LoadVars class lets you send all the variables in an object to a
specified URL.) When the user clicks the Back button, the application returns to the main
screen.
/* Create a listener for the checkout_button Button instance.
This listener sends all the form variables to the server when the user

clicks the Checkout button. */
var checkoutListener:Object = new Object();
checkoutListener.click = function(evt:Object){

evt.target.enabled = false;
/* Create two LoadVars object instances, which send variables to
and receive results from the remote server. */
var response_lv:LoadVars = new LoadVars();
var checkout_lv:LoadVars = new LoadVars();
checkout_lv.billingFirstName = thisChild1.billingFirstName_ti.text;
checkout_lv.billingLastName = thisChild1.billingLastName_ti.text;
checkout_lv.billingCountry = thisChild1.billingCountry_ti.text;
checkout_lv.billingProvince = thisChild1.billingProvince_ti.text;
checkout_lv.billingCity = thisChild1.billingCity_ti.text;
checkout_lv.billingPostal = thisChild1.billingPostal_ti.text;
checkout_lv.shippingFirstName = thisChild2.shippingFirstName_ti.text;
checkout_lv.shippingLastName = thisChild2.shippingLastName_ti.text;
checkout_lv.shippingCountry = thisChild2.shippingCountry_ti.text;
checkout_lv.shippingProvince = thisChild2.shippingProvince_ti.text;
checkout_lv.shippingCity = thisChild2.shippingCity_ti.text;
checkout_lv.shippingPostal = thisChild2.shippingPostal_ti.text;
checkout_lv.ccName = thisChild3.ccName_ti.text;
checkout_lv.ccType = thisChild3.ccType_cb.selectedItem;
checkout_lv.ccNumber = thisChild3.ccNumber_ti.text;
46 Creating an Application with Components (Flash Professional Only)

checkout_lv.ccMonth = thisChild3.ccMonth_cb.selectedItem;
checkout_lv.ccYear = thisChild3.ccYear_cb.selectedItem;

/* Send the variables from the checkout_lv LoadVars to the remote
script on the server.
Save the results in the response_lv instance. */
checkout_lv.sendAndLoad("http://www.flash-mx.com/mm/firstapp/
cart.cfm", response_lv, "POST");
response_lv.onLoad = function(success:Boolean) {

evt.target.enabled = true;
};

};
thisChild3.checkout_button.addEventListener("click", checkoutListener);
cart_mc._visible = false;
var backListener:Object = new Object();
backListener.click = function(evt:Object) {

evt.target._parent.gotoAndStop("home");
}
back_button.addEventListener("click", backListener);

Test the application
Congratulations! You’ve finished building the application. Now press Control+S to save your
work and then Control+Enter (or select Control >Test Movie) to test the application.

Viewing the completed application
In the event that you have not been able to successfully complete the tutorial, you can view a
working version of the completed application. You can find this starter Flash (FLA) file,
first_app_start.fla, and the finished file, first_app.fla, in the Samples folder on your hard disk:

■ In Windows: boot drive\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\ComponentsApplication.

■ On the Macintosh: Macintosh HD/Applications/Macromedia Flash 8/Samples and
Tutorials/Samples/Components/ComponentsApplication.

To view the FLA file for the application, open the first_app.fla file in the
components_application folder.

You can compare these files to your own to help you find your errors.

All the components used in the application appear in the library (along with graphics files and
other assets used to create the application). Some components appear as instances on the
Stage. Some are referenced in the ActionScript code and do not appear until runtime.
Viewing the completed application 47

48 Creating an Application with Components (Flash Professional Only)

3

CHAPTER 3

Working with Components
In this chapter, you’ll use several Macromedia Flash (FLA) files and ActionScript class files to
learn how to add components to a document and set their properties. This chapter also
explains a few advanced topics such as using code hints, creating custom focus navigation,
managing component depth, and upgrading version 1 components to version 2 of the
Macromedia Component Architecture.

The files used in this chapter are TipCalulator.fla and TipCalculator.swf. The files are
installed in the following locations on your hard disk:

■ (Windows) Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\TipCalculator

■ (Macintosh) Applications/Macromedia Flash 8/Samples and Tutorials/Samples/
Components/TipCalculator

This chapter covers the following topics:
The Components panel . 50

Adding components to Flash documents . 50

Components in the Library panel . 54

Setting component parameters . 55

Sizing components . 56

Deleting components from Flash documents . 57

Using code hints . 58

Creating custom focus navigation . 58

Managing component depth in a document. 59

Components in Live Preview . 60

Using a preloader with components. 60

About loading components . 62

Upgrading version 1 components to version 2 architecture . 62
49

The Components panel
All components in the user-level configuration/Components directory are displayed in the
Components panel. (For more information about this directory, see “Where component files
are stored” on page 14.)

To display the Components panel:

■ Select Window > Components.

To display components that were installed after Flash starts:

1. Select Window > Components.

2. Select Reload from the Components panel pop-up menu.

Adding components to Flash documents
When you drag a component from the Components panel to the Stage, a compiled clip
(SWC) symbol is added to the Library panel. After a SWC symbol is added to the library, you
can drag multiple instances to the Stage. You can also add that component to a document at
runtime by using the UIObject.createClassObject() ActionScript method.

N
O

T
E

The Menu and Alert components are two exceptions, and cannot be instantiated using
UIObject.createClassObject(). They use the show() method instead.

Components panel menu
50 Working with Components

Adding components during authoring
You can add a component to a document by using the Components panel, and then add
additional instances of the component to the document by dragging the component from the
Library panel to the Stage. You can set properties for additional instances in the Parameters
tab of the Property inspector or in the Parameters tab in the Component inspector.

To add a component to a Flash document by using the Components panel:

1. Select Window > Components.

2. Do one of the following:

■ Drag a component from the Components panel to the Stage.
■ Double-click a component in the Components panel.

3. If the component is a FLA file (all installed version 2 components are SWC files) and if you
have edited skins for another instance of the same component, or for a component that
shares skins with the component you are adding, do one of the following:

■ Select Don’t Replace Existing Items to preserve the edited skins and apply the edited
skins to the new component.

■ Select Replace Existing Items to replace all the skins with default skins. The new
component and all previous versions of the component, or of components that share
its skins, will use the default skins.

4. Select the component on the Stage.

5. Select Window > Properties > Properties.

6. In the Property inspector, enter an instance name for the component instance.

7. Click the Parameters tab and specify parameters for the instance.

The following illustration shows the Property inspector for the TextInput component that
is in the TipCalculator.fla sample file (installed at Flash 8/Samples and Tutorials/Samples/
Components/TipCalculator).

For more information, see “Setting component parameters” on page 55.
Adding components to Flash documents 51

8. Change the size of the component as desired by editing the values for the width and height.

For more information on sizing specific component types, see the individual component
entries in Components Language Reference.

9. If you want to change the color and text formatting of a component, do one or more of
the following:

■ Set or change a specific style property value for a component instance by using the
setStyle() method, which is available to all components. For more information, see
UIObject.setStyle() on page 1343.

■ Edit multiple properties in the global style declaration assigned to all version 2
components.

■ Create a custom style declaration for specific component instances.
For more information, see “Using styles to customize component color and text”
on page 82.

10. If you want to customize the appearance of the component, do one of the following:

■ Apply a theme (see “About themes” on page 108).
■ Edit a component’s skins (see “About skinning components” on page 96).

Adding components at runtime with ActionScript
The instructions in this section assume an intermediate or advanced knowledge
of ActionScript.

Use the createClassObject() method (which most components inherit from the UIObject
class) to add components to a Flash application dynamically. For example, you could add
components that create a page layout based on user-set preferences (as on the home page of a
web portal).

Version 2 components that are installed with Flash reside in package directories. (For more
information, see “About packages” in Learning ActionScript 2.0 in Flash. If you add a
component to the Stage during authoring, you can refer to the component simply by using its
instance name (for example, myButton). However, if you add a component to an application
with ActionScript (at runtime), you must either specify its fully qualified class name (for
example, mx.controls.Button) or import the package by using the import statement.

For example, to write ActionScript code that refers to an Alert component, you can use the
import statement to reference the class, as follows:
import mx.controls.Alert;
Alert.show("The connection has failed", "Error");
52 Working with Components

Alternatively, you can use the full package path, as follows:
mx.controls.Alert.show("The connection has failed", "Error");

For more information, see “About importing class files” in Learning ActionScript 2.0 in Flash.

You can use ActionScript methods to set additional parameters for dynamically added
components. For more information, see Components Language Reference.

To add a component to your Flash document using ActionScript:

1. Drag a component from the Components panel into the library for the current document.

2. Select the frame in the Timeline where you want to add the component.

3. Open the Actions panel if it isn’t already open.

4. Call createClassObject() to create the component instance at runtime.

This method can be called on its own, or from any component instance. The
createClassObject() method takes the following parameters: a component class name,
an instance name for the new instance, a depth, and an optional initialization object that
you can use to set properties at runtime.
You can specify the class package in the class name parameter, as in the following example:
createClassObject(mx.controls.CheckBox, "cb", 5, {label:"Check Me"});

Alternatively, you can import the class package, as in the following example:
import mx.controls.CheckBox;
createClassObject(CheckBox, "cb", 5, {label:"Check Me"});

For more information, see UIObject.createClassObject() on page 1323 and Chapter 4,
“Handling Component Events,” on page 63.

N
O

T
E

To add a component to a document at runtime, it must be in the library when the SWF
file is compiled. To add a component to the library, drag the component icon from the
Components panel to the library. Furthermore, if you are loading a movie clip containing
a dynamically instantiated (using ActionScript) component into another movie clip, the
parent movie clip must have the component in the library when the SWF file is compiled.

N
O

T
E

Components are set to Export in First Frame by default (right-click for Windows, or
control-click for Macintosh, and select the Linkage menu option to see the Export in
First Frame setting). If you want to use a preloader for an application containing
components, you need to change the export frame, see “Using a preloader with
components” on page 60 for instructions.
Adding components to Flash documents 53

Components in the Library panel
When you add a component to a document, it is displayed as a compiled clip (SWC file)
symbol in the Library panel.

A ComboBox component in the Library panel

You can add more instances of a component by dragging the component icon from the library
to the Stage.

For more information about compiled clips, see “About compiled clips and SWC files”
on page 19.
54 Working with Components

Setting component parameters
Each component has parameters that you can set to change its appearance and behavior. A
parameter is a property that appears in the Property inspector and Component inspector. The
most commonly used properties appear as authoring parameters; others must be set with
ActionScript. All parameters that can be set during authoring can also be set with
ActionScript. Setting a parameter with ActionScript overrides any value set during authoring.

All version 2 User Interface (UI) components inherit properties and methods from the
UIObject and UIComponent classes; these are the properties and methods that all
components use, such as UIObject.setSize(), UIObject.setStyle(), UIObject.x, and
UIObject.y. Each component also has unique properties and methods, some of which are
available as authoring parameters. For example, the ProgressBar component has a
percentComplete property (ProgressBar.percentComplete), and the NumericStepper
component has nextValue and previousValue properties (NumericStepper.nextValue,
NumericStepper.previousValue).

You can set parameters for a component instance using the Component inspector or the
Property inspector (it doesn’t matter which panel you use).

To enter an instance name for a component in the Property inspector:

1. Select Window > Properties > Properties.

2. Select an instance of a component on the Stage.

3. Enter an instance name in the text box under the word Component.

It’s a good idea to add a suffix to the instance name that indicates what kind of component
it is; this makes it easier to read your ActionScript code. In this example, the instance
name is states_cb because the component is a combo box that lists the U.S. states.
Setting component parameters 55

To enter parameters for a component instance in the Component inspector:

1. Select Window > Component Inspector.

2. Select an instance of a component on the Stage.

3. To enter parameters, click the Parameters tab.

4. To enter or view bindings or schemas for a component, click their respective tabs. For more
information, see “Data Integration (Flash Professional Only)” in Using Flash.

Sizing components
Use the Free Transform tool or the setSize() method to resize component instances.

Resizing the Menu component on the Stage with the Free Transform tool
56 Working with Components

You can call the setSize() method from any component instance (see UIObject.setSize()
on page 1341) to resize it. The following code resizes the TextArea component to 200 pixels
wide and 300 pixels high:
myTextArea.setSize(200, 300);

A component does not resize automatically to fit its label. If a component instance that has
been added to a document is not large enough to display its label, the label text is clipped. You
must resize the component to fit its label.

A clipped label for the CheckBox component

For more information about sizing components, see their individual entries in the Components
Language Reference.

Deleting components from
Flash documents
To delete a component’s instances from a Flash document, you must delete the component
from the library by deleting the compiled clip icon. It isn’t enough to delete the component
from the Stage.

To delete a component from a document:

1. In the Library panel, select the compiled clip (SWC) symbol.

2. Click the Delete button at the bottom of the Library panel, or select Delete from the
Library options menu.

3. In the Delete dialog box, click Delete to confirm the deletion.

N
O

T
E

If you use the ActionScript _width and _height properties to adjust the width and height
of a component, the component is resized but the layout of the content in the
component remains the same. This might cause the component to be distorted in
movie playback.
Deleting components from Flash documents 57

Using code hints
When you are using ActionScript 2.0, you can use strict typing for a variable that is based on
a built-in class, including component classes. If you do so, the ActionScript editor displays
code hints for the variable. For example, suppose you type the following:
import mx.controls.CheckBox;
var myCheckBox:CheckBox;
myCheckBox.

As soon as you type the period after myCheckBox, Flash displays a list of methods and
properties available for CheckBox components, because you have designated the variable as
type CheckBox. For more information, see “About assigning data types and strict data typing”
and “Using code hints” in Learning ActionScript 2.0 in Flash.

Creating custom focus navigation
When a user presses the Tab key to navigate in a Flash application or clicks in an application,
the FocusManager class determines which component receives input focus (for more
information see FocusManager class in the Components Language Reference). You don’t need
to add a FocusManager instance to an application or write any code to activate the
Focus Manager.

If a RadioButton object receives focus, the Focus Manager examines that object and all objects
with the same groupName value and sets focus on the object with the selected property set
to true.

Each modal Window component contains an instance of the Focus Manager, so the controls
on that window become their own tab set. This prevents a user from inadvertently navigating
to components in other windows by pressing the Tab key.

To create focus navigation in an application, set the tabIndex property on any components
(including buttons) that should receive focus. When a user presses the Tab key, the
FocusManager class looks for an enabled object whose tabIndex value is greater than the
current value of tabIndex. After the FocusManager class reaches the highest tabIndex
property, it returns to 0. For example, in the following code, the comment object (probably a
TextArea component) receives focus first, and then the okButton instance receives focus:
var comment:mx.controls.TextArea;
var okButton:mx.controls.Button;
comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.
58 Working with Components

If nothing on the Stage has a tab index value, the Focus Manager uses the depth levels (z-
order). The depth levels are set up primarily by the order in which components are dragged to
the Stage; however, you can also use the Modify > Arrange > Bring to Front/Send to Back
commands to determine the final z-order.

To give focus to a component in an application, call focusManager.setFocus().

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance of the
desired button, as in the following code:
focusManager.defaultPushButton = okButton;

The FocusManager class (API) overrides the default Flash Player focus rectangle and draws a
custom focus rectangle with rounded corners.

For more information about creating a focus scheme in a Flash application, see FocusManager
class in the Components Language Reference.

Managing component depth in a
document
If you want to position a component in front of or behind another object in an application,
you must use the DepthManager class in the Components Language Reference. The methods of
the DepthManager class allows you to place user interface components in an appropriate
relative order (for example, a combo box drops down in front of other components, insertion
points appear in front of everything, dialog boxes float over content, and so on).

The Depth Manager has two main purposes: to manage the relative depth assignments within
any document, and to manage reserved depths on the root timeline for system-level services
such as the cursor and tooltips.

To use the Depth Manager, call its methods.

The following code places the component instance loader at a lower depth than the button
component (and in the published SWF file it will appear “below” the button, if they overlap):
loader.setDepthBelow(button);

N
O

T
E

You can also manage relative depths using Layers and the Modify > Arrange menu
options within your document. Components adhere to the same rules for runtime depth
management using layers and arrangement as do movie clips.
Managing component depth in a document 59

Components in Live Preview
The Live Preview feature, enabled by default, lets you view components on the Stage as they
will appear in the published Flash content; the components appear at their approximate size.
The live preview reflects different parameters for different components. For information
about which component parameters are reflected in the live preview, see each component
entry in the Components Language Reference.

A Button component with Live Preview enabled

A Button component with Live Preview disabled

Components in Live Preview are not functional. To test component functionality, you can use
the Control > Test Movie command.

To turn Live Preview on or off:

■ Select Control > Enable Live Preview. A check mark next to the option indicates that it
is enabled.

Using a preloader with components
Preloading involves loading some of the data for a SWF file before the user starts interacting
with it. By default, components and classes are set to export in the first frame of the document
that contains components. Because the components and classes are the first data to load, you
might have problems implementing a progress bar or loading animation. Specifically, the
components and classes might load before the progress bar, but you want the progress bar to
reflect the loading progress of all data (including classes). Therefore, you should load the
classes after other parts of the SWF file, but before you use components.

To do this, when you create a custom preloader for an application containing components, set
the file’s publish settings to export all the classes to the frame containing your components. To
see a list of all the components in the Halo and Sample themes that have their assets set to
Export in First Frame, see “Changing export settings” on page 116.
60 Working with Components

To change the export frame for all your classes:

1. Select File > Publish Settings.

2. In the Flash tab of the Publish Settings dialog box, make sure the ActionScript version is
set to ActionScript 2.0.

3. Click the Settings button to the right of the ActionScript version.

4. In ActionScript 2.0 Settings, change the number for the Export Frame for Classes text box
to the frame where your components first appear.

You cannot use any classes until the playhead reaches the frame you choose to load them into.
Because components require classes for their functionality, you must load components after
the frame specified for loading classes. If you export your classes to Frame 3, you cannot use
anything from those classes until the playhead reaches Frame 3 and loads the data.

If you want to preload a file that uses components, you must also preload the components in
the SWF file. To accomplish this, you must set your components to export for a different
frame in the SWF file.

To change the frame into which components are exported:

1. Select Window > Library to open the Library panel.

2. Right-click (Windows) or Control-click (Macintosh) the component in the library.

3. Select Linkage from the context menu.

4. Deselect Export in First Frame.

5. Click OK.

6. Select File > Publish Settings.

7. Select the Flash tab and click the Settings button.

8. Enter a number into the Export Frame for Classes text box and click OK. The classes will
load into this frame.

9. Click OK to close the Publish Settings dialog box.

If components do not load on the first frame, you can create a custom progress bar for the first
frame of the SWF file. Do not reference any components in your ActionScript or include any
components on the Stage until you load the classes for the frame you specified in Step 7.

N
O

T
E

Components must be exported after the ActionScript classes that they use.
Using a preloader with components 61

About loading components
If you load version 2 components into a SWF file or into the Loader component, the
components may not work correctly. These components include the following: Alert,
ComboBox, DateField, Menu, MenuBar, and Window.

Use the _lockroot property when calling loadMovie() or loading into the Loader
component. If you’re using the Loader component, add the following code:
myLoaderComponent.content._lockroot = true;

If you’re using a movie clip with a call to loadMovie(), add the following code:
myMovieClip._lockroot = true;

If you don’t set _lockroot to true in the loader movie clip, the loader only has access to its
own library, but not the library in the loaded movie clip.

The _lockroot property is supported by Flash Player 7. For information about this property,
see _lockroot (MovieClip._lockroot property) in the ActionScript 2.0 Language Reference.

Upgrading version 1 components to
version 2 architecture
The version 2 components were written to comply with several web standards (regarding
events [www.w3.org/TR/DOM-Level-3-Events/events.html], styles, getter/setter policies, and
so on) and are very different from their version 1 counterparts that were released with
Macromedia Flash MX and in the DRKs that were released before Macromedia Flash MX
2004. Version 2 components have different APIs and were written in ActionScript 2.0.
Therefore, using version 1 and version 2 components together in an application can cause
unpredictable behavior. For information about upgrading version 1 components to use
version 2 event handling, styles, and getter/setter access to the properties instead of methods,
see Chapter 6, “Creating Components,” on page 125.

Flash applications that contain version 1 components work properly in Flash Player 6 and
Flash Player 7, when published for Flash Player 6 or Flash Player 6 (6.0.65.0). If you want to
update your applications to work when published for Flash Player 7, you must convert your
code to use strict data typing. For more information, see “Writing custom class files” in
Learning ActionScript 2.0 in Flash.
62 Working with Components

http://www.w3.org/TR/DOM-Level-3-Events/events.html

4

CHAPTER 4

Handling Component Events
Every component has events that are broadcast when a user interacts with it (for example, the
click and change events) or when something significant happens to the component (for
example, the load event). To handle an event, you write ActionScript code that executes when
the event occurs.

Each component broadcasts its own set of events. This set includes the events of any class
from which the component inherits. This means that all components, except the media
components, inherit events from the UIObject and UIComponent classes, because they are
the base classes of the version 2 architecture. To see the list of events a component broadcasts,
see the component’s entry and its ancestor classes’ entries in the Components Language
Reference.

This chapter uses several versions of a simple Macromedia Flash application, TipCalculator,
to teach you how to handle component events. The FLA and SWF files are installed with
Flash to:

■ In Windows: the C:\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\TipCalculator folder.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Samples and Tutorials/
Samples/Components/TipCalculator folder.

This chapter contains the following sections:
Using listeners to handle events . 64

Delegating events. 73

About the event object . 77

Using the on() event handler . 78
63

Using listeners to handle events
The version 2 component architecture has a broadcaster/listener event model. (A broadcaster is
sometimes also referred to as a dispatcher.) It is important to understand the following key
points about the model:

■ All events are broadcast by an instance of a component class. (The component instance is
the broadcaster.)

■ A listener can be a function or an object. If the listener is an object, it must have a callback
function defined on it. The listener handles the event; this means the callback function is
executed when the event occurs.

■ To register a listener to a broadcaster, call the addEventListener() method from the
broadcaster. Use the following syntax:
componentInstance.addEventListener("eventName",

listenerObjectORFunction);

■ You can register multiple listeners to one component instance.
myButton.addEventListener("click", listener1);
myButton.addEventListener("click", listener2);

■ You can register one listener to multiple component instances.
myButton.addEventListener("click", listener1);
myButton2.addEventListener("click", listener1);

■ The handler function is passed an event object.
You can use the event object in the body of the function to retrieve information about the
event type, and the instance that broadcast the event. See “About the event object”
on page 77.

■ A listener object remains active until explicitly removed using
EventDispatcher.removeEventListener(). For example:
myComponent.removeEventListener(“change”, ListenerObj);
64 Handling Component Events

Using listener objects
To use a listener object, you can either use the this keyword to specify the current object as
the listener, use an object that already exists in your application, or create a new object.

■ Use this in most situations.
It’s often easiest to use the current object (this) as a listener, because its scope contains the
components that need to react when the event is broadcast.

■ Use an existing object if it is convenient.
For example, in a Flash Form Application, you may want to use a form as a listener object
if that form contains the components that react to the event. Place the code on a frame of
the form’s timeline.

■ Use a new listener object if many components are broadcasting an event (for example, the
click event) and you want only certain listener objects to respond.

If you use the this object, define a function with the same name as the event you want to
handle; the syntax is as follows:
function eventName(evtObj:Object){

// your code here
};

If you want to use a new listener object, you must create the object, define a property with the
same name as the events, and assign the property to a callback function that executes when the
event is broadcast, as follows:
var listenerObject:Object = new Object();
listenerObject.eventName = function(evtObj:Object){

// your code here
};

If you want to use an existing object, use the same syntax as a new listener object, without
creating the new object, as shown here:
existingObject.eventName = function(evtObj:Object){

// your code here
};

T
IP The evtObj parameter is an object that is automatically generated when an event is

triggered and passed to the callback function. The event object has properties that
contain information about the event. For details, see “About the event object”
on page 77.
Using listeners to handle events 65

Finally, you call the addEventListener() method from the component instance that
broadcasts the event. The addEventListener() method takes two parameters: a string
indicating the name of the event and a reference to the listener object.
componentInstance.addEventListener("eventName", listenerObject);

Here is the whole code segment, which you can copy and paste. Be sure to replace any code in
italics with actual values; you can use listenerObject and evtObj or any other legal
identifiers, but you must change eventName to the name of the event.
var listenerObject:Object = new Object();
listenerObject.eventName = function(evtObj:Object){

// code placed here executes
// when the event is triggered

};
componentInstance.addEventListener("eventName", listenerObject);

The following code segment uses the this keyword as the listener object:
function eventName(evtObj:Object){

// code placed here executes
// when the event is triggered

}
componentInstance.addEventListener("eventName", this);

You can call addEventListener() from any component instance; it is mixed in to every
component from the EventDispatcher class. (A “mix-in” is a class that provides specific
features that augment the behavior of another class.) For more information, see
“EventDispatcher.addEventListener()” in the Components Language Reference.

For information about the events a component broadcasts, see the component’s entry in the
Components Language Reference. For example, Button component events are listed in the
Button component section (or Help > Components Language Reference > Button
component > Button class > Event summary for the Button class).

To register a listener object in a Flash (FLA) file:

1. In Flash, select File > New and create a new Flash document.

2. Drag a Button component to the Stage from the Components panel.

3. In the Property inspector, enter the instance name myButton.

4. Drag a TextInput component to the Stage from the Components panel.

5. In the Property inspector, enter the instance name myText.

6. Select Frame 1 in the Timeline.

7. Select Window > Actions.
66 Handling Component Events

8. In the Actions panel, enter the following code:
var myButton:mx.controls.Button;
var myText:mx.controls.TextInput;

function click(evt){
myText.text = evt.target;

}

myButton.addEventListener("click", this);

The target property of the event object, evt, is a reference to the instance broadcasting
the event. This code displays the value of the target property in the TextInput
component.

To register a listener object in a class (AS) file:

1. Open the file TipCalculator.fla from the location specified in “Working with
Components” on page 49.

2. Open the file TipCalculator.as from the location specified in “Working with Components”
on page 49.

3. In the FLA file, select form1 and view the class name, TipCalculator, in the
Property inspector.

This is the link between the form and the class file. All the code for this application is in
the TipCalculator.as file. The form assumes the properties and behaviors defined by the
class assigned to it.

4. In the AS file, scroll to line 25, public function onLoad():Void.

The onLoad() function executes when the form loads into Flash Player. In the body of the
function, the subtotal TextInput instance and the three RadioButton instances,
percentRadio15, percentRadio18, and percentRadio20, call the
addEventListener() method to register a listener with an event.

5. Look at line 27, subtotal.addEventListener("change", this).

When you call addEventListener(), you must pass it two parameters. The first is a
string indicating the name of the event that is broadcast—in this case, "change". The
second is a reference to either an object or a function that handles the event. In this case,
the parameter is the keyword this, which refers to an instance of the class file (an object).
Flash then looks on the object for a function with the name of the event.

6. Look at line 63, public function change(event:Object):Void.

This is the function that executes when the subtotal TextInput instance changes.
7. Select TipCalculator.fla and select Control > Test Movie to test the file.
Using listeners to handle events 67

Using the handleEvent callback function
You can also use listener objects that support a handleEvent function. Regardless of the name
of the event that is broadcast, the listener object’s handleEvent method is called. You must
use an if..else or a switch statement to handle multiple events. For example, the following
code uses an if..else statement to handle the click and change events:
// define the handleEvent function
// pass it evt as the event object parameter

function handleEvent(evt){
// check if the event was a click
if (evt.type == "click"){

// do something if the event was click
} else if (evt.type == "change"){

// do something else if the event was change
}

};

// register the listener object to
// two different component instances
// because the function is defined on
// "this" object, the listener is this.

instance.addEventListener("click", this);
instance2.addEventListener("change", this);
68 Handling Component Events

Using listener functions
Unlike the handleEvent syntax, several listener functions can handle different events. So
instead of having the if and else if checks in myHandler, you can just define
myChangeHandler for the change event and myScrollHandler for the scroll event and
register them, as shown here:
myList.addEventListener("change", myChangeHandler);
myList.addEventListener("scroll", myScrollHandler);

To use a listener function, you must first define a function:
function myFunction:Function(evtObj:Object){

// your code here
}

Then you call the addEventListener() method from the component instance that
broadcasts the event. The addEventListener() method takes two parameters: a string
indicating the name of the event and a reference to the function.
componentInstance.addEventListener("eventName", myFunction);

You can call addEventListener() from any component instance; it is included in every UI
component from the EventDispatcher class. For more information, see
EventDispatcher.addEventListener().

For information about the events a component broadcasts, see each component’s entry in the
Components Language Reference.

T
IP The evtObj parameter is an object that is automatically generated when an event is

triggered and passed to the function. The event object has properties that contain
information about the event. For details, see “About the event object” on page 77.
Using listeners to handle events 69

To register a listener object in a Flash (FLA) file:

1. In Flash, select File > New and create a new Flash document.

2. Drag a List component to the Stage from the Components panel.

3. In the Property inspector, enter the instance name myList.

4. Select Frame 1 in the Timeline.

5. Select Window > Actions.

6. In the Actions panel, enter the following code:
// declare variables
var myList:mx.controls.List;
var myHandler:Function;

// add items to the list
myList.addItem("Bird");
myList.addItem("Dog");
myList.addItem("Fish");
myList.addItem("Cat");
myList.addItem("Ape");
myList.addItem("Monkey");

// define myHandler function
function myHandler(eventObj:Object){

// use the eventObj parameter
// to capture the event type
if (eventObj.type == "change"){

trace("The list changed");
} else if (eventObj.type == "scroll"){

trace("The list was scrolled");
}

}

// Register the myHandler function with myList.
// When an item is selected (triggers the change event) or the
// list is scrolled, myHandler executes.
myList.addEventListener("change", myHandler);
myList.addEventListener("scroll", myHandler);

N
O

T
E

The type property of the event object, evt, is a reference to the event name.
70 Handling Component Events

7. Select Control > Test Movie; then select an item in the list and scroll the list to see the
results in the Output panel.

About scope in listeners
Scope refers to the object within which a function executes. Any variable references within that
function are recognized as properties of that object. You can use the Delegate class to specify
the scope of a listener. For more information, see “Delegating events” on page 73.

As discussed earlier, you register a listener with a component instance by calling
addEventListener(). This method takes two parameters: a string indicating the name of the
event, and a reference to either an object or a function. The following table lists the scope of
each parameter type:

If you pass addEventListener() an object, the callback function assigned to that object (or
the function defined on that object) is invoked in the scope of the object. This means that the
keyword this, when used inside the callback function, refers to the listener object, as follows:
var lo:Object = new Object();
lo.click = function(evt){

// this refers to the object lo
trace(this);

}
myButton.addEventListener("click", lo);

However, if you pass addEventListener() a function, the function is invoked in the scope of
the component instance that calls addEventListener(). This means that the keyword this,
when used inside the function, refers to the broadcasting component instance. This causes a
problem if you’re defining the function in a class file. You cannot access the properties and
methods of the class file with the expected paths because this doesn’t point to an instance of
the class. To work around this problem, use the Delegate class to delegate a function to the
correct scope. See “Delegating events” on page 73.

C
A

U
T

IO
N

In a listener function, the keyword this refers to the component instance that calls
addEventListener(), not to the timeline or the class where the function is defined.
However, you can use the Delegate class to delegate the listener function to a
different scope. See “Delegating events” on page 73. To see an example of function
scoping, see the next section.

Listener type Scope

Object Listener object.

Function Component instance broadcasting the event.
Using listeners to handle events 71

The following code illustrates the scoping of a function when passed to addEventListener()
in a class file. To use this code, copy it into an ActionScript (AS) file named Cart.as. Create a
Flash (FLA) file with a Button component, myButton, and a DataGrid component, myGrid.
Select both components on the Stage and press F8 to convert them into a new symbol named
Cart. In the Linkage properties for the Cart symbol, assign it the class Cart.
class Cart extends MovieClip {

var myButton:mx.controls.Button;
var myGrid:mx.controls.DataGrid;

function myHandler(eventObj:Object){

// Use the eventObj parameter
// to capture the event type.

if (eventObj.type == "click"){

/* Send the value of this to the Output panel.
Because myHandler is a function that is not defined
on a listener object, this is a reference to the
component instance to which myHandler is registered
(myButton). Also, since this doesn't reference an
instance of the Cart class, myGrid is undefined.
*/

trace("this: " + this);
trace("myGrid: " + myGrid);

}
}

// register the myHandler function with myButton
// when the button is clicked, myHandler executes

function onLoad():Void{
myButton.addEventListener("click", myHandler);

}
}

72 Handling Component Events

Delegating events
You can import the Delegate class into your scripts or classes to delegate events to specific
scopes and functions (see “Delegate class” in the Components Language Reference). To import
the Delegate class, use the following syntax:
import mx.utils.Delegate;
compInstance.addEventListener("eventName", Delegate.create(scopeObject,

function));

The scopeObject parameter specifies the scope in which the specified function parameter
is called.

There are two common uses for calling Delegate.create():

■ To dispatch the same event to two different functions.
See the next section.

■ To call functions within the scope of the containing class.
When you pass a function as a parameter to addEventListener(), the function is
invoked in the scope of the broadcaster component instance, not the object in which it is
declared. See “Delegating the scope of a function” on page 76.

Delegating events to functions
Calling Delegate.create() is useful if you have two components that broadcast events of
the same name. For example, if you have a check box and a button, you would have to use the
switch statement on the information you get from the eventObject.target property in
order to determine which component is broadcasting the click event.
Delegating events 73

To use the following code, place a check box named myCheckBox_chb and a button named
myButton_btn on the Stage. Select both instances and press F8 to create a new symbol. Click
Advanced if the dialog box is in basic mode, and select Export for ActionScript. Enter Cart in
the AS 2.0 Class text box. In the Property inspector, set the instance name for the new symbol
to anything you want. The symbol is now associated with the Cart class and an instance of the
symbol becomes an instance of this class.
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;
var myButton_btn:Button;

function onLoad() {
myCheckBox_chb.addEventListener("click", this);
myButton_btn.addEventListener("click", this);

}

function click(eventObj:Object) {
switch(eventObj.target) {

case myButton_btn:
// sends the broadcaster instance name
// and the event type to the Output panel
trace(eventObj.target + ": " + eventObj.type);
break;

case myCheckBox_chb:
trace(eventObj.target + ": " + eventObj.type);
break;

}
}

}

74 Handling Component Events

The following code is the same class file (Cart.as) modified to use Delegate:
import mx.utils.Delegate;
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;
var myButton_btn:Button;

function onLoad() {
myCheckBox_chb.addEventListener("click", Delegate.create(this,

chb_onClick));
myButton_btn.addEventListener("click", Delegate.create(this,

btn_onClick));
}

// two separate functions handle the events

function chb_onClick(eventObj:Object) {
// sends the broadcaster instance name
// and the event type to the Output panel
trace(eventObj.target + ": " + eventObj.type);
// sends the absolute path of the symbol
// that you associated with the Cart class
// in the FLA file to the Output panel
trace(this)

}

function btn_onClick(eventObj:Object) {
trace(eventObj.target + ": " + eventObj.type);

}
}

Delegating events 75

Delegating the scope of a function
The addEventListener() method requires two parameters: the name of an event and a
reference to a listener. The listener can either be an object or a function. If you pass an object,
the callback function assigned to the object is invoked in the scope of the object. However, if
you pass a function, the function is invoked in the scope of the component instance that calls
addEventListener(). (For more information, see “About scope in listeners” on page 71.)

Because the function is invoked in the scope of the broadcaster instance, the keyword this in
the body of the function points to the broadcaster instance, not to the class that contains the
function. Therefore, you cannot access the properties and methods of the class that contains
the function. Use the Delegate class to delegate the scope of a function to the containing class
so that you can access the properties and methods of the containing class.

The following example uses the same approach as the previous section with a variation of the
Cart.as class file:
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {

var myCheckBox_chb:CheckBox;
var myButton_btn:Button;

// define a variable to access
// from the chb_onClick function
var i:Number = 10

function onLoad() {
myCheckBox_chb.addEventListener("click", chb_onClick);

}

function chb_onClick(eventObj:Object) {
// You would expect to be able to access
// the i variable and output 10.
// However, this sends undefined
// to the Output panel because
// the function isn't scoped to
// the Cart instance where i is defined.
trace(i);

}
}

76 Handling Component Events

To access the properties and methods of the Cart class, call Delegate.create() as the second
parameter of addEventListener(), as follows:
import mx.utils.Delegate;
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;
var myButton_btn:Button;
// define a variable to access
// from the chb_onClick function
var i:Number = 10

function onLoad() {
myCheckBox_chb.addEventListener("click", Delegate.create(this,

chb_onClick));
}

function chb_onClick(eventObj:Object) {
// Sends 10 to the Output panel
// because the function is scoped to
// the Cart instance
trace(i);

}
}

About the event object
The event object is an instance of the ActionScript Object class; it has the following properties
that contain information about an event.

When an event has additional properties, they are listed in the event’s entry in the
Components Dictionary.

The event object is automatically generated when an event is triggered and passed to the
listener object’s callback function or the listener function.

Property Description

type A string indicating the name of the event.

target A reference to the component instance broadcasting the event.
About the event object 77

You can use the event object inside the function to access the name of the event that was
broadcast, or the instance name of the component that broadcast the event. From the instance
name, you can access other component properties. For example, the following code uses the
target property of the evtObj event object to access the label property of the myButton
instance and sends the value to the Output panel:
var myButton:mx.controls.Button;
var listener:Object;

listener = new Object();

listener.click = function(evtObj){
 trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);

Using the on() event handler
You can assign the on() event handler to a component instance, just as you would assign a
handler to a button or movie clip. An on() event handler can be useful for simple testing, but
for all applications, use event listeners, instead. For more information, see “Using listeners to
handle events” on page 64.

When you use the keyword this within an on() handler attached directly to a component
(assigned to the component instance in the Actions panel), this refers to the component
instance. For example, the following code, attached directly to the Button component
instance myButton, displays “_level0.myButton” in the Output panel:
on(click){

trace(this);
}

78 Handling Component Events

To use the on() event handler:

1. Drag a User Interface component to the Stage.

For example, drag a Button component to the Sage.
2. On the Stage, select the component and open the Actions panel.

3. Add the on() handler to the Actions panel in the format:
on(event){

//your statements go here
}

For example:
on(click){

trace(this);
}

Flash runs the code inside the on() handler when the event for the on() handler occurs
(in this case, a button click).

4. Select Control > Test Movie and click the button to see the output.
Using the on() event handler 79

80 Handling Component Events

5

CHAPTER 5

Customizing Components
You might want to change the appearance of components as you use them in different
applications. You can customize component appearance using the following three approaches,
individually or in combination:

Styles User interface (UI) components have style properties that set the appearance of some
aspects of a component. Each component has its own set of modifiable style properties, and
not all visual aspects of a component can be changed by setting a style. For more information,
see “Using styles to customize component color and text” on page 82.

Skins A skin comprises the collection of symbols that make up the graphical display of a
component. Skinning is the process of changing the appearance of a component by modifying
or replacing its source graphics. A skin can be a small piece, like a border’s edge or corner, or a
composite piece like the entire picture of a button in its up state (the state in which it hasn’t
been pressed). A skin can also be a symbol without a graphic, which contains code that draws
a piece of the component. Some aspects of a component that cannot be set through its style
properties can be set by modifying the skin. For more information, see “About skinning
components” on page 96.

Themes A theme is a collection of both styles and skins that you can save as a FLA file and
apply to another document. For more information, see “About themes” on page 108.

This chapter contains the following sections:
Using styles to customize component color and text . 82

About skinning components . 96

About themes . 108

Combining skinning and styles to customize a component .118
81

Using styles to customize component
color and text
Flash provides style properties that you can edit for every UI component. Within the
documentation for each specific component, you’ll see a table that lists the modifiable styles
for that component (for example, you can see a table of styles for the Accordion component in
“Using styles with the Accordion component” in the Components Language Reference).
Additionally, UI components inherit the setStyle() and getStyle() methods from the
UIObject class (see UIObject.setStyle() and UIObject.getStyle()). For a component
instance, you can use the setStyle() and getStyle() methods to set and get style property
values, as shown later in “Setting styles on a component instance” on page 84.

Using style declarations and themes
In a broader scope, styles are organized within style declarations where you can control style
property values across multiple component instances. A style declaration is an object created
by the CSSStyleDeclaration class, and its properties are the style settings you can assign to
components. Style declarations in ActionScript are modeled after the way “cascading style
sheets” (CSS) affect HTML pages. For HTML pages, you can create a style sheet file that
defines style properties for the content in a group of HTML pages. With components, you
can create a style declaration object and add style properties to that style declaration object to
control the appearance of components in a Flash document.

Furthermore, style declarations are organized within themes. Flash provides two visual themes
for components: Halo (HaloTheme.fla) and Sample (SampleTheme.fla). A theme is a set of
styles and graphics that controls the appearance of components in a document. Each theme
provides styles to the components. The styles used by each component depend in part on
what theme the document uses. Some styles, such as defaultIcon, are used by the associated
components regardless of the theme applied to the document. Other styles, such as
themeColor and symbolBackgroundColor, are used only by components if the
corresponding theme is in use. For example, themeColor is used only if the Halo theme is in
use, and symbolBackgroundColor is used only if the Sample theme is in use. To determine
what style properties you can set for a component, you must know which theme is assigned to
that component. The style tables for each component in Components Language Reference
indicate whether each style property applies to one or both of the supplied themes. (For more
information, see “About themes” on page 108.)

N
O

T
E

You cannot set styles for the media components.
82 Customizing Components

Understanding style settings
As you use styles and style declarations, you’ll notice that you can set styles in various ways (at
the global, theme, class, style declaration, or style property levels). And, some style properties
may be inherited from a parent component (for example, an Accordion child panel may
inherit a font treatment from the Accordion component). Here are a few key points about
style behavior:

Theme dependence The style properties you can set on a particular component are
determined by the current theme. By default, Flash components are designed to use the Halo
theme, but Flash also provides a Sample theme. So, when you read a style properties table, like
the one for the Button component in “Using styles with the Button component” in the
Components Language Reference, notice which theme supports the style you want. The table
indicates Halo, Sample, or Both (meaning both themes support the style property). To change
the current theme, see “Switching themes” on page 108.

Inheritance You cannot set inheritance within ActionScript. A component child is designed
either to inherit a style from the parent component, or not.

Global style sheets Style declarations in Flash don’t support “cascading” for Flash
documents the way CSS does for HTML documents. All style sheet declaration objects are
defined at the application (global) level.

Precedence If a component style is set in more than one way (for example, if textColor is
set at the global level and at the component instance level), Flash uses the first style it
encounters according to the order listed in “Using global, custom, and class styles in the
same document” on page 92.

Setting styles
The existence of style properties, their organization within style declarations, and the broader
organization of style declarations and graphics into themes enables you to customize a
component in the following ways:

■ Set styles on a component instance.
You can change color and text properties of a single component instance. This is effective
in some situations, but it can be time consuming if you need to set individual properties
on all the components in a document.
For more information, see “Setting styles on a component instance” on page 84.

■ Adjust the global style declaration that sets styles for all components in a document.
If you want to apply a consistent look to an entire document, you can create styles on the
global style declaration.
For more information, see “Setting global styles” on page 86.
Using styles to customize component color and text 83

■ Create custom style declarations and apply them to several component instances.
You may want to have groups of components in a document share a style. To do this, you
can create custom style declarations to apply to the components you specify.
For more information, see “Setting custom styles for groups of components” on page 87.

■ Create default class style declarations.
You can define a default class style declaration so that every instance of a class shares a
default appearance.
For more information, see “Setting styles for a component class” on page 89.

■ Use inheriting styles to set styles for components in a portion of a document.
The values of style properties set on containers are inherited by contained components.
For more information, see “Setting inheriting styles on a container” on page 90.

Flash does not display changes made to style properties when you view components on the
Stage using the Live Preview feature. For more information, see “Components in Live
Preview” on page 60.

Setting styles on a component instance
You can write ActionScript code to set and get style properties on any component instance.
The UIObject.setStyle() and UIObject.getStyle() methods can be called directly from
any UI component. The following syntax specifies a property and value for a component
instance:
instanceName.setStyle("propertyName", value);

For example, the following code sets the accent colors on a Button instance called myButton
that uses the Halo theme:
myButton.setStyle("themeColor", "haloBlue");

N
O

T
E

If the value is a string, it must be enclosed in quotation marks.
84 Customizing Components

You can also access the styles directly as properties (for example, myButton.color =
0xFF00FF).

Style properties set on a component instance through setStyle() have the highest priority
and override all other style settings based on style declaration or theme. However, the more
properties you set using setStyle() on a single component instance, the slower the
component will render at runtime. You can speed the rendering of a customized component
with ActionScript that defines the style properties during the creation of the component
instance using UIObject.createClassObject() in the Components Language Reference, and
placing the style settings in the initObject parameter. For example, with a ComboBox
component in the current document library, the following code creates a combo box instance
named my_cb, and sets the text in the combo box to italic and aligned right:
createClassObject(mx.controls.ComboBox, "my_cb", 1, {fontStyle:"italic",

textAlign:"right"});
my_cb.addItem({data:1, label:"One"});

To set or change a property for a single component instance that uses the Halo
theme:

1. Select the component instance on the Stage.

2. In the Property inspector, give it the instance name myComponent.

3. Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.

4. Enter the following code to change the instance to orange:
myComponent.setStyle("themeColor", "haloOrange");

5. Select Control > Test Movie to view the changes.

For a list of styles supported by a particular component, see the component’s entry in the
Components Language Reference.

N
O

T
E

If you want to change multiple properties, or change properties for multiple component
instances, you can create a custom style. A component instance that uses a custom style
for multiple properties will render faster than a component instance with several
setStyle() calls. For more information, see “Setting custom styles for groups of
components” on page 87.
Using styles to customize component color and text 85

To create a component instance and set multiple properties simultaneously
using ActionScript:

1. Drag a component to the library.

2. Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.

3. Enter the following syntax to create an instance of the component and set its properties:
createClassObject(className, "instance_name", depth, {style:"setting",

style:"setting"});

So, for example, with a Button component in the library, the following ActionScript
creates a button instance my_button at depth 1 with the text styles set to purple
and italicized:
createClassObject(mx.controls.Button, "my_button", 1, {label:"Hello",

color:"0x9900CC", fontStyle:"italic"});

For more information, see UIObject.createClassObject().
4. Select Control > Test Movie to view the changes.

For a list of styles supported by a particular component, see the component’s entry in the
Components Language Reference.

Setting global styles
By default, all components adhere to a global style declaration until another style declaration
is attached to the component (as in “Setting custom styles for groups of components”
on page 87). The global style declaration is assigned to all Flash components built with
version 2 of the Macromedia Component Architecture. The _global object has a style
property (_global.style) that is an instance of CSSStyleDeclaration, and acts as the global
style declaration. If you change a style property’s value on the global style declaration, the
change is applied to all components in your Flash document.

C
A

U
T

IO
N

Some styles are set on a component class’s CSSStyleDeclaration instance (for
example, the backgroundColor style of the TextArea and TextInput components).
Because the class style declaration takes precedence over the global style declaration
when style values are determined, setting backgroundColor on the global style
declaration would have no effect on the TextArea and TextInput components. For more
information about style precedence, see “Using global, custom, and class styles in the
same document” on page 92. For more information about editing a component class’s
CSSStyleDeclaration, see “Setting styles for a component class” on page 89.
86 Customizing Components

To change one or more properties in the global style declaration:

1. Make sure the document contains at least one component instance.

For more information, see “Adding components to Flash documents” on page 50.
2. Select a frame in the Timeline on which (or before which) the components appear.

3. In the Actions panel, use code like the following to change properties on the global style
declaration. You need to list only the properties whose values you want to change, as
shown here:
_global.style.setStyle("color", 0xCC6699);
_global.style.setStyle("themeColor", "haloBlue")
_global.style.setStyle("fontSize",16);
_global.style.setStyle("fontFamily" , "_serif");

4. Select Control > Test Movie to see the changes.

Setting custom styles for groups of components
You can create custom style declarations to specify a unique set of properties for groups of
components in your Flash document. In addition to the _global object’s style property
(discussed in “Setting global styles” on page 86), which determines the default style
declaration for an entire Flash document, the _global object also has a styles property,
which is a list of available custom style declarations. So, you can create a style declaration as a
new instance of the CSSStyleDeclaration object, assign it a custom style name, and place it in
the _global.styles list. Then, you specify the properties and values for the style, and assign
the style name to component instances that should share the same look.

Keep in mind that when you assign the style name to a component instance, the component
responds only to style properties that component supports. For a list of the style properties
each component supports, see the individual component entries in the Components Language
Reference.

To make changes to a custom style format, use the following syntax:
_global.styles.CustomStyleName.setStyle(propertyName, propertyValue);

Custom style settings have priority over class, inherited, and global style settings. For a list of
style precedence, see “Using global, custom, and class styles in the same document”
on page 92.
Using styles to customize component color and text 87

To create a custom style declaration for a group of components:

1. Add at least one component to the Stage.

For more information, see “Adding components to Flash documents” on page 50.
This example uses three button components with the instance names a, b, and c. If you
use different components, give them instance names in the Property inspector and use
those instance names in step 8.

2. Select a frame in the Timeline on which (or before which) the component appears.

3. Open the Actions panel.

4. Add the following import statement so you will have access to the constructor function for
creating a new style declaration from within the CSSStyleDeclaration class:
import mx.styles.CSSStyleDeclaration;

5. Use the following syntax to create an instance of the CSSStyleDeclaration object to define
the new custom style format:
var new_style:Object = new CSSStyleDeclaration();

6. Give your style declaration a name, like “myStyle,” in the _global.styles list of custom
style declarations, and identify the object containing all the properties for your new style
declaration.
_global.styles.myStyle = new_style;

7. Use the setStyle() method (inherited from the UIObject class) to add properties to the
new_style object, which are in turn associated with the custom style declaration myStyle:
new_style.setStyle("fontFamily", "_serif");
new_style.setStyle("fontSize", 14);
new_style.setStyle("fontWeight", "bold");
new_style.setStyle("textDecoration", "underline");
new_style.setStyle("color", 0x666699);

8. In the same Script pane, use the following syntax to set the styleName property of three
specific components to the custom style declaration name:
a.setStyle("styleName", "myStyle");
b.setStyle("styleName", "myStyle");
c.setStyle("styleName", "myStyle");
88 Customizing Components

You can also access styles on the custom style declaration using the setStyle() and
getStyle() methods through the declaration’s global styleName property. For example, the
following code sets the backgroundColor style on the myStyle style declaration:
_global.styles.myStyle.setStyle("themeColor", "haloOrange");

However, steps 5 and 6 associated the new_style instance with the style declaration so you
can use the shorter syntax, like new_style.setStyle("themeColor", "haloOrange").

For more information about the setStyle() and getStyle() methods, see
UIObject.setStyle() and UIObject.getStyle().

Setting styles for a component class
You can define a class style declaration for any class of component (Button, CheckBox, and so
on) that sets default styles for each instance of that class. You must create the style declaration
before you create the instances. Some components, such as TextArea and TextInput, have class
style declarations predefined by default because their borderStyle and backgroundColor
properties must be customized.

The following code first checks to see if the current theme already has a style declaration for
CheckBox, and, if not, creates a new one. Then the code uses the setStyle() method to
define a style property for the CheckBox style declaration (in this case, “color” sets the color
for all check box label text to blue):
if (_global.styles.CheckBox == undefined) {

_global.styles.CheckBox = new mx.styles.CSSStyleDeclaration();
}
_global.styles.CheckBox.setStyle("color", 0x0000FF);

For a table of the style properties you can set on the CheckBox component, see “Using styles
with the CheckBox component” in the Components Language Reference.

Custom style settings have priority over inherited and global style settings. For a list of style
precedence, see “Using global, custom, and class styles in the same document” on page 92.

C
A

U
T

IO
N

If you replace a class style sheet, make sure to add any styles that you want from the old
style sheet; otherwise, they will be overwritten.
Using styles to customize component color and text 89

Setting inheriting styles on a container
An inherited style is a style that inherits its value from parent components in the document’s
MovieClip hierarchy. If a text or color style is not set at an instance, custom, or class level,
Flash searches the MovieClip hierarchy for the style value. Thus, if you set styles on a
container component, the contained components inherit these style settings.

The following styles are inheriting styles:

■ fontFamily
■ fontSize
■ fontStyle
■ fontWeight
■ textAlign
■ textIndent
■ All single-value color styles (for example, themeColor is an inheriting style, but

alternatingRowColors is not)

The Style Manager tells Flash whether a style inherits its value. Additional styles can also be
added at runtime as inheriting styles. For more information, see StyleManager class in the
Components Language Reference.

Inherited styles take priority over global styles. For a list of style precedence, see “Using global,
custom, and class styles in the same document” on page 92.

The following example demonstrates how inheriting styles can be used with an Accordion
component, which is available with Flash Professional 8. (The inheriting styles feature is
supported by both Flash Basic 8 and Flash Professional 8.)

N
O

T
E

One major difference between the implementation of styles for Flash components, and
cascading style sheets for HTML pages, is that the CSS inherit value is not supported
for Flash components. Styles are either inherited or not by component design.
90 Customizing Components

To create an Accordion component with styles that are inherited by the
components in the individual Accordion panes:

1. Open a new FLA file.

2. Drag an Accordion component from the Components panel to the Stage.

3. Use the Property inspector to name and size the Accordion component. For this example,
give the component the instance name accordion.

4. Drag a TextInput component and a Button component from the Components panel to
the library.

By dragging the components to the library, you make them available to your script
at runtime.

5. Add the following ActionScript to the first frame of the Timeline:
var section1 = accordion.createChild(mx.core.View, "section1", {label:

"First Section"});
var section2 = accordion.createChild(mx.core.View, "section2", {label:

"Second Section"});

var input1 = section1.createChild(mx.controls.TextInput, "input1");
var button1 = section1.createChild(mx.controls.Button, "button1");

input1.text = "Text Input";
button1.label = "Button";
button1.move(0, input1.height + 10);

var input2 = section2.createChild(mx.controls.TextInput, "input2");
var button2 = section2.createChild(mx.controls.Button, "button2");

input2.text = "Text Input";
button2.label = "Button";
button2.move(0, input2.height + 10);

The above code adds two children to the Accordion component and loads each with a
TextInput and Button control, which this example uses to demonstrate style inheritance.

6. Select Control > Test Movie to see the document before adding style inheritance.

7. Add the following ActionScript to the end of the script in the first frame:
accordion.setStyle("fontStyle", "italic");

8. Select Control > Test Movie to see the changes.

Notice that the fontStyle setting on the Accordion component affects not only the
Accordion text itself but also the text associated with the TextInput and Button components
inside the Accordion component.
Using styles to customize component color and text 91

Using global, custom, and class styles in the
same document
If you define a style in only one place in a document, Flash uses that definition when it needs
to know a property’s value. However, one Flash document can have a variety of style
settings—style properties set directly on component instances, custom style declarations,
default class style declarations, inheriting styles, and a global style declaration. In such a
situation, Flash determines the value of a property by looking for its definition in all these
places in a specific order.

Flash looks for styles in the following order until a value is found:

1. Flash looks for a style property on the component instance.

2. Flash looks at the styleName property of the instance to see if a custom style declaration is
assigned to it.

3. Flash looks for the property on a default class style declaration.

4. If the style is one of the inheriting styles, Flash looks through the parent hierarchy for an
inherited value.

5. Flash looks for the style in the global style declaration.

6. If the property is still not defined, the property has the value undefined.

About color style properties
Color style properties behave differently than noncolor properties. All color properties have a
name that ends in “Color”—for example, backgroundColor, disabledColor, and color.
When color style properties are changed, the color is immediately changed on the instance
and in all of the appropriate child instances. All other style property changes simply mark the
object as needing to be redrawn, and changes don’t occur until the next frame.

The value of a color style property can be a number, a string, or an object. If it is a number, it
represents the RGB value of the color as a hexadecimal number (0xRRGGBB). If the value is
a string, it must be a color name.
92 Customizing Components

Color names are strings that map to commonly used colors. You can add new color names by
using the Style Manager (see StyleManager class in the Components Language Reference). The
following table lists the default color names:

You can use any valid ActionScript identifier to create your own color names (for example,
"WindowText" or "ButtonText"). Use the Style Manager to define new colors, as shown
here:
mx.styles.StyleManager.registerColorName("special_blue", 0x0066ff);

Most components cannot handle an object as a color style property value. However, certain
components can handle color objects that represent gradients or other color combinations.
For more information, see the “Using styles” section of each component’s entry in the
Components Language Reference.

You can use class style declarations and color names to easily control the colors of text and
symbols on the screen. For example, if you want to provide a display configuration screen that
looks like Microsoft Windows, you would define color names like ButtonText and
WindowText and class style declarations like Button, CheckBox, and Window.

Color name Value

black 0x000000

white 0xFFFFFF

red 0xFF0000

green 0x00FF00

blue 0x0000FF

magenta 0xFF00FF

yellow 0xFFFF00

cyan 0x00FFFF

haloGreen 0x80FF4D

haloBlue 0x2BF5F5

haloOrange 0xFFC200

N
O

T
E

If the color name is not defined, the component may not draw correctly.

N
O

T
E

Some components provide style properties that are an array of colors, such as
alternatingRowColors. You must set these styles only as an array of numeric RGB
values, not color names.
Using styles to customize component color and text 93

Customizing component animations
Several components, such as the Accordion, ComboBox, and Tree components, provide
animation to demonstrate the transition between component states—for example, when
switching between Accordion children, expanding the ComboBox drop-down list, and
expanding or collapsing Tree folders. Additionally, components provide animation related to
the selection and deselection of an item, such as rows in a list.

You can control aspects of these animations through the following styles:

The mx.transitions.easing package provides six classes to control easing:

Animation style Description

openDuration The duration of the transition for open easing in Accordion,
ComboBox, and Tree components, in milliseconds. The default value
is 250.

openEasing A reference to a tweening function that controls the state animation
in the Accordion, ComboBox, and Tree components. The default
equation uses a sine in/out formula.

popupDuration The duration of the transition as a menu opens in the Menu
component, in milliseconds. The default value is 150. Note, however,
that the animation always uses the default sine in/out equation.

selectionDuration The duration of the transition in ComboBox, DataGrid, List, and Tree
components from a normal to selected state or back from selected to
normal, in milliseconds. The default value is 200.

selectionEasing A reference to a tweening function that controls the selection
animation in ComboBox, DataGrid, List, and Tree components. This
style applies only for the transition from a normal to a selected state.
The default equation uses a sine in/out formula.

Easing class Description

Back Extends beyond the transition range at one or both ends one time to
provide a slight overflow effect.

Bounce Provides a bouncing effect entirely within the transition range at one or
both ends. The number of bounces is related to the duration: longer
durations produce more bounces.

Elastic Provides an elastic effect that falls outside the transition range at one or
both ends. The amount of elasticity is unaffected by the duration.

None Provides an equal movement from start to end with no effects, slowing, or
speeding. This transition is also commonly referred to as a linear transition.
94 Customizing Components

Each of the classes in the mx.transitions.easing package provides the following three easing
methods:

Because the easing methods are static methods of the easing classes, you never need to
instantiate the easing classes. The methods are used in calls to setStyle(), as in the following
example.
import mx.transitions.easing.*;
trace("_global.styles.Accordion = " + _global.styles.Accordion);
_global.styles.Accordion.setStyle("openDuration", 1500);
_global.styles.Accordion.setStyle("openEasing", Bounce.easeOut);

For more information see “Applying easing methods to components” in the Components
Language Reference.

Getting style property values
To retrieve a style property value, use UIObject.getStyle(). Every component that is a subclass
of UIObject (which includes all version 2 components except the Media components) inherits
the getStyle() method. This means you can call getStyle() from any component
instance, just as you can call setStyle() from any component instance.

The following code gets the value of the themeColor style and assigns it to the variable
oldStyle:
var myCheckBox:mx.controls.CheckBox;
var oldFontSize:Number

oldFontSize = myCheckBox.getStyle("fontSize");
trace(oldFontSize);

Regular Provides for slower movement at one or both ends for a speeding-up
effect, a slowing-down effect, or both.

Strong Provides for much slower movement at one or both ends. This effect is
similar to Regular but is more pronounced.

Easing method Description

easeIn Provides the easing effect at the beginning of the transition.

easeOut Provides the easing effect at the end of the transition.

easeInOut Provides the easing effect at the beginning and end of the transition.

N
O

T
E

The default equation used by all transitions is not available in the easing classes listed
above. To specify that a component should use the default easing method after another
easing method has been specified, call setStyle("openEasing", null).

Easing class Description
Using styles to customize component color and text 95

About skinning components
Skins are movie clip symbols a component uses to display its appearance. Most skins contain
shapes that represent the component’s appearance. Some skins contain only ActionScript code
that draws the component in the document.

Version 2 components are compiled clips—you cannot see their assets in the library. However,
the Flash installation includes FLA files that contain all the component skins. These FLA files
are called themes. Each theme has a different appearance and behavior, but contains skins with
the same symbol names and linkage identifiers. This lets you drag a theme onto the Stage in a
document to change its appearance. You also use the theme FLA files to edit component
skins. The skins are located in the Themes folder in the Library panel of each theme FLA file.
(For more information about themes, see “About themes” on page 108.)

Each component comprises many skins. For example, the down arrow of the ScrollBar
subcomponent consists of four skins: ScrollDownArrowDisabled, ScrollDownArrowDown,
ScrollDownArrowOver, and ScrollDownArrowUp. The entire ScrollBar uses 13 different skin
symbols.

Some components share skins; for example, components that use scroll bars—such as
ComboBox, List, and ScrollPane—share the skins in the ScrollBar Skins folder. You can edit
existing skins and create new skins to change the appearance of components.

The AS file that defines each component class contains code that loads specific skins for the
component. Each component skin corresponds to a skin property that is assigned to a skin
symbol’s linkage identifier. For example, the pressed (down) state of the down arrow of the
ScrollBar component has the skin property name downArrowDownName. The default value of
the downArrowDownName property is "ScrollDownArrowDown", which is the linkage
identifier of the skin symbol in the theme FLA file. You can edit existing skins and apply them
to all components that use the skin by editing the skin symbol and leaving the existing linkage
identifier. You can create new skins and apply them to specific component instances by setting
the skin properties for a component instance. You do not need to edit the component’s AS file
to change its skin properties; you can pass skin property values to the component’s
constructor function when the component is created in your document.

The skin properties for each component are listed in each component’s entry in the
Components Dictionary. For example, the skin properties for the Button component are
located here: Components Language Reference > Button component > Customizing the
Button component > Using skins with the Button component.
96 Customizing Components

Choose one of the following ways to skin a component according to what you want to do.
These approaches are listed from easiest to most difficult.

■ To change the skins associated with all instances of a particular component in a single
document, copy and modify individual skin elements. (See “Editing component skins in a
document” on page 97).
This method of skinning is recommended for beginners, because it doesn’t require
any scripting.

■ To replace all the skins in a document with a new set (with each kind of component
sharing the same appearance), apply a theme. (See “About themes” on page 108.)
This method of skinning is recommended for applying a consistent look and feel across all
components and across several documents.

■ To link the color of a skin element to a style property, add ActionScript code to the skin to
register it as a colored skin element. (See “Linking skin color to styles” on page 100).

■ To use different skins for multiple instances of the same component, create new skins and
set skin properties. (See “Creating new component skins” on page 99 and “Applying new
skins to a component” on page 101.)

■ To change skins in a subcomponent (such as a scroll bar in a List component), subclass the
component. (See “Applying new skins to a subcomponent” on page 103.)

■ To change skins of a subcomponent that aren’t directly accessible from the main
component (such as a List component in a ComboBox component), replace skin
properties in the prototype. (See “Changing skin properties in a subcomponent”
on page 106.)

Editing component skins in a document
To edit the skins associated with all instances of a particular component in a single document,
copy the skin symbols from the theme to the document and edit the graphics as desired.

The procedure described below is very similar to creating and applying a new theme (see
“About themes” on page 108). The primary difference is that this procedure describes copying
symbols directly from the theme already in use to a single document and editing only a small
number of all skins available. This is appropriate when your modifications are all in a single
document and when you are modifying skins for only a few components. If the edited skins
will be shared in multiple documents or encompass changes in several components, you may
find editing the skins easier if you create a new theme.

An article on advanced skinning can be found online in the Macromedia Developer Center at
www.macromedia.com/devnet/mx/flash/articles/skinning_2004.html.
About skinning components 97

http://www.macromedia.com/devnet/mx/flash/articles/skinning_2004.html

To edit component skins in a document:

1. If you already applied the Sample theme to a document, skip to step 5.

2. Select File > Import > Open External Library, and select the SampleTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” on page 108.

3. In the theme’s Library panel, select Flash UI Components 2/Themes/MMDefault and
drag the Assets folder of any components in your document to the library for your
document.

For example, drag the RadioButton Assets folder to the ThemeApply.fla library.
4. If you dragged individual component Assets folders to the library, make sure the Assets

symbol for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton
Assets; it has a symbol called RadioButtonAssets, which contains all of the individual asset
symbols. If you set Export in First Frame on the RadioButtonAssets symbol, all individual
asset symbols will also export in the first frame.

5. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

For example, open the States/RadioFalseDisabled symbol.
6. Modify the symbol or delete the graphics and create new graphics.

You may need to select View > Zoom In to increase the magnification. When you edit a
skin, you must maintain the registration point in order for the skin to be displayed
correctly. The upper-left corner of all edited symbols must be at (0,0).
For example, change the inner circle to a light gray.

7. When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

8. Repeat steps 5-7 until you’ve edited all the skins you want to change.

9. Select Control > Test Movie.

In this example, make sure you have a RadioButton instance on the Stage and set its
enabled property to false in the Actions panel in order to see the new disabled
RadioButton appearance.

N
O

T
E

The live preview of the components on the Stage will not reflect the edited skins.
98 Customizing Components

Creating new component skins
If you want to use a particular skin for one instance of a component, but another skin for
another instance of the component, you must open a theme FLA file and create a new skin
symbol. Components are designed to make it easy to use different skins for different
instances.

To create a new skin:

1. Select File > Open and open the theme FLA file that you want to use as a template.

2. Select File > Save As and select a unique name, such as MyTheme.fla.

3. Select the skins that you want to edit (in this example, RadioTrueUp).

The skins are located in the Themes/MMDefault/Component Assets folder (in this
example, Themes/MMDefault/RadioButton Assets/States).

4. Select Duplicate from the Library options menu (or by right-clicking the symbol), and give
the symbol a unique name, such as MyRadioTrueUp.

5. Click Advanced in the Symbol Properties dialog box, and select Export for ActionScript.

A linkage identifier that matches the symbol name is entered automatically.
6. Double-click the new skin in the library to open it in symbol-editing mode.

7. Modify the movie clip, or delete it and create a new one.

You may need to select View > Zoom In to increase the magnification. When you edit a
skin, you must maintain the registration point in order for the skin to be displayed
correctly. The upper-left corner of all edited symbols must be at (0,0).

8. When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

9. Select File > Save but don’t close MyTheme.fla. Now you must create a new document in
which to apply the edited skin to a component.

For more information, see “Applying new skins to a component” on page 101, “Applying
new skins to a subcomponent” on page 103, or “Changing skin properties in a
subcomponent” on page 106.

N
O

T
E

Flash does not display changes made to component skins when you view
components on the Stage using Live Preview.
About skinning components 99

Linking skin color to styles
The version 2 component framework makes it easy to link a visual asset in a skin element to a
style set on the component using the skin. To register a movie clip instance to a style, or an
entire skin element to a style, add ActionScript code in the timeline of the skin to call
mx.skins.ColoredSkinElement.setColorStyle(targetMovieClip, styleName).

To link a skin to a style property:

1. If you already applied the Sample theme to a document, skip to step 5.

2. Select File > Import > Open External Library, and select the SampleTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” on page 108.

3. In the theme’s Library panel, select Flash UI Components 2/Themes/MMDefault, and
drag the Assets folder of any components in your document to the library for your
document.

For example, drag the RadioButton Assets folder to the target library.
4. If you dragged individual component assets folders to the library, make sure the Assets

symbol for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton
Assets; it has a symbol called RadioButtonAssets, which contains all of the individual asset
symbols. If you set Export in First Frame on the RadioButtonAssets symbol, all individual
asset symbols will also export in the first frame.

5. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

For example, open the States/RadioFalseDisabled symbol.
6. If the element to be colored is a graphic symbol and not a movie clip instance, use Modify

> Convert to Symbol to covert it to a movie clip instance.

For this example, change the center graphic, which is an instance of the graphic symbol
RadioShape1, to a movie clip symbol; then name it Inner Circle. You do not need to
select Export for ActionScript.
It would be good practice, but it is not required, to move the newly created movie clip
symbol to the Elements folder of the component assets being edited.

7. If you converted a graphic symbol to a movie clip instance in the previous step, give that
instance a name so it can be targeted in ActionScript.

For this example, name the instance innerCircle.
100 Customizing Components

8. Add ActionScript code to register the skin element or a movie clip instance it contains as a
colored skin element.

For example, add the following code to the skin element’s Timeline.
mx.skins.ColoredSkinElement.setColorStyle(innerCircle,

"symbolBackgroundDisabledColor");

In this example you’re using a color that already corresponds to an existing style name in
the Sample style. Wherever possible, it’s best to use style names corresponding to official
Cascading Style Sheet standards or styles provided by the Halo and Sample themes.

9. Repeat steps 5-8 until you’ve edited all the skins you want to change.

For this example, repeat these steps for the RadioTrueDisabled skin, but instead of
converting the existing graphic to a movie clip, delete the graphic and drag the existing
Inner Circle symbol to the RadioTrueDisabled skin element.

10. When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

11. Drag an instance of the component to the Stage.

For this example, drag two RadioButton components to the Stage, set one to selected, and
use ActionScript to set both to disabled in order to see the changes.

12. Add ActionScript code to the document to set the new style property on the component
instances or at the global level.

For this example, set the property at the global level as follows:
_global.style.setStyle("symbolBackgroundDisabledColor", 0xD9D9D9);

13. Select Control > Test Movie.

Applying new skins to a component
Once you have created a new skin, you must apply it to a component in a document. You can
use the createClassObject() method to dynamically create the component instances, or
you can manually place the component instances on the Stage. There are two different ways
to apply skins to component instances, depending on how you add the components to
a document.
About skinning components 101

To dynamically create a component and apply a new skin:

1. Select File > New to create a new Flash document.

2. Select File > Save and give the file a unique name, such as DynamicSkinning.fla.

3. Drag any components from the Components panel to the library, including the
component whose skin you edited (in this example, RadioButton).

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

4. Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the
library of DynamicSkinning.fla.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5. Open the Actions panel and enter the following on Frame 1:
import mx.controls.RadioButton;
createClassObject(RadioButton, "myRadio", 0,

{trueUpIcon:"MyRadioTrueUp", label: "My Radio Button"});

6. Select Control > Test Movie.

To manually add a component to the Stage and apply a new skin:

1. Select File > New to create a new Flash document.

2. Select File > Save and give the file a unique name, such as ManualSkinning.fla.

3. Drag components from the Components panel to the Stage, including the component
whose skin you edited (in this example, RadioButton).

4. Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the
library of ManualSkinning.fla.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5. Select the RadioButton component on the Stage and open the Actions panel.

6. Attach the following code to the RadioButton instance:
onClipEvent(initialize){

trueUpIcon = "MyRadioTrueUp";
}

7. Select Control > Test Movie.
102 Customizing Components

Applying new skins to a subcomponent
In certain situations you may want to modify the skins of a subcomponent in a component,
but the skin properties are not directly available (for example, there is no direct way to alter
the skins of the scroll bar in a List component). The following code lets you access the scroll
bar skins. All the scroll bars that are created after this code runs will also have the new skins.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in the Components Language Reference.

To apply a new skin to a subcomponent:

1. Follow the steps in “Creating new component skins” on page 99, but edit a scroll bar skin.
For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New to create a new Flash document.

3. Select File > Save and give the file a unique name, such as SubcomponentProject.fla.

4. Drag the List component in the Components panel to the library.

This adds the component to the Library panel, but doesn’t make the component visible in
the document.

5. Drag MyScrollDownArrowDown and any other symbols you edited from MyTheme.fla to
the library of SubcomponentProject.fla.

This adds the symbol to the Library panel, but doesn’t make it visible in the document.
6. Do one of the following:

■ If you want to change all scroll bars in a document, enter the following code in the
Actions panel on Frame 1 of the Timeline:
import mx.controls.List;
import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

You can then enter the following code on Frame 1 to create a list dynamically:
createClassObject(List, "myListBox", 0, {dataProvider:

["AL","AR","AZ", "CA","HI","ID", "KA","LA","MA"]});

Or, you can drag a List component from the library to the Stage.
About skinning components 103

■ If you want to change a specific scroll bar in a document, enter the following code in
the Actions panel on Frame 1 of the Timeline:
import mx.controls.List
import mx.controls.scrollClasses.ScrollBar
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
createClassObject(List, "myList1", 0, {dataProvider: ["AL","AR","AZ",

"CA","HI","ID", "KA","LA","MA"]});
myList1.redraw(true);
ScrollBar.prototype.downArrowDownName = oldName;

7. Select Control > Test Movie.

You can also set subcomponent skins for all components in a document by setting the skin
property on the subcomponent’s prototype object in the #initclip section of a
skin symbol.

To use #initclip to apply an edited skin to all components in a document:

1. Follow the steps in “Creating new component skins” on page 99, but edit a scroll bar skin.
For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New and create a new Flash document. Save it with a unique name, such as
SkinsInitExample.fla.

3. Select the MyScrollDownArrowDown symbol from the library of the edited theme library
example, drag it to the library of SkinsInitExample.fla.

This adds the symbol to the library without making it visible on the Stage.
4. Select MyScrollDownArrowDown in the SkinsInitExample.fla library, and select Linkage

from the Library options menu.

5. Select the Export for ActionScript check box. Click OK.

Export in First Frame should be automatically selected; if it is not, select it.
6. Double-click MyScrollDownArrowDown in the library to open it in symbol-editing mode.

7. Enter the following code on Frame 1 of the MyScrollDownArrowDown symbol:
#initclip 10

import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

#endinitclip

N
O

T
E

Set enough data so that the scroll bars appear, or set the vScrollPolicy property
to true.
104 Customizing Components

8. Do one of the following to add a List component to the document:

■ Drag a List component from the Components panel to the Stage. Enter enough label
parameters so that the vertical scroll bar will appear.

■ Drag a List component from the Components panel to the library. Enter the following
code on Frame 1 of the main Timeline of SkinsInitExample.fla:
createClassObject(mx.controls.List, "myListBox1", 0, {dataProvider:

["AL","AR","AZ", "CA","HI","ID", "KA","LA","MA"]});

The following example explains how to skin something that’s already on the Stage. This
example skins only List scroll bars; any TextArea or ScrollPane scroll bars would not
be skinned.

To use #initclip to apply an edited skin to specific components in a document:

1. Follow the steps in “Editing component skins in a document” on page 97, but edit a scroll
bar skin. For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New and create a Flash document.

3. Select File > Save and give the file a unique name, such as MyVScrollTest.fla.

4. Drag MyScrollDownArrowDown from the theme library to the MyVScrollTest.fla library.

5. Select Insert > New Symbol and give the symbol a unique name, such as MyVScrollBar.

6. Select the Export for ActionScript check box. Click OK.

Export in First Frame should be automatically selected; if it is not, select it.
7. Enter the following code on Frame 1 of the MyVScrollBar symbol:

#initclip 10
import MyVScrollBar
Object.registerClass("VScrollBar", MyVScrollBar);

#endinitclip

8. Drag a List component from the Components panel to the Stage.

9. In the Property inspector, enter as many Label parameters as necessary for the vertical scroll
bar to appear.

10. Select File > Save.

11. Select File > New and create a new ActionScript file.

N
O

T
E

Add enough data so that the vertical scroll bar appears, or set vScrollPolicy to
true.
About skinning components 105

12. Enter the following code:
import mx.controls.VScrollBar
import mx.controls.List
class MyVScrollBar extends VScrollBar{

function init():Void{
if (_parent instanceof List){

downArrowDownName = "MyScrollDownArrowDown";
}
super.init();

}
}

13. Select File > Save and save this file as MyVScrollBar.as.

14. Click a blank area on the Stage and, in the Property inspector, click the Publish
Settings button.

15. Click the ActionScript Version Settings button.

16. Click the Add New Path (+) button to add a new classpath, and select the Target button
to browse to the location of the MyVScrollBar.as file on your hard disk.

17. Select Control > Test Movie.

Changing skin properties in a subcomponent
If a component does not directly support skin variables, you can create a subclass of the
component and replace its skins. For example, the ComboBox component doesn’t directly
support skinning its drop-down list, because the ComboBox component uses a List
component as its drop-down list.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in the Components Language Reference.

To skin a subcomponent:

1. Follow the steps in “Editing component skins in a document” on page 97, but edit a scroll
bar skin. For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New and create a Flash document.

3. Select File > Save and give the file a unique name, such as MyComboTest.fla.

4. Drag MyScrollDownArrowDown from the theme library above to the library of
MyComboTest.fla.

This adds the symbol to the library, but doesn’t make it visible on the Stage.
5. Select Insert > New Symbol and give the symbol a unique name, such as MyComboBox.
106 Customizing Components

6. Select the Export for ActionScript check box and click OK.

Export in First Frame should be automatically selected; if it is not, select it.
7. Enter the following code in the Actions panel on Frame 1 of the MyComboBox symbol:

#initclip 10
import MyComboBox
Object.registerClass("ComboBox", MyComboBox);

#endinitclip

8. When you finish editing the symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

9. Drag a ComboBox component to the Stage.

10. In the Property inspector, enter as many Label parameters as necessary for the vertical scroll
bar to appear.

11. Select File > Save.

12. Select File > New and create a new ActionScript file.

13. Enter the following code:
import mx.controls.ComboBox
import mx.controls.scrollClasses.ScrollBar
class MyComboBox extends ComboBox{

function getDropdown():Object{
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
var r = super.getDropdown();
ScrollBar.prototype.downArrowDownName = oldName;
return r;

}
}

14. Select File > Save and save this file as MyComboBox.as.

15. Return to the file MyComboTest.fla.

16. Click a blank area on the Stage and, in the Property inspector, click the Publish
Settings button.

17. Click the ActionScript Version Settings button.

18. Click the Add New Path (+) button to add a new classpath, and select the Target button
to browse to the location of the MyComboBox.as file on your hard disk.

19. Select Control > Test Movie.
About skinning components 107

About themes
Themes are collections of styles and skins. The default theme for Flash is called Halo
(HaloTheme.fla). The Halo theme lets you provide a responsive, expressive experience for
your users. Flash includes additional themes, like Sample (SampleTheme.fla). The Sample
theme provides an example of how you can use more styles for customization. (The
Halo theme does not use all styles included in the Sample theme.) The theme files are located
in the following folders in a default installation:

■ In Windows: C:\Program Files\Macromedia\Flash
8\language\Configuration\ComponentFLA\

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Configuration/
ComponentFLA/

You can create new themes and apply them to an application to change the look and feel
of all the components. For example, you could create themes that mimic the native operating
system appearance.

Components use skins (graphic or movie clip symbols) to display their appearances. The AS
file that defines each component contains code that loads specific skins for the component.
You can easily create a new theme by making a copy of the Halo or Sample theme and altering
the graphics in the skins.

A theme can also contain a new set of style default values. You must write ActionScript code
to create a global style declaration and any additional style declarations. For more
information, see “Modifying default style property values in a theme” on page 112.

Switching themes
Macromedia Flash installs two themes: Halo and Sample. You’ll notice that the component
reference information for each component contains a table of style properties you can set for
either (or both) themes. So, when you read a style properties table, like the one for the Button
component in “Using styles with the Button component” in the Components Language
Reference, notice which theme supports the style you want. The table indicates Halo, Sample,
or Both (meaning both themes support the style property).

The Halo theme is the default theme for components. So, if you want to use the Sample
theme, you need to switch the current theme from Halo to Sample.
108 Customizing Components

To switch to the Sample theme:

1. Select File > Open and open the document that uses version 2 components in Flash, or
select File > New and create a new document that uses version 2 components.

2. Select File > Import > Open External Library, and select SampleTheme.fla to apply to your
document.

This file is located in the application-level configuration folder. For the exact location on
your operating system, see “About themes” on page 108.

3. In the SampleTheme.fla theme’s Library panel, select Flash UI Components 2/Themes/
MMDefault and drag the Assets folders of any components in your document to the
Library panel of your Flash document.

For example, drag the RadioButton Assets folder to your library.

If you’re unsure about which components are in the document, drag the entire Sample
Theme movie clip to the Stage. The skins are automatically assigned to components in
the document.

N
O

T
E

The Live Preview of the components on the Stage will not reflect the new theme.
About themes 109

4. If you drag individual component Assets folders to the Library panel of your document,
make sure the Assets symbol for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton
Assets. Open the RadioButtonAssets folder, and you’ll see a movie clip symbol called
RadioButtonAssets. The RadioButtonAssets symbol contains all of the individual asset
symbols within it.
Right-click (Windows) or Control-click (Macintosh) the RadioButtonAssets symbol in
the library of your document, and select the Linkage menu option. Check Export in First
Frame, so all individual asset symbols will also export in the first frame. Then, click OK to
save the settings.

5. Select Control > Test Movie to see the document with the new theme applied.
110 Customizing Components

Creating a new theme
If you don’t want to use the Halo theme or the Sample theme, you can modify one of them to
create a new theme.

Some skins in the themes have a fixed size. You can make them larger or smaller and the
components will automatically resize to match them. Other skins are composed of multiple
pieces, some static and some that stretch.

Some skins (for example, RectBorder and ButtonSkin) use the ActionScript drawing API to
draw their graphics, because it is more efficient in terms of size and performance. You can use
the ActionScript code in those skins as a template to adjust the skins to your needs.

For a list of the skins supported by each component and their properties, see the Components
Language Reference.

To create a new theme:

1. Select the theme FLA file that you want to use as a template, and make a copy.

Give the copy a unique name such as MyTheme.fla.
2. Select File > Open MyTheme.fla in Flash.

3. Select Window > Library to open the library if it isn’t open already.

4. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

The skins are located in the Flash UI Components 2/Themes/MMDefault/Component
Assets folder (this example uses RadioButton Assets).

5. Modify the symbol or delete the graphics and create new graphics.

You may need to select View > Zoom In to increase the magnification. When you edit a
skin, you must maintain the registration point in order for the skin to be displayed
correctly. The upper-left corner of all edited symbols must be at (0,0).
For example, open the States/RadioFalseDisabled asset and change the inner circle to a
light gray.

6. When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

7. Repeat steps 4-6 until you’ve edited all the skins you want to change.

8. Apply MyTheme.fla to a document by following the steps shown later in this chapter. (See
“Applying a new theme to a document” on page 113.)
About themes 111

Modifying default style property values in a theme
The default style property values are provided by each theme in a class named Default. To
change the defaults for a custom theme, create a new ActionScript class called Default in a
package appropriate for your theme, and change the default settings as desired.

To modify default style values in a theme:

1. Create a new folder for your theme in First Run/Classes/mx/skins.

For example, create a folder called myTheme.
2. Copy an existing Defaults class to your new theme folder.

For example, copy mx/skins/halo/Defaults.as to mx/skins/myTheme/Defaults.as.
3. Open the new Defaults class in an ActionScript editor.

Flash Professional 8 users can open the file within Flash. Or, you can open the file in
Notepad in Windows or SimpleText on the Macintosh.

4. Modify the class declaration to reflect the new package.

For example, our new class declaration is class mx.skins.myTheme.Defaults.
5. Modify the style settings as desired.

For example, change the default disabled color to a dark red.
o.disabledColor = 0x663333;

6. Save the changed Defaults class file.

7. Copy an existing FocusRect class from the source theme to your custom theme.

For example, copy mx/skins/halo/FocusRect.as to mx/skins/myTheme/FocusRect.as.
8. Open the new FocusRect class in an ActionScript editor.

9. Modify all references to the source theme’s package to the new theme’s package.

For example, change all occurrences of “halo” to “myTheme.”
10. Save the changed FocusRect class file.

11. Open the FLA file for your custom theme.

This example uses MyTheme.fla.
12. Open the library (Window > Library) and locate the Defaults symbol.

In this example, it’s in Flash UI Components 2/Themes/MMDefault/Defaults.
13. Edit the symbol properties for the Default symbol.

14. Change the AS 2.0 Class setting to reflect your new package.

The example class is mx.skins.myTheme.Defaults.
15. Click OK.
112 Customizing Components

16. Locate the FocusRect symbol.

In this example, it’s in Flash UI Components 2/Themes/MMDefault/FocusRect.
17. Edit the symbol properties for the FocusRect symbol.

18. Change the AS 2.0 Class setting to reflect your new package.

The example class is mx.skins.myTheme.FocusRect.
19. Click OK.

20.Apply the custom theme to a document by following the steps in the next section.

Remember to include the Defaults and FocusRect symbols when dragging assets from
your custom theme to the target document.

In this example you used a new theme to customize the text color of disabled components.
This particular customization, changing a single default style property value, would have been
accomplished more easily through styling as explained in “Using styles to customize
component color and text” on page 82. Using a new theme to customize defaults is
appropriate when customizing many style properties or when already creating a new theme to
customize component graphics.

Applying a new theme to a document
To apply a new theme to a document, open a theme FLA file as an external library, and drag
the theme folder from the external library to the document library. The following steps
explain the process in detail, assuming you already have a new theme (for more information,
see “Creating a new theme” on page 111).

To apply a theme to a document:

1. Select File > Open and open the document that uses version 2 components in Flash, or
select File > New and create a new document that uses version 2 components.

2. Select File > Import > Open External Library, and select the FLA file of the theme you want
to apply to your document.
About themes 113

3. In the theme’s Library panel, select Flash UI Components 2/Themes/MMDefault and
drag the Assets folders for any components you want to use to your document’s library.

For example, drag the RadioButton Assets folder to your library.

If you’re unsure which components are in the document, drag the entire theme movie clip
(for example, for the SampleTheme.fla, the main theme movie clip is Flash UI
Components 2 > SampleTheme) to the Stage. The skins are automatically assigned to
components in the document.

N
O

T
E

The Live Preview of the components on the Stage will not reflect the new theme.
114 Customizing Components

4. If you dragged individual component Assets folders to the ThemeApply.fla library, make
sure the Assets symbol for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton
Assets; it has a symbol called RadioButtonAssets, which contains all of the individual asset
symbols. If you set Export in First Frame on the RadioButtonAssets symbol, all individual
asset symbols will also export in the first frame.

5. Select Control > Test Movie to see the new theme applied.
About themes 115

Changing export settings
When you apply the Sample or Halo theme to your document, many of the skin assets are set
to export in the first frame in order to make them immediately available to the components
during playback. However, if you change the publishing export setting (File > Publish Settings
> Flash tab > ActionScript Version Settings button > Export Frame for Classes) of your FLA
file to a frame after the first frame, you must also change the export settings for the assets in
the Sample and Halo themes. To do this, you must open the following component assets in
your document’s library and deselect the Export in First Frame check box (right-click >
Linkage > Export in First Frame):

Sample theme

■ Flash UI Components 2/Base Classes/UIObject
■ Flash UI Components 2/Themes/MMDefault/Defaults
■ Flash UI Components 2/Base Classes/UIObjectExtensions
■ Flash UI Components 2/Border Classes/BoundingBox
■ Flash UI Components 2/SampleTheme
■ Flash UI Components 2/Themes/MMDefault/Button Assets/Elements/ButtonIcon
■ Flash UI Components 2/Themes/MMDefault/DateChooser Assets/ Elements/

Arrows/cal_disabledArrow
■ Flash UI Components 2/Themes/MMDefault/FocusRect
■ Flash UI Components 2/Themes/MMDefault/Window Assets/ States/

CloseButtonOver
■ Flash UI Components 2/Themes/MMDefault/Accordion Assets/

AccordionHeaderSkin
■ Flash UI Components 2/Themes/MMDefault/Alert Assets/AlertAssets
■ Flash UI Components 2/Themes/MMDefault/Border Classes/Border
■ Flash UI Components 2/Themes/MMDefault/Border Classes/CustomBorder
■ Flash UI Components 2/Themes/MMDefault/Border Classes/RectBorder
■ Flash UI Components 2/Themes/MMDefault/Button Assets/ActivatorSkin
■ Flash UI Components 2/Themes/MMDefault/Button Assets/ButtonSkin
116 Customizing Components

Halo theme

■ Flash UI Components 2/Base Classes/UIObject
■ Flash UI Components 2/Themes/MMDefault/Defaults
■ Flash UI Components 2/Base Classes/UIObjectExtensions
■ Flash UI Components 2/Component Assets/BoundingBox
■ Flash UI Components 2/HaloTheme
■ Flash UI Components 2/Themes/MMDefault/Accordion Assets/

AccordionHeaderSkin
■ Flash UI Components 2/Themes/MMDefault/Alert Assets/AlertAssets
■ Flash UI Components 2/Themes/MMDefault/Border Classes/Border
■ Flash UI Components 2/Themes/MMDefault/Border Classes/CustomBorder
■ Flash UI Components 2/Themes/MMDefault/Border Classes/RectBorder
■ Flash UI Components 2/Themes/MMDefault/Button Assets/ActivatorSkin
■ Flash UI Components 2/Themes/MMDefault/Button Assets/ButtonSkin
■ Flash UI Components 2/Themes/MMDefault/Button Assets/Elements/ButtonIcon
■ Flash UI Components 2/Themes/MMDefault/CheckBox Assets/Elements/

CheckThemeColor1
■ Flash UI Components 2/Themes/MMDefault/CheckBox Assets/CheckBoxAssets
■ Flash UI Components 2/Themes/MMDefault/ComboBox Assets/ComboBoxAssets
■ Flash UI Components 2/Themes/MMDefault/DataGrid Assets/DataGridAssets
■ Flash UI Components 2/Themes/MMDefault/DateChooser Assets/

DateChooserAssets
■ Flash UI Components 2/Themes/MMDefault/FocusRect
■ Flash UI Components 2/Themes/MMDefault/Menu Assets/MenuAssets
■ Flash UI Components 2/Themes/MMDefault/MenuBar Assets/MenuBarAssets
■ Flash UI Components 2/Themes/MMDefault/ProgressBar Assets/ProgressBarAssets
■ Flash UI Components 2/Themes/MMDefault/RadioButton Assets/Elements/

RadioThemeColor1
■ Flash UI Components 2/Themes/MMDefault/RadioButton Assets/Elements/

RadioThemeColor2
■ Flash UI Components 2/Themes/MMDefault/RadioButton Assets/

RadioButtonAssets
■ Flash UI Components 2/Themes/MMDefault/ScrollBar Assets/HScrollBarAssets
■ Flash UI Components 2/Themes/MMDefault/ScrollBar Assets/ScrollBarAssets
About themes 117

■ Flash UI Components 2/Themes/MMDefault/ScrollBar Assets/VScrollBarAssets
■ Flash UI Components 2/Themes/MMDefault/Stepper Assets/Elements/

StepThemeColor1
■ Flash UI Components 2/Themes/MMDefault/Stepper Assets/NumericStepperAssets
■ Flash UI Components 2/Themes/MMDefault/Tree Assets/TreeAssets
■ Flash UI Components 2/Themes/MMDefault/Window Assets/Window Assets

Combining skinning and styles to
customize a component
In this section, you will customize a combo box component instance using styles, themes, and
skinning settings. The procedures demonstrate how to combine skinning with style settings to
create a unique presentation for a component.

Creating a component instance on the Stage
The first part of this exercise requires you to create a ComboBox instance for customizing.

To create the ComboBox instance:

1. Drag a ComboBox component to the Stage.

2. In the Properties panel, name the instance my_cb.

3. In the first frame of the main Timeline, add the following ActionScript (make sure you are
adding it to the frame and not the component, itself; the Actions panel should say “Actions
- Frame” in the title bar):
my_cb.addItem({data:1, label:"One"});
my_cb.addItem({data:2, label:"Two"});

4. Select Control > Test Movie to see the combo box with the default style and skinning from
the Halo theme.
118 Customizing Components

Creating the new style declaration
Now, you need to create a new style declaration and assign styles to the style declaration. After
you have all the styles you want in the style declaration, you can assign the new style name to
the combo box instance.

To create a new style declaration and give it a name:

1. In the first frame of the main Timeline, add the following line at the beginning of your
ActionScript (as a coding convention, you should place all import statements at the
beginning of your ActionScript):
import mx.styles.CSSStyleDeclaration;

2. On the next line, name the new style declaration and add it to the global style definitions:
var new_style:Object = new CSSStyleDeclaration();
_global.styles.myStyle = new_style;

After you assign a new style declaration to the _global style sheet, you can attach
individual style settings to the new_style style declaration. For more information about
creating a style sheet for groups for components, instead of style definitions for a single
instance, see “Setting custom styles for groups of components” on page 87).

3. Attach some style settings to the new_style style declaration. The following style settings
include style definitions available to the ComboBox component (see “Using styles with the
ComboBox component” in the Components Language Reference for more a complete list) as
well as styles from the RectBorder class, since the ComboBox component uses the
RectBorder class:
new_style.setStyle("textAlign", "right");
new_style.setStyle("selectionColor", "white");
new_style.setStyle("useRollOver", false);
// borderStyle from RectBorder class
new_style.setStyle("borderStyle", "none");
Combining skinning and styles to customize a component 119

Assigning style definitions to the combo box
At this point, you have a style declaration containing a variety of styles, but you need to
explicitly assign the style name to the component instance. You can assign this new style
declaration to any component instance within your document in the following manner. Add
the following line after the addItem() statements for my_cb (as a coding convention, you
should keep all your combo box construction statements together):
my_cb.setStyle("styleName", "myStyle");

The ActionScript code attached to the first frame of the main Timeline should be as follows:
import mx.styles.CSSStyleDeclaration;

var new_style:Object = new CSSStyleDeclaration();
_global.styles.myStyle = new_style;

new_style.setStyle("textAlign", "right");
new_style.setStyle("selectionColor", "white");
new_style.setStyle("useRollOver", false);
// borderStyle from RectBorder class
new_style.setStyle("borderStyle", "none");

my_cb.addItem({data:1, label:"One"});
my_cb.addItem({data:2, label:"Two"});
my_cb.setStyle("styleName", "myStyle");

Select Control > Test Movie to see the styled combo box:

Changing the combo box theme
Every user interface component lists the style properties you can set for that component (for
example, all the style properties you can set for a ComboBox component are listed in
“Customizing the ComboBox component” in the Components Language Reference). Within
the table of style properties, a column titled “Theme” shows which installed theme supports
each style property. Not all the style properties are supported by all the installed themes. The
default theme for all user interface components is the Halo theme. When you change the
theme to the Sample theme, you can use a different set of style properties (some properties
may no longer be available if they are listed as Halo only).
120 Customizing Components

To change the theme for the styled component:

1. Select File > Import > Open External Library, and select SampleTheme.fla to open the
Sample theme library in Flash.

This file is located in the application-level configuration folder:
■ In Windows: C:\Program Files\Macromedia\Flash

8\language\Configuration\ComponentFLA\
■ On the Macintosh: HD/Applications/Macromedia Flash 8/Configuration/

ComponentFLA/
2. Drag the main SampleTheme (Flash UI Components 2 > SampleTheme) movie clip from

the SampleTheme library to your document’s library.

The ComboBox component is a combination of several components and classes, and
requires assets from those other components and assets, including the Border and
ScrollBar assets. The simplest way to ensure that you have all the assets from a theme that
you need is to drag all the theme’s assets to your library.

3. Select Control > Test Movie to see the styled combo box:

Editing the combo box skin assets
To edit the appearance of a component, edit the skins that comprise the component,
graphically. To edit the skins, you open the component’s graphic assets from within the
current theme, and edit the symbols for that component. Macromedia recommends this
approach because it doesn’t remove or add symbols that other components might need; this
approach edits the appearance of an existing component skin symbol.

N
O

T
E

It is possible, but not recommended, to edit the source class files for a component so it
uses symbols with different names as skins, and you can programmatically alter the
ActionScript within a skin symbol (for an example of customized ActionScript and skin
symbols, see “Customizing the Accordion component (Flash Professional only)” in the
Components Language Reference). However, because several components, including
the ComboBox component, share assets with other components, editing the source files
or changing the skin symbol names can have unexpected results.
Combining skinning and styles to customize a component 121

When you edit a component skin symbol:

■ All instances of that component will use new skins (but not custom styles unless you
explicitly attach the styles to the instances), and some components dependent on that
component will use the new skins.

■ If you assign a new theme after you’ve edited your component skins, make sure you don’t
overwrite the existing “edited” skins (a dialog box asks if you want to overwrite the skins
and gives you an opportunity to stop Flash from overwriting the skins).

In this section, you will continue to use the combo box from the previous section (see
“Changing the combo box theme” on page 120). The following steps change the appearance
of the down arrow that opens the combo box menu from an arrow to a circle.

To edit the combo box down arrow symbol:

1. In your document’s library, open the ComboBox assets to see the movie clips that are the
skins for the button that opens and closes the combo box instance at runtime. Specifically,
open the Themes > MMDefault > ComboBox Assets > States folder in your document’s
library.

The States folder contains four movie clips: ComboDownArrowDisabled,
ComboDownArrowDown, ComboDownArrowOver, and ComboDownArrowUp. All
four of these symbols are made up of other symbols. And all four use the same symbol for
the down arrow (triangle), called SymDownArrow.

2. Double-click the ComboDownArrowDown symbol to edit it.

You may need to zoom in, up to 800%, to see the details for the button.
122 Customizing Components

3. Double-click the down arrow (black triangle) to edit it.

4. Delete the selected down arrow (the black triangle shape, not the whole movie clip) on the
Stage.

5. While still editing SymDownArrow, draw a circle in the place where the down arrow had
been.

To make the change more noticeable, consider drawing a circle that is a bright color, like
blue, approximately 4 pixels x 4 pixels, and with an x coordinate of 0 and a y coordinate of
-1 so it is centered.

N
O

T
E

Make sure you have the symbol SymDownArrow selected, so you are deleting only
the shape inside the movie clip and not the movie clip symbol, itself.
Combining skinning and styles to customize a component 123

6. Select Control > Test Movie to see the skinned combo box:

In your document’s library, if you select ComboDownArrowOver and
ComboDownArrowUp, you’ll see that they also have the blue circle instead of the black
triangle, because they also use SymDownArrow for the down arrow symbol.
124 Customizing Components

6

CHAPTER 6

Creating Components
This chapter describes how to create your own component and package it for distribution.

This chapter contains the following sections:
Component source files . 125

Overview of component structure. 126

Building your first component . 127

Selecting a parent class . 136

Creating a component movie clip . 138

Creating the ActionScript class file . 143

Incorporating existing components within your component 173

Exporting and distributing a component . 182

Final steps in component development. 185

Component source files
The components available in the Components panel are precompiled SWC clips. The source
Flash Document (FLA) containing the graphics and the source ActionScript class files (AS)
containing the code for these components have also been provided for you to use in creating
your own custom components. The source files for the version 2 components are installed
with Macromedia Flash. It is helpful to open and review a few of these files, and try to
understand their structure before you build your own components. The RadioButton
component is a good example of a simpler component that you may want to explore first. All
the components are symbols in the library of StandardComponents.fla. Each symbol is linked
to an ActionScript class. Their location is as follows:

■ FLA file source code
■ In Windows: C:\Program Files\Macromedia\

Flash 8\language\Configuration\ComponentFLA\StandardComponents.fla.
■ On the Macintosh: HD/Applications/Macromedia Flash 8/Configuration/

ComponentFLA/StandardComponents.fla
125

■ ActionScript class files
■ In Windows: C:\Program Files\Macromedia\Flash 8\language\First Run\Classes\mx
■ On the Macintosh: HD/Applications/Macromedia Flash 8/First Run/Classes/mx

Overview of component structure
A component consists of a Flash (FLA) file and an ActionScript (AS) file. You can optionally
create and package other files (for example, an icon and a .swd debugging file) with your
component, but all components require a FLA and an ActionScript file. When you’ve finished
developing your component, you export it as a SWC file.

A Flash (FLA) file, an ActionScript (AS) file, and a SWC file

The FLA file contains a movie clip symbol that must be linked to the AS file in both the
Linkage Properties and the Component Definition dialog boxes.

The movie clip symbol has two frames and two layers. The first layer is an Actions layer and
has a stop() global function on Frame 1. The second layer is an Assets layer with two
keyframes: Frame 1 contains a bounding box; Frame 2 contains all other assets, including
graphics and base classes, used by the component.

The ActionScript code specifying the properties and methods for the component is in a
separate ActionScript class file. This class file also declares which, if any, classes the
component extends. The name of the AS class file is the name of the component plus the “.as”
extension. For example, MyComponent.as contains the source code for the MyComponent
component.
126 Creating Components

It’s a good idea to save the component’s FLA and AS files in the same folder and give them the
same name. If the AS file is not saved in the same folder, you must verify that the folder is in
the classpath so the FLA file can find it. For more information about the classpath, see
“Classes” in Learning ActionScript 2.0 in Flash.

Building your first component
In this section, you will build a Dial component. The completed component files, Dial.fla,
Dial.as, and DialAssets.fla are located in the examples folder on your computer:

■ In Windows: the C:\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\DialComponent folder.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Samples and Tutorials/
Samples/Components/DialComponent folder.

The Dial component is a potentiometer, like those used to measure potential difference in
voltage. A user can click on the needle and drag it to change its position. The API for the Dial
component has one property, value, that you can use to get and set the position of
the needle.

This section takes you through the steps of creating a component. These procedures are
discussed in more detail in subsequent sections (including “Selecting a parent class”
on page 136, “Creating a component movie clip” on page 138, “Creating the ActionScript
class file” on page 143, and “Exporting and distributing a component” on page 182).This
section contains the following topics:

■ “Creating the Dial Flash (FLA) file” on page 127
■ “Creating the Dial class file” on page 130
■ “Testing and exporting the Dial component” on page 133

Creating the Dial Flash (FLA) file
The first steps for creating a component include creating the component movie clip within a
FLA document file.

To create the Dial FLA file:

1. In Flash, select File > New and create a new document.

2. Select File > Save As and save the file as Dial.fla.

The file can have any name, but giving it the same name as the component is practical.
3. Select Insert > New Symbol. The component itself is created as a new MovieClip symbol

so it will be available through the library.

Name the component Dial, and assign it the behavior Movie clip.
Building your first component 127

4. If the Linkage section of the Create New Symbol dialog box isn’t open, click the Advanced
button to reveal it.

5. In the Linkage area, select Export for ActionScript and deselect Export in First Frame.

6. In the Identifier text box, enter a linkage identifier such as Dial_ID.

7. in the AS 2.0 Class text box, enter Dial. This value is the component class name. If the class
is in a package (for example, mx.controls.Button), enter the entire package name.

8. Click OK.

Flash changes to symbol-editing mode.
9. Insert a new layer. Name the top layer Actions and the bottom layer Assets.

10. Select Frame 2 in the Assets layer and insert a keyframe (F6).

This is the structure of the component movie clip: an Actions layer and an Assets layer.
The Actions layer has one keyframe and the Assets layer has two keyframes.

11. Select Frame 1 in the Actions layer and open the Actions panel (F9). Enter a stop();
global function.

This prevents the movie clip from proceeding to Frame 2.
12. Select File > Import > Open External Library and select the StandardComponents.fla file

from the Configuration/ComponentFLA folder. For example:

■ In Windows: C:\Program Files\Macromedia\Flash 8\language\
Configuration\ComponentFLA\StandardComponents.fla.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Configuration/
ComponentFLA/StandardComponents.fla

13. Dial extends the UIComponent base class; therefore, you must drag an instance of the
UIComponent into the Dial document. In the StandardComponents.fla library, browse to
the UIComponent movie clip in the following folder: Flash UI Components 2 > Base
Classes > FUIObject Subclasses and drag it to the Dial.fla library.

Asset dependencies are automatically copied to the Dial library with UIComponent.

N
O

T
E

For information about folder locations, see “Configuration folders installed with
Flash” in Getting Started with Flash.

N
O

T
E

When you drag UIComponent to the Dial library, the folder hierarchy in the Dial
library is changed. If you plan to use your library again, or use it with other groups of
components (such as the version 2 components), you should restructure the folder
hierarchy to match the StandardComponents.fla library so that it’s organized well
and you avoid duplicate symbols.
128 Creating Components

14. In the Assets layer, select Frame 2 and drag an instance of UIComponent to the Stage.

15. Close the StandardComponents.fla library.

16. Select File > Import > Open External Library and select the DialAssets.fla file.

■ In Windows: C:\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\DialComponent\DialAssets.fla.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Samples and Tutorials/
Samples/Components/DialComponent/DialAssets.fla

17. In the Assets layer, select Frame 2 and drag an instance of the DialFinal movie clip from
the DialAssets library to the Stage.

All the component assets are added to Frame 2 of the Assets layer. Because Frame 1 of the
Actions layer has a stop() global function, the assets in Frame 2 will not be seen as they
are arranged on the Stage.
You add assets to Frame 2 for two reasons:
■ So that all assets and sub assets are automatically copied into the library and are

available to instantiate dynamically (in the case of DialFinal), or to access their
methods, properties, and events (in the case of UIComponent).

■ Placing assets in a frame ensures that they are loaded more smoothly as the movie is
streamed, so you don’t need to set the library assets to export in the first frame. This
approach prevents an initial spike of data transfer while downloading.

18. Close the DialAssets.fla library.

19. In the Assets layer, select Frame 1. Drag the BoundingBox movie clip from the library
(Flash UI Components 2 > Component Assets folder) to the Stage. Name the
BoundingBox instance boundingBox_mc. Use the Info panel to set both the height and
width of the DialFinal movie clip to 250 pixels, and the x, y coordinates at 0, 0.

The BoundingBox instance is used to create the component’s live preview and resize
during authoring. You must set the size of the bounding box so that it can enclose all the
graphical elements in your component.

20.Select the Dial movie clip in the library, and select Component Definition from the Library
context menu (Windows: Right-click; Mac: control-click).

N
O

T
E

If you are extending a component (including any version 2 component) you must
keep any instance names already in use by that component because its code will
refer to those instance names. For example, if you include a version 2 component
that is already using the instance name boundingBox_mc, you should not rename it.
For your own instance names, you can use any unique name that does not conflict
with an existing one within the same scope.
Building your first component 129

21. In the AS 2.0 Class text box, enter Dial.

This value is the name of the ActionScript class. If the class is in a package, the value is the
full package, for example, mx.controls.CheckBox.

22.Click OK.

23.Save the file.

Creating the Dial class file
Now, you need to create the Dial class file as a new ActionScript file.

To create the Dial class file:

1. In Flash, select File > New and then select ActionScript File.

2. Select File > Save As and save the file as Dial.as in the same folder as the Dial.fla file.

3. You can copy or type the following Dial component ActionScript class code into your new
Dial.as file. Typing rather than copying the code helps you become familiar with each
element of the component code.

Please read the comments in the code for a description of each section. (For detailed
information on the elements of a component class file, see “Overview of a component
class file” on page 144.
// Import the package so you can reference
// the class directly.
import mx.core.UIComponent;

// Event metadata tag
[Event("change")]
class Dial extends UIComponent
{

// Components must declare these to be proper
// components in the components framework.
static var symbolName:String = "Dial";
static var symbolOwner:Object = Dial;
var className:String = "Dial";

// The needle and dial movie clips that are
// the component's graphical representation
private var needle:MovieClip;
private var dial:MovieClip;
private var boundingBox_mc:MovieClip;

N
O

T
E

You can use any text editor to save the Dial.as file.
130 Creating Components

// The private member variable "__value" is publicly
// accessible through implicit getter/setter methods,
// Updating this property updates the needle's position
// when the value is set.
private var __value:Number = 0;

// This flag is set when the user drags the
// needle with the mouse, and cleared afterwards.
private var dragging:Boolean = false;

// Constructor;
// While required for all classes, v2 components require
// the contstructor to be empty with zero arguments.
// All initialization takes place in a required init()
// method after the class instance has been constructed.
function Dial() {
}

// Initialization code:
// The init() method is required for v2 components. It must also
// in turn call its parent class init() method with super.init().
// The init() method is required for components extending UIComponent.
function init():Void {

super.init();
useHandCursor = false;
boundingBox_mc._visible = false;
boundingBox_mc._width = 0;
boundingBox_mc._height = 0;

}
// Create children objects needed at start up:
// The createChildren() method is required for components
// extending UIComponent.
public function createChildren():Void {

dial = createObject("DialFinal", "dial", 10);
size();

}

// The draw() method is required for v2 components.
// It is invoked after the component has been
// invalidated by someone calling invalidate().
// This is better than redrawing from within the set() function
// for value, because if there are other properties, it's
// better to batch up the changes into one redraw, rather
// than doing them all individually. This approach leads
// to more efficiency and better centralization of code.
function draw():Void {

super.draw();
dial.needle._rotation = value;

}

Building your first component 131

// The size() method is invoked when the component's size
// changes. This is an opportunity to resize the children,
// and the dial and needle graphics.
// The size() method is required for components extending UIComponent.
function size():Void {

super.size();
dial._width = width;
dial._height = height;
// Cause the needle to be redrawn, if necessary.
invalidate();

}

// This is the getter/setter for the value property.
// The [Inspectable] metadata makes the property appear
// in the Property inspector. This is a getter/setter
// so that you can call invalidate and force the component
// to redraw, when the value is changed.
[Bindable]
[ChangeEvent("change")]
[Inspectable(defaultValue=0)]
function set value (val:Number)
{

__value = val;
invalidate();

}

function get value ():Number
{

return twoDigits(__value);
}

function twoDigits(x:Number):Number
{

return (Math.round(x * 100) / 100);
}

// Tells the component to expect mouse presses
function onPress()
{

beginDrag();
}

// When the dial is pressed, the dragging flag is set.
// The mouse events are assigned callback functions.
function beginDrag()
{

dragging = true;
onMouseMove = mouseMoveHandler;
onMouseUp = mouseUpHandler;
132 Creating Components

}

// Remove the mouse events when the drag is complete
// and clear the flag.
function mouseUpHandler()
{

dragging = false;
delete onMouseMove;
delete onMouseUp;

}

function mouseMoveHandler()
{

// Calculate the angle
if (dragging) {

var x:Number = _xmouse - width/2;
var y:Number = _ymouse - height/2;

var oldValue:Number = value;
var newValue:Number = 90+180/Math.PI*Math.atan2(y, x);
if (newValue<0) {

newValue += 360;
}
if (oldValue != newValue) {

value = newValue;
dispatchEvent({type:"change"});

}
}

}
}

Testing and exporting the Dial component
You’ve created the Flash file that contains the graphical elements, the base classes and the class
file that contains all the functionality of the Dial component. Now it’s time to test the
component.

Ideally, you would test the component as you work, especially while you’re writing the class
file. The fastest way to test as you work is to convert the component to a compiled clip and
use it in the component’s FLA file.

When you’ve completely finished a component, export it as a SWC file. For more
information, see “Exporting and distributing a component” on page 182.
Building your first component 133

To test the Dial component:

1. In the Dial.fla file, select the Dial component in the library, open the Library context menu
(Windows: Right-click; Mac: control-click), and select Convert to Compiled Clip.

A compiled clip is added to the library with the name Dial SWF.

2. Drag Dial SWF to the Stage on the main Timeline.

3. You can resize it and set its value property in the Property inspector or the Component
Inspector. When you set its value property, the needle’s position should change
accordingly.

4. To test the value property at runtime, give the dial the instance name dial and add the
following code to Frame 1 on the main Timeline:
// position of the text field
var textXPos:Number = dial.width/2 + dial.x
var textYPos:Number = dial.height/2 + dial.y;

// creates a text field in which to view the dial.value
createTextField("dialValue", 10, textXPos, textYPos, 100, 20);

// creates a listener to handle the change event
function change(evt){
// places the value property in the text field
// whenever the needle moves

dialValue.text = dial.value;
}
dial.addEventListener("change", this);

5. Select Control > Test Movie to test the component in Flash Player.
N

O
T

E

If you’ve already created a compiled clip (for example, if this is the second or third
time you’re testing), a Resolve Library Conflict dialog box appears. Select Replace
Existing Items to add the new version to the document.
134 Creating Components

To export the Dial component:

1. In the Dial.fla file, select the Dial component in the library, open the Library context menu
(Windows: Right-click; Mac: control-click), and select Export SWC File.

2. Select a location to save the SWC file.

If you save it to the Components folder in the user-level configuration folder, you can
reload the Components panel without restarting Flash and the component appears in
the panel.

The completed Dial component

N
O

T
E

For information about folder locations, see “Configuration folders installed with
Flash” in Using Flash.
Building your first component 135

Selecting a parent class
The first thing to decide when creating a component is whether to extend one of the version 2
classes. If you choose to extend a version 2 class, you can either extend a component class (for
example, Button, CheckBox, ComboBox, List, and so on) or one of the base classes,
UIObject or UIComponent. All the component classes, except the Media components,
extend the base classes; if you extend a component class, the class automatically inherits from
the base classes as well.

The two base classes supply common features for components. By extending these classes,
your component begins with a basic set of methods, properties, and events.

You don’t have to create a subclass UIObject or UIComponent or any other classes in the
version 2 framework. Even if your component classes inherit directly from the MovieClip
class, you can use many powerful component features: export to a SWC file or compiled clip,
use built-in live preview, view inspectable properties, and so on. However, if you want your
components to work with the Macromedia version 2 components, and use the manager
classes, you need to extend UIObject or UIComponent.

The following table briefly describes the version 2 base classes:

Base class Extends Description

mx.core.UIObject MovieClip UIObject is the base class for all graphical objects. It can
have shape, draw itself, and be invisible.
UIObject provides the following functionality:
• Editing styles
• Event handling
• Resizing by scaling

mx.core.UIComponent UIObject UIComponent is the base class for all components.
UIComponent provides the following functionality:
• Creating focus navigation
• Creating a tabbing scheme
• Enabling and disabling components
• Resizing components
• Handling low-level mouse and keyboard events
136 Creating Components

Understanding the UIObject class
Components based on version 2 of the Macromedia Component Architecture descend from
the UIObject class, which is a subclass of the MovieClip class. The MovieClip class is the base
class for all classes in Flash that represent visual objects on the screen.

UIObject adds methods that allow you to handle styles and events. It posts events to its
listeners just before drawing (the draw event is the equivalent of the
MovieClip.onEnterFrame event), when loading and unloading (load and unload), when its
layout changes (move, resize), and when it is hidden or revealed (hide and reveal).

UIObject provides alternate read-only variables for determining the position and size of a
component (width, height, x, y), and the move() and setSize() methods to alter the
position and size of an object.

The UIObject class implements the following:

■ Styles
■ Events
■ Resize by scaling

Understanding the UIComponent class
The UIComponent class is a subclass of UIObject (see UIComponent class in Components
Language Reference). It is the base class of all components that handle user interaction (mouse
and keyboard input). The UIComponent class allows components to do the following:

■ Receive focus and keyboard input
■ Enable and disable components
■ Resize by layout

About extending other version 2 classes
To make component construction easier, you can extend any class; you are not required to
extend the UIObject or UIComponent class directly. If you extend any other version 2
component’s class (except the Media components), you extend UIObject and UIComponent
by default. Any component class listed in the Component dictionary can be extended to
create a new component class.

For example, if you want to create a component that behaves almost the same as a Button
component does, you can extend the Button class instead of re-creating all the functionality of
the Button class from the base classes.
Selecting a parent class 137

The following figure shows the version 2 component hierarchy:

Version 2 component hierarchy

A FlashPaper version of this file is available in the Flash installation directory at this location:
Flash 8\Samples and Tutorials\Samples\Components\arch_diagram.swf.

About extending the MovieClip class
You can choose not to extend a version 2 class and have your component inherit directly from
the ActionScript MovieClip class. However, if you want any of the UIObject and
UIComponent functionality, you’ll have to build it yourself. You can open the UIObject and
UIComponent classes (First Run/Classes/mx/core) to examine how they are constructed.

Creating a component movie clip
To create a component, you must create a movie clip symbol and link it to the component’s
class file.

The movie clip has two frames and two layers. The first layer is an Actions layer and has a
stop() global function on Frame 1. The second layer is an Assets layer with two keyframes.
Frame 1 contains a bounding box or any graphics that serve as placeholders for the final art.
Frame 2 contains all other assets, including graphics and base classes, used by the component.
138 Creating Components

Inserting a new movie clip symbol
All components are MovieClip objects. To create a new component, you must first insert a
new symbol into a new FLA file.

To add a new component symbol:

1. In Flash, create a blank Flash document.

2. Select Insert > New Symbol.

The Create New Symbol dialog box appears.
3. Enter a symbol name. Name the component by capitalizing the first letter of each word in

the component (for example, MyComponent).

4. Select the Movie Clip behavior.

5. Click the Advanced button to display the advanced settings.

6. Select Export for ActionScript and deselect Export in First Frame and Export in
First Frame.

7. Enter a linkage identifier.

8. In the AS 2.0 Class text box, enter the fully qualified path to the ActionScript 2.0 class.

The class name should be the same as the component name that appears in the
Components panel. For example, the Button component’s class is mx.controls.Button.

If the ActionScript file is in a package, you must include the package name. This value can
be relative to the classpath or can be an absolute package path (for example,
mypackage.MyComponent).

9. In most cases, you should deselect Export in First Frame (it is selected by default). For more
information, see “Component development checklist” on page 186.

10. Click OK.

Flash adds the symbol to the library and switches to symbol-editing mode. In this mode,
the name of the symbol appears above the upper-left corner of the Stage, and a cross hair
indicates the symbol’s registration point.

Editing the movie clip
After you create the new symbol and define the linkages for it, you can define the
component’s assets in the symbol’s Timeline.

N
O

T
E

Do not include the filename’s extension; the AS 2.0 Class text box points to the
packaged location of the class and not the file system’s name for the file.
Creating a component movie clip 139

A component’s symbol should have two layers. This section describes what layers to insert and
what to add to those layers.

To edit the movie clip:

1. Rename Layer 1 Actions and select Frame 1.

2. Open the Actions panel and add a stop() function, as follows:
stop();

Do not add any graphical assets to this frame.
3. Add a Layer named Assets.

4. On the Assets layer, select Frame 2 and insert a blank keyframe.

There are now two blank keyframes in this layer.
5. Do one of the following:

■ If the component has visual assets that define the bounding area, drag the symbols
into Frame 1 and arrange them appropriately.

■ If your component creates all its visual assets at runtime, drag a BoundingBox symbol
to the Stage in Frame 1, size it correctly, and name the instance boundingBox_mc.
The symbol is located in the library of the StandardComponents.fla that is located in
the Configuration/ComponentFLA folder.
140 Creating Components

6. If you are extending an existing component, place an instance of that component and any
other base classes in Frame 2 of the Assets layer.

To do this, select the symbol from the Components panel and drag it to the Stage. If you
are extending a base class, open StandardComponents.fla from the Configuration/
ComponentFLA folder and drag the class from the library to the Stage.

7. Add any graphical assets used by this component on Frame 2 of your component’s
Assets layer.

Any asset that a component uses (whether it’s another component or media such as
bitmaps) should have an instance placed in the second frame of the Assets layer.

8. Your finished symbol should look something like this:

Defining the movie clip as a component
The movie clip symbol must be linked to an ActionScript class file in the Component
Definition dialog box. This is how Flash knows where to look for the component’s metatags.
(For more information about metatags, see “Adding component metadata” on page 149.)
There are other options you can select in the Component Definition dialog box as well.

N
O

T
E

When you drag UIComponent to the component library, the folder hierarchy in the
library is changed. If you plan to use your library again, or use it with other groups of
components (such as the version 2 components), you should restructure the folder
hierarchy to match the StandardComponents.fla library so that it’s organized well
and you avoid duplicate symbols.

boundingBox_mc
Creating a component movie clip 141

To define a movie clip as a component:

1. Select the movie clip in the library and select Component Definition from the Library
context menu (Windows: Right-click; Mac: control-click).

2. You must enter an AS 2.0 class.

If the class is part of a package, enter the full package name.
3. Specify other options in the Component Definition dialog box, if desired:

■ Click the Plus (+) button to define parameters.
This is optional. The best practice is to use the metadata Inspectable tag in the
component’s class file to specify parameters. When an ActionScript 2.0 class is not
specified, define the parameters for the component here.

■ Specify a custom UI.
This is a SWF file that plays in the Component inspector. You can embed it in the
component FLA file or browse to an external SWF.

■ Specify a live preview.
This is an external or embedded SWF file. You don’t need to specify a live preview
here; you can add a bounding box to the component movie clip, and Flash creates a
live preview for you. See “Creating a component movie clip” on page 138.

■ Enter a description.
The Description field was deprecated in Flash MX 2004 because the Reference panel
has been removed. This field is provided for backward compatibility when you save
FLA files in the Flash MX format.

■ Choose an icon.
This option specifies a PNG file to use as an icon for the component. If you specify an
IconFile metadata tag in the ActionScript 2.0 class file (best practice), this field is
ignored.

■ Select or deselect Parameters Are Locked in Instances.
When this option is unselected, users can add parameters to each component instance
that differ from the component’s parameters. Generally, this setting should be selected.
This option provides backward compatibility with Flash MX.

■ Specify a tooltip that appears in the Components panel.
142 Creating Components

Creating the ActionScript class file
All component symbols are linked to an ActionScript 2.0 class file. (For information on
linking, see “Creating a component movie clip” on page 138.)

To edit ActionScript class files, you can use Flash, any text editor, or any Integrated
Development Environment (IDE).

The external ActionScript class extends another class (whether the class is a version 2
component, a version 2 base class, or the ActionScript MovieClip class). You should extend
the class that creates the functionality that is most similar to the component you want to
create. You can inherit from (extend) only one class. ActionScript 2.0 does not allow multiple
inheritance.

Simple example of a component class file
The following is a simple example of a class file called MyComponent.as. If you were creating
this component, you would link this file to the component movie clip in Flash.

This example contains a minimal set of imports, methods, and declarations for a component,
MyComponent, that inherits from the UIComponent class. The MyComponents.as file is
saved in the myPackage folder.
[Event("eventName")]

// Import packages.
import mx.core.UIObject;

// Declare the class and extend from the parent class.
class mypackage.MyComponent extends UIObject {

// Identify the symbol name that this class is bound to.
static var symbolName:String = "mypackage.MyComponent";

// Identify the fully qualified package name of the symbol owner.
static var symbolOwner:Object = Object(mypackage.MyComponent);

// Provide the className variable.
var className:String = "MyComponent";

// Define an empty constructor.
function MyComponent() {
}

// Call the parent’s init() method.
// Hide the bounding box--it’s used
// only during authoring.
Creating the ActionScript class file 143

function init():Void {
super.init();

boundingBox_mc.width = 0;
boundingBox_mc.height = 0;
boundingBox_mc.visible = false;

}

function createChildren():Void{
// Call createClassObject to create subobjects.
size();
invalidate();

}

function size(){
// Write code to handle sizing.
super.size();
invalidate();

}

function draw(){
// Write code to handle visual representation.
super.draw();

}

}

Overview of a component class file
The following is a general procedure that describes how to create an ActionScript file for a
component class. Some steps may be optional, depending on the type of component
you create.

To write a component class file:

1. (Optional) Import classes. (See “Importing classes” on page 146).

This allows you to refer to classes without writing out the package (for example, Button
instead of mx.controls.Button).

2. Define the class using the class keyword; use the extend keyword to extend a parent class.
(See “Defining the class and its superclass” on page 146).

3. Define the symbolName, symbolOwner, and className variables. (See “Identifying the
class, symbol, and owner names” on page 147).

These variables are necessary only in version 2 components.
144 Creating Components

4. Define member variables. (See “Defining variables” on page 148).

These can be used in getter/setter methods.
5. Define a constructor function. (See “About the constructor function” on page 164).

6. Define an init() method. (See “Defining the init() method” on page 162).

This method is called when the class is created if the class extends UIComponent. If the
class extends MovieClip, call this method from the constructor function.

7. Define a createChildren() method. (See “Defining the createChildren() method”
on page 162).

This method is called when the class is created if the class extends UIComponent. If the
class extends MovieClip, call this method from the constructor function.

8. Define a size() method. (See “Defining the size() method” on page 165).

This method is called when the component is resized, if the class extends UIComponent.
In addition, this method is called when the component’s live preview is resized during
authoring.

9. Define a draw() method. (See “About invalidation” on page 166).

This method is called when the component is invalidated, if the class extends
UIComponent.

10. Add a Metadata tag and declaration. (See “Adding component metadata” on page 149).

Adding the tag and declaration causes getter/setter properties to appear in the Property
inspector and Component inspector in Flash.

11. Define getter/setter methods. (See “Using getter/setter methods to define parameters”
on page 148).

12. (Optional) Create variables for every skin element/linkage used in the component. (See
“About assigning skins” on page 168).

This allows users to set a different skin element by changing a parameter in
the component.
Creating the ActionScript class file 145

Importing classes
You can import class files so that you don’t have to write fully qualified class names
throughout your code. This can make code more concise and easier to read. To import a class,
use the import statement at the top of the class file, as in the following:
import mx.core.UIObject;
import mx.core.ScrollView;
import mx.core.ext.UIObjectExtensions;

class MyComponent extends UIComponent{

You can also use the wildcard character (*) to import all the classes in a given package. For
example, the following statement imports all classes in the mx.core package:
import mx.core.*;

If an imported class is not used in a script, the class is not included in the resulting SWF file’s
bytecode. As a result, importing an entire package with a wildcard does not create an
unnecessarily large SWF file.

Defining the class and its superclass
A component class file is defined like any class file. Use the class keyword to indicate the
class name. The class name must also be the name of the class file. Use the extends keyword
to indicate the superclass. For more information, see Chapter 7, “Writing custom class files,”
in Learning ActionScript 2.0 in Flash.
class MyComponentName extends UIComponent{

}

146 Creating Components

Identifying the class, symbol, and owner names
To help Flash find the proper ActionScript classes and packages and to preserve the
component’s naming, you must set the symbolName, symbolOwner, and className variables
in your component’s ActionScript class file.

The symbolOwner variable is an Object reference that refers to a symbol. If the component is
its own symbolOwner or is the symbolOwner has been imported, it does not have to be fully
qualified.

The following table describes these variables:

The following example adds the symbolName, symbolOwner, and className variables to the
MyButton class:
class MyButton extends mx.controls.Button {

static var symbolName:String = "MyButton";
static var symbolOwner = myPackage.MyButton;
var className:String = "MyButton";

}

Variable Type Description

symbolName String The name of the ActionScript class (for example, ComboBox).
This name must match the symbol’s linkage identifier.
This variable must be static.

symbolOwner Object The fully qualified class name (for example,
mypackage.MyComponent).
Do not use quotation marks around the symbolOwner value, because
it is an Object data type.
This name must match the AS 2.0 class in the Linkage Properties
dialog box.
This variable is used in the internal call to the createClassObject()
method.
This variable must be static.

className String The name of the component class. This does not include the
package name and has no corresponding setting in the Flash
development environment.
You can use the value of this variable when setting style properties.
Creating the ActionScript class file 147

Defining variables
The following code sample is from Button.as file (mx.controls.Button). It defines a variable,
btnOffset, to use in the class file. It also defines the variables __label, and
__labelPlacement. The latter two variables are prefixed with a double underscore to prevent
name conflicts when they are used in getter/setter methods, and ultimately used as properties
and parameters in the component. For more information, see “Using getter/setter methods to
define parameters” on page 148 in Learning ActionScript 2.0 in Flash.
/**
* Number used to offset the label and/or icon when button is pressed.
*/

var btnOffset:Number = 0;

/**
*@private
* Text that appears in the label if no value is specified.
*/

var __label:String = "default value";

/**
*@private
* default label placement
*/

var __labelPlacement:String = "right";

Using getter/setter methods to define parameters
The simplest way to define a component parameter is to add a public member variable that
makes the parameter “inspectable.” You can do this by using the Inspectable tag in the
Component inspector, or adding the Inspectable variable as follows:
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;

However, if code that employs a component modifies the flavorStr property, the
component typically must perform an action to update itself in response to the property
change. For example, if flavorStr is set to "cherry", the component might redraw itself
with a cherry image instead of the default strawberry image.

For regular member variables, the component is not automatically notified that the member
variable’s value has changed.
148 Creating Components

Getter/setter methods are a straightforward way to detect changes to component properties.
Instead of declaring a regular variable with var, declare getter/setter methods, as follows:
private var __flavorStr:String = "strawberry";

[Inspectable(defaultValue="strawberry")]

public function get flavorStr():String{
return __flavorStr;

}
public function set flavorStr(newFlavor:String) {

__flavorStr = newFlavor;
invalidate();

}

The invalidate() call causes the component to redraw itself with the new flavor. This is the
benefit of using getter/setter methods for the flavorStr property, instead of a regular
member variable. See “Defining the draw() method” on page 165.

To define getter/setter methods, remember these points:

■ Precede the method name with get or set, followed by a space and the property name.
■ The variable that stores the property’s value cannot have the same name as the getter or

setter. By convention, precede the names of the getter and setter variables with two
underscores.

Getters and setters are commonly used in conjunction with tags to define properties that are
visible in the Property and Component inspectors.

For more information about getter/setter methods, see “About getter and setter methods” in
Learning ActionScript 2.0 in Flash.

Adding component metadata
You can add component metadata tags in your external ActionScript class files to tell the
compiler about component parameters, data binding properties, and events. Metadata tags are
used in the Flash authoring environment for a variety of purposes.

The metadata tags can only be used in external ActionScript class files. You cannot use
metadata tags in FLA files.

Metadata is associated with a class declaration or an individual data field. If the value of an
attribute is a string, you must enclose that attribute in quotation marks.

Metadata statements are bound to the next line of the ActionScript file. When defining a
component property, add the metadata tag on the line before the property declaration. The
only exception is the Event metadata tag. When defining component events, add the
metadata tag outside the class definition so that the event is bound to the entire class.
Creating the ActionScript class file 149

In the following example, the Inspectable tags define the flavorStr, colorStr, and
shapeStr parameters:
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;
[Inspectable(defaultValue="blue")]
public var colorStr:String;
[Inspectable(defaultValue="circular")]
public var shapeStr:String;

In the Property inspector and the Parameters tab of the Component inspector, Flash displays
all of these parameters as type String.

Metadata tags
The following table describes the metadata tags you can use in ActionScript class files:

The following sections describe the component metadata tags in more detail.

Tag Description

Inspectable Exposes a property in the Component inspector and Property
inspector. See “About the Inspectable tag” on page 151.

InspectableList Identifies which subset of inspectable properties should be listed in the
Property inspector and Component inspector. If you don't add an
InspectableList attribute to your component's class, all inspectable
parameters appear in the Property inspector. See “About the
InspectableList tag” on page 153.

Event Defines a component event. See “About the Event tag” on page 153.

Bindable Reveals a property in the Bindings tab of the Component inspector.
See “About the Bindable tag” on page 154.

ChangeEvent Identifies a event that cause data binding to occur. See “About the
ChangeEvent tag” on page 156.

Collection Identifies a collection attribute exposed in the Component inspector.
See “About the Collection tag” on page 157.

IconFile Specifies the filename for the icon that represents this component in
the Components panel. See “About the IconFile tag” on page 158.

ComponentTask Specifies the filenames of one or more associated JSFL files to
perform tasks in the authoring environment. See “About the
ComponentTask tag” on page 158.
150 Creating Components

About the Inspectable tag
You use the Inspectable tag to specify the user-editable (inspectable) parameters that appear in
the Component inspector and Property inspector. This lets you maintain the inspectable
properties and the underlying ActionScript code in the same place. To see the component
properties, drag an instance of the component onto the Stage and select the Parameters tab of
the Component inspector.

Collection parameters are also inspectable. For more information, see “About the Collection
tag” on page 157.

The following figure shows the Parameters tab of the Component inspector for the
DateChooser component:

Alternatively, you can view a subset of the component properties on the Property inspector
Parameters tab.

When determining which parameters to reveal in the authoring environment, Flash uses the
Inspectable tag. The syntax for this tag is as follows:
[Inspectable(value_type=value[,attribute=value,...])]
property_declaration name:type;

The following example defines the enabled parameter as inspectable:
[Inspectable(defaultValue=true, verbose=1, category="Other")]
var enabled:Boolean;
Creating the ActionScript class file 151

The Inspectable tag also supports loosely typed attributes like this:
[Inspectable("danger", 1, true, maybe)]

The metadata statement must immediately precede the property’s variable declaration in order
to be bound to that property.

The following table describes the attributes of the Inspectable tag:

None of these attributes are required; you can use Inspectable as the metadata tag.

All properties of the superclass that are marked Inspectable are automatically inspectable in
the current class. Use the InspectableList tag if you want to hide some of these properties
for the current class.

Attribute Type Description

defaultValue String or
Number

(Optional) A default value for the inspectable property.

enumeration String (Optional) Specifies a comma-delimited list of legal values
for the property.

listOffset Number (Optional) Added for backward compatibility with Flash MX
components. Used as the default index into a List value.

name String (Optional) A display name for the property. For example,
Font Width. If not specified, use the property’s name, such
as _fontWidth.

type String (Optional) A type specifier. If omitted, use the property’s
type. The following values are acceptable:
• Array
• Boolean
• Color
• Font Name
• List
• Number
• Object
• String

variable String (Optional) Added for backward compatibility with Flash MX
components. Specifies the variable that this parameter is
bound to.

verbose Number (Optional) An inspectable property that has the verbose
attribute set to 1 does not appear in the Property inspector
but does appear in the Component inspector. This is
typically used for properties that are not modified frequently.
152 Creating Components

About the InspectableList tag
Use the InspectableList tag to specify which subset of inspectable properties should appear in
the Property inspector. Use InspectableList in combination with Inspectable so that you can
hide inherited attributes for components that are subclasses. If you do not add an
InspectableList tag to your component’s class, all inspectable parameters, including those of
the component’s parent classes, appear in the Property inspector.

The InspectableList syntax is as follows:
[InspectableList("attribute1"[,...])]
// class definition

The InspectableList tag must immediately precede the class definition because it applies to the
entire class.

The following example allows the flavorStr and colorStr properties to be displayed in the
Property inspector, but excludes other inspectable properties from the Parent class:
[InspectableList("flavorStr","colorStr")]
class BlackDot extends DotParent {

[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;
[Inspectable(defaultValue="blue")]
public var colorStr:String;
...

}

About the Event tag
Use the Event tag to define events that the component emits.

This tag has the following syntax:
[Event("event_name")]

For example, the following code defines a click event:
[Event("click")]

Add the Event statements outside the class definition in the ActionScript file so that the
events are bound to the class and not a particular member of the class.

The following example shows the Event metadata for the UIObject class, which handles the
resize, move, and draw events:
...
import mx.events.UIEvent;
[Event("resize")]
[Event("move")]
[Event("draw")]
class mx.core.UIObject extends MovieClip {

...
}

Creating the ActionScript class file 153

To broadcast a particular instance, call the dispatchEvent() method. See “Using the
dispatchEvent() method” on page 166.

About the Bindable tag
Data binding connects components to each other. You achieve visual data binding through
the Bindings tab of the Component inspector. From there, you add, view, and remove
bindings for a component.

Although data binding works with any component, its main purpose is to connect user
interface components to external data sources, such as web services and XML documents.
These data sources are available as components with properties, which you can bind to other
component properties.

Use the Bindable tag before a property in an ActionScript class to make the property appear in
the Bindings tab in the Component inspector. You can declare a property by using var or
getter/setter methods. If a property has both a getter and a setter method, you only need to
apply the Bindable tag to one.

The Bindable tag has the following syntax:
[Bindable "readonly"|"writeonly",type="datatype"]

Both attributes are optional.

The following example defines the variable flavorStr as a property that is accessible on the
Bindings tab of the Component inspector:
[Bindable]
public var flavorStr:String = "strawberry";
154 Creating Components

The Bindable tag takes three options that specify the type of access to the property, as well as
the data type of that property. The following table describes these options:

All properties of all components can participate in data binding. The Bindable tag merely
controls which of those properties are available for binding in the Component inspector. If a
property is not preceded by the Bindable tag, you can still use it for data binding, but you
have to create the bindings using ActionScript.

The Bindable tag is required when you use the ChangeEvent tag.

For information on creating data binding in the Flash authoring environment, see “Data
binding (Flash Professional only)” in Using Flash.

Option Description

readonly Indicates that when you create bindings in the Component inspector, you
can only create bindings that use this property as a source. However, if
you use ActionScript to create bindings, there is no such restriction.
[Bindable("readonly")]

writeonly Indicates that when you create bindings in the Component inspector, this
property can only be used as the destination of a binding. However, if you
use ActionScript to create bindings, there is no such restriction.
[Bindable("writeonly")]

type="datatype" Indicates the type that data binding uses for the property. The rest of Flash
uses the declared type.
If you do not specify this option, data binding uses the property’s data type
as declared in the ActionScript code.
In the following example, data binding will treat x as type DataProvider,
even though it is really type Object:
 [Bindable(type="DataProvider")]
 var x: Object;
Creating the ActionScript class file 155

About the ChangeEvent tag
The ChangeEvent tag tells data binding that the component will generate an event any time
the value of a specific property changes. In response to the event, data binding executes any
binding that has that property as a source. The component only generates the event if you
write appropriate ActionScript code in the component. The event should be included in the
list of Event metadata declared by the class.

You can declare a property by using var or getter/setter methods. If a property has both a
getter and a setter method, you only need to apply the ChangeEvent tag to one.

The ChangeEvent tag has the following syntax:
[Bindable]
[ChangeEvent("event")]
property_declaration or getter/setter function

In the following example, the component generates the change event when the value of the
bindable property flavorStr changes:
[Bindable]
[ChangeEvent("change")]
public var flavorStr:String;

When the event that is specified in the metadata occurs, Flash notifies bindings that the
property has changed.

You can register multiple events in the tag, as the following example shows:
[ChangeEvent("change1", "change2", "change3")]

Any one of those events indicates a change to the property. They do not all have to occur to
indicate a change.
156 Creating Components

About the Collection tag
Use the Collection tag to describe an array of objects that can be modified as a collection of
items in the Values dialog box while authoring. The type of the objects is identified by the
collectionItem attribute. A collection property contains a series of collection items that you
define in a separate class. This class is either mx.utils.CollectionImpl or a subclass of it. The
individual objects are accessed through the methods of the class identified by the
collectionClass attribute.

A collection property in the Component inspector and the Values dialog box that appears when you
click the magnifying glass.

The syntax for the Collection tag is as follows:
[Collection (name=”name”, variable="varname",

collectionClass="mx.utils.CollectionImpl",
collectionItem="coll-item-classname", identifier="string")]

public var varname:mx.utils.Collection;
Creating the ActionScript class file 157

The following table describes the attributes of the Collection tag:

For more information, see “Collection Properties” on page 187.

About the IconFile tag
You can add an icon that represents your component in the Components panel of the Flash
authoring environment. For more information, see “Adding an icon” on page 185.

About the ComponentTask tag
You can specify one or more Flash JavaScript (JSFL) files to perform tasks for your
component from within the Flash authoring environment. Use the ComponentTask tag to
define this association between your component and its JSFL file and to associate any
additional files required a JSFL file. The JSFL files interact with the JavaScript API in the
Macromedia Flash authoring environment.

Attribute Type Description

name String (Required) Name that appears in the Component inspector for the
collection.

variable String (Required) ActionScript variable that points to the underlying
Collection object (for example, you might name a Collection
parameter Columns, but the underlying variable attribute might
be __columns).

collectionClass String (Required) Specifies the class type to be instantiated for the
collection property. This is usually mx.utils.CollectionImpl, but it
can also be a class that extends mx.utils.CollectionImpl.

collectionItem String (Required) Specifies the class of the collection items to be stored
within the collection. This class includes its own inspectable
properties that are exposed through metadata.

identifier String (Required) Specifies the name of an inspectable property within
the collection item class that Flash MX uses as the default
identifier when the user adds a new collection item through the
Values dialog box. Each time a user creates a new collection item,
Flash MX sets the item name to identifier plus a unique index (for
example, if identifier=name, the Values dialog box displays
name0, name1, name2, and so on).

N
O

T
E

Any JSFL task files and required dependency files declared with the ComponentTask
tag must reside in the same folder as your component FLA file when you export your
component as a SWC file.
158 Creating Components

The ComponentTask tag has the following syntax:
[ComponentTask [taskName,taskFile [,otherFile[,…]]]

The taskName and taskFile attributes are required. The otherFile attribute is optional

The following example associates SetUp.jsfl and AddNewSymbol.jsfl with the component
class named myComponent. The AddNewSymbol.jsfl requires a testXML.xml file and is
specified in the otherFile attribute.
[ComponentTask("Do Some Setup","SetUp.jsfl")]
[ComponentTask("Add a new Symbol","AddNewSymbol.jsfl","testXML.xml")]
class myComponent{

//...
}

The following table describes the attributes of the ComponentTask tag:

Defining component parameters
When building a component, you can add parameters that define its appearance and
behavior. The most commonly used parameters appear as authoring parameters in the
Component inspector and Property inspector. You can also set all inspectable and collection
parameters with ActionScript. You define these properties in the component class file by using
the Inspectable tag (see “About the Inspectable tag” on page 151).

Attribute Type Description

taskName String (Required) The name of the task as a string. This name is
displayed in the Tasks pop-up menu that appears on the Schema
tab of the Component inspector.

taskFile String (Required) The name of the JSFL file that implements the tasks
within the authoring environment. The file must reside in the same
folder as your component FLA when you export your component
as a SWC file.

otherFile String (Optional) One or more names of files that are required by the
JSFL file such as an XML file. The file(s) must reside in the same
folder as your component FLA when you export your component
as a SWC file.
Creating the ActionScript class file 159

The following example sets several component parameters in the JellyBean class file, and
exposes them with the Inspectable tag in the Component inspector:
class JellyBean{

// a string parameter
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;

// a string list parameter

[Inspectable(enumeration="sour,sweet,juicy,rotten",defaultValue="sweet")
]
public var flavorType:String;

// an array parameter
[Inspectable(name="Flavors", defaultValue="strawberry,grape,orange",
verbose=1, category="Fruits")]
var flavorList:Array;

// an object parameter
[Inspectable(defaultValue="belly:flop,jelly:drop")]
public var jellyObject:Object;

// a color parameter
[Inspectable(defaultValue="#ffffff")]
public var jellyColor:Color;

// a setter
[Inspectable(defaultValue="default text")]
function set text(t:String)

}

You can use any of the following types for parameters:

■ Array
■ Object
■ List
■ String
■ Number
■ Boolean
■ Font Name
■ Color

N
O

T
E

The JellyBean class is a theoretical example. To see an actual example, look at the
Button.as class file that installs with Flash in the language/First Run/Classes/mx/
controls directory.
160 Creating Components

About core functions
You must define five functions in the component class file: init(), createChildren(), the
constructor function, draw(), and size(). When a component extends the UIComponent,
these five functions in the class file are called in the following order:
■ init()

Any initialization occurs during the init() function call. For example, instance member
variables can be set at this time and the component bounding box can be hidden.
After init() is called, the width and height properties are automatically set. See
“Defining the init() method” on page 162.

■ createChildren()

Called as a frame plays in the Timeline. During this time, the component user can call
methods and properties to set up the component. Any subobjects the component needs to
create are created within the createChildren() function. See “Defining the
createChildren() method” on page 162.

■ Constructor function
Called to create an instance of the component. The component constructor function is
generally left empty to avoid initialization conflicts. See “About the constructor function”
on page 164.

■ draw()

Any visual elements of the component that are programmatically created or modified
should occur within the draw function. See “Defining the draw() method” on page 165.

■ size()
This function is called whenever a component is resized at runtime and is passed updated
width and height properties of the component. Component subobjects can be sized or
moved in relation to the component’s updated width and height properties within the
size() function. See “Defining the size() method” on page 165.

These core component functions are described in detail in the sections that follow.
Creating the ActionScript class file 161

Defining the init() method
Flash calls the init() method when the class is created. This method is called only once
when a component is instantiated.

You should use the init() method to do the following:

■ Call super.init().
This is required.

■ Make the boundingBox_mc invisible.
boundingBox_mc.width = 0;
boundingBox_mc.height = 0;
boundingBox_mc.visible = false;

■ Create instance member variables.

The width, height, and clip parameters are properly set only after this method is called.

The init() method is called from UIObject’s constructor, so the flow of control climbs up
the chain of constructors until it reaches UIObject. UIObject’s constructor calls the init()
method that is defined on lowest subclass. Each implementation of init() should call
super.init() so that its base class can finish initializing. If you implement an init()
method and you don’t call super.init(), the ()init method is not called on any of the base
classes, so they might never be in a usable state.

Defining the createChildren() method
Components implement the createChildren() method to create subobjects (such as other
components) in the component. Rather than calling the subobject’s constructor in the
createChildren() method, call createClassObject() or createObject() to instantiate a
subobject of your component.

It’s a good idea to call size() within the createChildren() method to make sure all
children are set to the correct size initially. Also, call invalidate() within the
createChildren() method to refresh the screen. (For more information, see “About
invalidation” on page 166.)

The createClassObject() method has the following syntax:
createClassObject(className, instanceName, depth, initObject)
162 Creating Components

The following table describes the parameters:

To call createClassObject(), you must know what the children are, because you must
specify the name and type of the object, plus any initialization parameters in the call to
createClassObject().

The following example calls createClassObject() to create a new Button object for use
inside a component:
up_mc.createClassObject(mx.controls.Button, "submit_btn", 1);

You set properties in the call to createClassObject() by adding them as part of the
initObject parameter. The following example sets the value of the label property:
form.createClassObject(mx.controls.CheckBox, "cb", 0, {label:"Check

this"});

The following example creates TextInput and SimpleButton components:
function createChildren():Void {

if (text_mc == undefined)
createClassObject(TextInput, "text_mc", 0, { preferredWidth: 80,

editable:false });
text_mc.addEventListener("change", this);
text_mc.addEventListener("focusOut", this);

if (mode_mc == undefined)
createClassObject(SimpleButton, "mode_mc", 1, { falseUpSkin:

modeUpSkinName, falseOverSkin: modeOverSkinName, falseDownSkin:
modeDownSkinName });
mode_mc.addEventListener("click", this);
size()
invalidate()

}

Parameter Type Description

className Object The name of the class.

instanceName String The name of the instance.

depth Number The depth for the instance.

initObject Object An object that contains initialization properties.
Creating the ActionScript class file 163

About the constructor function
You can recognize a constructor function because it has the same name as the component
class. For example, the following code shows the ScrollBar component’s constructor function:
function ScrollBar() {
}

In this case, when a new scroll bar is instantiated, the ScrollBar() constructor is called.

Generally, component constructors should be empty. Setting properties in constructors can
sometimes lead to overwriting default values, depending on the order of initialization calls.

If your component extends UIComponent or UIObject, Flash automatically calls init(),
createChildren(), and size() methods and you can leave your constructor function
empty, as shown here:
class MyComponent extends UIComponent{

...
// this is the constructor function
function MyComponent(){
}

}

All version 2 components should define an init() function that is called after the constructor
has been called. You should place the initialization code in the component’s init() function.
For more information, see the next section.

If your component extends MovieClip, you may want to call an init() method, a
createChildren() method, and a method that lays out your component from the
constructor function, as shown in the following code example:
class MyComponent extends MovieClip{

...
function MyComponent(){

init()
}

function init():Void{
createChildren();
layout();

 }
...

}

For more information about constructors, see “Writing the constructor function” in Learning
ActionScript 2.0 in Flash.
164 Creating Components

Defining the draw() method
You can write code in the draw() method to create or modify visual elements of a
component. In other words, in the draw() method, a component draws itself to match its
state variables. Since the last draw() method was called, multiple properties or methods may
have been called, and you should try to account for all of them in the body of draw().

However, you should not call the draw() method directly. Instead, call the invalidate()
method so that calls to draw() can be queued and handled in a batch. This approach
increases efficiency and centralizes code. (For more information, see “About invalidation”
on page 166.)

Inside the draw() method, you can use calls to the Flash drawing API to draw borders, rules,
and other graphical elements. You can also set property values and call methods. You can also
call the clear() method, which removes the visible objects.

In the following example from the Dial component (see “Building your first component”
on page 127), the draw() method sets the rotation of the needle to the value property:

function draw():Void {
super.draw();
dial.needle._rotation = value;

}

Defining the size() method
When a component is resized at runtime using the componentInstance.setSize() method,
the size() function is invoked and passed width and height properties. You can use the
size() method in the component’s class file to lay out the contents of the component.

At a minimum, the size() method should call the superclass’s size() method
(super.size()).

In the following example from the Dial component (see “Building your first component”
on page 127), the size() method uses the width and height parameters to resize the dial
movie clip:

function size():Void {
super.size();
dial._width = width;
dial._height = height;
invalidate();

}

Call the invalidate() method inside the size() method to tag the component for redraw
instead of calling the draw() method directly. For more information, see the next section.
Creating the ActionScript class file 165

About invalidation
Macromedia recommends that a component not update itself immediately in most cases, but
that it instead should save a copy of the new property value, set a flag indicating what is
changed, and call the invalidate() method. (This method indicates that just the visuals for
the object have changed, but size and position of subobjects have not changed. This method
calls the draw() method.)

You must call an invalidation method at least once during the instantiation of your
component. The most common place for you to do this is in the createChildren() or
layoutChildren() methods.

Dispatching events
If you want your component to broadcast events other than the events it may inherit from a
parent class, you must call the dispatchEvent() method in the component’s class file.

The dispatchEvent() method is defined in the mx.events.EventDispatcher class and is
inherited by all components that extend UIObject. (See “EventDispatcher class” in
Components Language Reference.)

You should also add an Event metadata tag at the top of the class file for each new event. For
more information, see “About the Event tag” on page 153.

Using the dispatchEvent() method
In the body of your component’s ActionScript class file, you broadcast events using the
dispatchEvent() method. The dispatchEvent() method has the following syntax:
dispatchEvent(eventObj)

The eventObj parameter is an ActionScript object that describes the event (see the example
later in this section).

You must declare the dispatchEvent() method in your code before you call it, as follows:
private var dispatchEvent:Function;

You must also create an event object to pass to dispatchEvent(). The event object contains
information about the event that the listener can use to handler the event.

N
O

T
E

For information about handling component events in a Flash application, see Chapter 4,
“Handling Component Events,” on page 63.
166 Creating Components

You can explicitly build an event object before dispatching the event, as the following
example shows:
var eventObj = new Object();
eventObj.type = "myEvent";
eventObj.target = this;
dispatchEvent(eventObj);

You can also use a shortcut syntax that sets the value of the type property and the target
property and dispatches the event in a single line:
ancestorSlide.dispatchEvent({type:"revealChild", target:this});

In the preceding example, setting the target property is optional, because it is implicit.

The description of each event in the Flash 8 documentation lists the event properties that are
optional and required. For example, the ScrollBar.scroll event takes a detail property in
addition to the type and target properties. For more information, see the event descriptions
in Components Language Reference.

Common events
The following table lists the common events that are broadcast by various classes. Every
component should broadcast these events if they make sense for that component. This is not a
complete list of events for all components, just ones that are likely to be reused by other
components. Even though some events specify no parameters, all events have an implicit
parameter: a reference to the object broadcasting the event.

Event Use

click Used by the Button component, or whenever a mouse click has no other
meaning.

change Used by List, ComboBox, and other text-entry components.

scroll Used by ScrollBar and other controls that cause scrolling (scroll “bumpers”
on a scrolling pop-up menu).
Creating the ActionScript class file 167

In addition, because of inheritance from the base classes, all components broadcast the
following events:

The following table describes common key events:

About assigning skins
A user interface (UI) component is composed entirely of attached movie clips. This means
that all assets for a UI component can be external to the UI component movie clip, so they
can be used by other components. For example, if your component needs check box
functionality, you can reuse the existing CheckBox component assets.

The CheckBox component uses a separate movie clip to represent each of its states (FalseUp,
FalseDown, Disabled, Selected, and so on). However, you can associate custom movie clips—
called skins—with these states. At runtime, the old and new movie clips are exported in the
SWF file. The old states simply become invisible to give way to the new movie clips. The
ability to change skins during authoring and at runtime is called skinning.

To skin components, create a variable for every skin element (movie clip symbol) used in the
component and set it to the symbol’s linkage ID. This lets a developer set a different skin
element just by changing a parameter in the component, as shown here:
var falseUpIcon = "mySkin";

UIComponent
event

Description

load The component is creating or loading its subobjects.

unload The component is unloading its subobjects.

focusIn The component now has the input focus. Some HTML-equivalent
components (ListBox, ComboBox, Button, Text) might also broadcast
focus, but all broadcast DOMFocusIn.

focusOut The component has lost the input focus.

move The component has been moved to a new location.

resize The component has been resized.

Key events Description

keyDown A key is pressed. The code property contains the key code and the ascii
property contains the ASCII code of the key pressed. Do not check with
the low-level Key object, because the event might not have been
generated by the Key object.

keyUp A key is released.
168 Creating Components

The following example shows the skin variables for the various states of the CheckBox
component:
var falseUpSkin:String = "";
var falseDownSkin:String = "";
var falseOverSkin:String = ""
var falseDisabledSkin:String = "";
var trueUpSkin:String = "";
var trueDownSkin:String = "";
var trueOverSkin:String = "";
var trueDisabledSkin:String = "";
var falseUpIcon:String = "CheckFalseUp";
var falseDownIcon:String = "CheckFalseDown";
var falseOverIcon:String = "CheckFalseOver";
var falseDisabledIcon:String = "CheckFalseDisabled";
var trueUpIcon:String = "CheckTrueUp";
var trueDownIcon:String = "CheckTrueDown";
var trueOverIcon:String = "CheckTrueOver";
var trueDisabledIcon:String = "CheckTrueDisabled";

About styles
You can use styles to register all the graphics in your component with a class and let that class
control the color scheme of the graphics at runtime. No special code is necessary in the
component implementations to support styles. Styles are implemented entirely in the base
classes (UIObject and UIComponent) and skins.

To add a new style to a component, call getStyle("styleName") in the component class. If
the style has been set on an instance, on a custom style sheet, or on the global style sheet, the
value is retrieved. If not, you may need to install a default value for the style on the global
style sheet.

For more information about styles, see “Using styles to customize component color and text”
on page 82.

Registering skins to styles
The following example creates a component called Shape. This component displays a shape
that is one of two skins: a circle or a square. The skins are registered to the themeColor style.
Creating the ActionScript class file 169

To register a skin to a style:

1. Create a new ActionScript file and copy the following code into it:
import mx.core.UIComponent;

class Shape extends UIComponent{

static var symbolName:String = "Shape";
static var symbolOwner:Object = Shape;
var className:String = "Shape";

var themeShape:String = "circle_skin"

function Shape(){
}

function init(Void):Void{

super.init();
}

function createChildren():Void{
setSkin(1, themeShape);
super.createChildren();

}
}

2. Save the file as Shape.as.

3. Create a new Flash document and save it as Shape.fla in the same folder as Shape.as

4. Draw a circle on the Stage, select it, and press F8 to convert it to a movie clip.

Give the circle the name and linkage identifier circle_skin.
5. Open the circle_skin movie clip and place the following ActionScript on Frame 1 to

register the symbol with the style name themeColor:
mx.skins.ColoredSkinElement.setColorStyle(this, "themeColor");

6. Create a new movie clip for the component.

Name the movie clip and linkage identifier Shape.
7. Create two layers. Place a stop() function in the first frame of the first layer. Place the

symbol circle_skin in the second frame.

This is the component movie clip. For more information, see “Creating a component
movie clip” on page 138.
170 Creating Components

8. Open StandardComponents.fla as an external library, and drag the UIComponent movie
clip to the Stage on the second frame of the Shape movie clip (with circle_skin).

9. Close StandardComponents.fla.

10. Select the Shape movie clip in the library, select Component Definition from the Library
context menu (Windows: Right-click, Mac: control-click), and enter the AS 2.0 class
name Shape.

11. Test the movie clip with the Shape component on the Stage.

To change the theme color, set the style on the instance. The following code changes the
color of a Shape component with the instance name shape to red:
shape.setStyle("themeColor",0xff0000);

12. Draw a square on the Stage and convert it to a movie clip.

Enter the linkage name square_skin, and make sure the Export in First Frame check box
is selected.

13. Open the square_skin movie clip and place the following ActionScript on Frame 1 to
register the symbol with the style name themeColor:
mx.skins.ColoredSkinElement.setColorStyle(this, "themeColor");

14. Place the following code on the instance of the Shape component on the Stage in the main
Timeline:
onClipEvent(initialize){

themeShape = "square_skin";
}

15. Test the movie clip with Shape on the Stage. The result should display a red square.
N

O
T

E

Because the movie clip isn’t placed in the component, Export in First Frame must be
selected so that the skin is available before initialization.
Creating the ActionScript class file 171

Registering a new style name
If you have created a new style name and it is a color style, add the new name to the
colorStyles object in the StyleManager.as file (First
Run\Classes\mx\styles\StyleManager.as). This example adds the shapeColor style:
// initialize set of inheriting color styles

static var colorStyles:Object =
{

barColor: true,
trackColor: true,
borderColor: true,
buttonColor: true,
color: true,
dateHeaderColor: true,
dateRollOverColor: true,
disabledColor: true,
fillColor: true,
highlightColor: true,
scrollTrackColor: true,
selectedDateColor: true,
shadowColor: true,
strokeColor: true,
symbolBackgroundColor: true,
symbolBackgroundDisabledColor: true,
symbolBackgroundPressedColor: true,
symbolColor: true,
symbolDisabledColor: true,
themeColor:true,
todayIndicatorColor: true,
shadowCapColor:true,
borderCapColor:true,
focusColor:true,
shapeColor:true

};

Register the new style name to the circle and square skins on Frame 1 of each skin movie clip,
as follows:
mx.skins.ColoredSkinElement.setColorStyle(this, "shapeColor");

The color can be changed with the new style name by setting the style on the instance, as
shown here:
shape.setStyle("shapeColor",0x00ff00);
172 Creating Components

Incorporating existing components within
your component
In this section, you will build a simple LogIn component that incorporates Label, TextInput
and Button components. This tutorial demonstrates how existing components are
incorporated in new components by adding their uncompiled Flash (FLA) library symbols.
The completed component files, LogIn.fla, LogIn.as and LogIn.swf are located in the
examples folder on your hard disk:

■ In Windows: the C:\Program Files\Macromedia\Flash 8\Samples and
Tutorials\Samples\Components\Login folder.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Samples and Tutorials/
Samples/Components/Login folder.

The LogIn component provides an interface for entering a name and password. The API for
LogIn has two properties, name and password for setting and getting the string values in the
name and password TextInput fields. The LogIn component also dispatches a “click” event
when the user clicks a button labeled LogIn.

■ “Creating the LogIn Flash (FLA) file” on page 173
■ “The LogIn class file” on page 176
■ “Testing and exporting the LogIn component” on page 180

Creating the LogIn Flash (FLA) file
Start by creating a Flash (FLA) file that will hold our component symbol.

To create the LogIn FLA file:

1. In Flash, select File > New and create a new document.

2. Select File > Save As and save the file as LogIn.fla.

3. Create Select Insert > New Symbol. Name it LogIn, and select the Movie clip type
radio button.

If the Linkage section of the Create New Symbol dialog isn’t open, click the Advanced
button to reveal it.

4. Select Export for ActionScript and deselect Export in First Frame.

5. Enter a linkage identifier.

The default linkage identifier is LogIn. The rest of these steps assume you use the
default value.
Incorporating existing components within your component 173

6. Enter LogIn in the AS 2.0 Class text box. This value is the component class name.

If you put the class in a package, enter the entire package name. For example,
mx.controls.CheckBox denotes the CheckBox class in the mx.controls package.

7. Click OK.

Flash opens in symbol-editing mode.
8. Insert a new layer. Name the top layer Actions and the bottom layer Assets.

9. Select Frame 2 in the Assets layer and insert a keyframe (F6).

This is the structure of the component movie clip: an Actions layer and an Assets layer.
The Actions layer has 1 keyframe and the Assets layer has 2 keyframes.

10. Select Frame 1 in the Actions layer and open the Actions panel (F9). Enter a stop()
global function.

This prevents the movie clip from proceeding to Frame 2.
11. Select File > Import > Open External Library and select the StandardComponents.fla file

from the Configuration/ComponentFLA folder.

■ In Windows: \Program Files\Macromedia\Flash
8\language\Configuration\ComponentFLA\StandardComponents.fla.

■ On the Macintosh: HD/Applications/Macromedia Flash 8/Configuration/
ComponentFLA/StandardComponents.fla

12. Select Frame 2 in the Assets layer. From within the StandardComponents.fla library,
browse to the Flash UI Components 2 folder. Drag a Button, Label and TextInput
component symbol to Frame 2 of the Assets layer.

Asset dependencies for these components are automatically copied to your LogIn.fla
library.
All the component assets are added to Frame 2 of the Assets layer. Because there is a
stop() global function on Frame 1 of the Actions layer, the assets in Frame 2 will not be
seen as they are arranged on the Stage.
You add assets to Frame 2 for two reasons:

N
O

T
E

For information about folder locations, see “Configuration folders installed with
Flash” in Using Flash.
174 Creating Components

■ So that all assets are automatically copied into the library and are available to
instantiate dynamically and access their methods, properties, and events.

■ Placing assets in a frame ensures they are loaded more smoothly as the movie is
streamed, so you do not need to set the assets in the library to be exported before the
first frame. This method prevents an initial data transfer spike that could cause
download delays or long pauses.

Dragging a Button component symbol from the library in StandardComponents.fla to
Frame 2 of the Assets layer of LogIn.fla

13. Close the StandardComponents.fla library.

14. In the Assets layer, select Frame 1. Drag the BoundingBox movie clip from the LogIn.fla
library (inside the Component Assets folder) to the Stage.

15. Name the BoundingBox instance boundingBox_mc.
Incorporating existing components within your component 175

16. Use the Info panel to resize the BoundingBox to the size of the LogInFinal movie clip (340,
150), and position it at 0, 0.

The BoundingBox instance is used to create the component’s live preview and allow the
user to handle resize the component during authoring. You must set the size of the
bounding box so that it can enclose all the graphical elements in your component.

17. Select the LogIn movie clip in the library, and select Component Definition from the
Library context menu (Windows: Right-click, Mac: control-click).

18. In the AS 2.0 Class text box, enter LogIn.

This value is the name of the ActionScript class. If the class is in a package, the value is the
full package. For example, mx.controls.CheckBox denotes the CheckBox class in the
mx.controls package.

19. Click OK.

20.Save the file.

The LogIn class file
The following code is the ActionScript class for the LogIn component. Please read the
comments in the code for a description of each section. (For detailed information on the
elements of a component class file, see “Overview of a component class file” on page 144).

To create this file, you can create a new ActionScript file in Flash, or use any other text editor.
Save the file as LogIn.as in the same folder as the LogIn.fla file.

You can copy or type the following LogIn component ActionScript class code into your new
LogIn.as file. Typing rather than copying the code will help you become familiar with each
element of the component code.
/* Import the packages so they can be referenced
 from this class directly. */
import mx.core.UIComponent;
import mx.controls.Label;
import mx.controls.TextInput;
import mx.controls.Button;

// Event metadata tag
[Event("change")]

N
O

T
E

If you are extending a component (including any version 2 component) you must
keep instance names already in use by that component as its code will refer to those
instance names. For example, if you include a version 2 component that is already
using the instance name boundingBox_mc, do not rename it. For your own
components, you can choose any instance name that is unique and that does not
conflict with an existing name within the same scope.
176 Creating Components

[Event("click")]
class LogIn extends UIComponent
{

/* Components must declare these member variables to be proper
 components in the components framework. */
static var symbolName:String = "LogIn";
static var symbolOwner:Object = LogIn;
var className:String = "LogIn";

// The component's graphical representation.
private var name_label:MovieClip;
private var password_label:MovieClip;
private var name_ti:MovieClip;
private var password_ti:MovieClip;
private var login_btn:MovieClip;
private var boundingBox_mc:MovieClip;
private var startDepth:Number = 10;

/* Private member variables available publicly through getter/setters.
 These represent the name and password InputText string values. */
private var __name:String;
private var __password:String;

/* Constructor:
 While required for all classes, v2 components require
 the contstructor to be empty with zero arguments.
 All initialization takes place in a required init
 method after the class instance has been constructed. */
function LogIn() {
}

/* Initialization code:
 The init method is required for v2 components. It must also
 in turn call its parent class init() method with super.init().
 The init method is required for components extending UIComponent. */
function init():Void {

super.init();
boundingBox_mc._visible = false;
boundingBox_mc._width = 0;
boundingBox_mc._height = 0;

}

/* Create child objects needed at start up:
 The createChildren method is required for components
 extending UIComponent. */
public function createChildren():Void {

name_label = createObject("Label", "name_label", this.startDepth++);
name_label.text = "Name:";
name_label._width = 200;
name_label._x = 20;
Incorporating existing components within your component 177

name_label._y = 10;

name_ti = createObject("TextInput", "name_ti",
this.startDepth++,{_width:200,_heigh:22,_x:20,_y:30});

name_ti.html = false;
name_ti.text = __name;
name_ti.tabIndex = 1;
/* Set this text input field to have focus.
 Note: Make sure to set select Control > Disable Keyboard Shortcuts
 in the Flash Debugger if it is not already selected, otherwise
 the focus may not set when testing. */
name_ti.setFocus();

name_label = createObject("Label", "password_label",
this.startDepth++,{_width:200,_heigh:22,_x:20,_y:60});

name_label.text = "Password:";

password_ti = createObject("TextInput", "password_ti",
this.startDepth++,{_width:200,_heigh:22,_x:20,_y:80});

password_ti.html = false;
password_ti.text = __password;
password_ti.password = true;
password_ti.tabIndex = 2;

login_btn = createObject("Button", "login_btn",
this.startDepth++,{_width:80,_heigh:22,_x:240,_y:80});

login_btn.label = "LogIn";
login_btn.tabIndex = 3;
login_btn.addEventListener("click", this);

size();

}

/* The draw method is required for v2 components.
 It is invoked after the component has been
 invalidated by someone calling invalidate().
 This batch’s up the changes into one redraw, rather
 than doing them all individually. This approach leads
 to more efficiency and better centralization of code. */
function draw():Void {

super.draw();
}

/* The size method is invoked when the component's size
 changes. This is an opportunity to resize the children,
 The size method is required for components extending UIComponent. */
function size():Void {

super.size();
// Cause a redraw in case it is needed.
178 Creating Components

invalidate();
}

/* Event Handler:
 Called by the LogIn button when it receives a mouse click.
 Since we want this event to be accessible outside of the scope of
 this component, The click event is dispatched using dispatchEvent. */
public function click(evt){

// Update the member variables with the input field contents.
__name = name_ti.text;
__password = password_ti.text;
// Dispatch a click event when the button fires one.
dispatchEvent({type:"click"});

}

/* This is the getter/setter for the name property.
 The [Inspectable] metadata makes the property appear
 in the Property inspector and allows a default value
 to be set. By using a getter/setter you can call invalidate
 and force the component to redraw when the value is changed. */
[Bindable]
[ChangeEvent("change")]
[Inspectable(defaultValue="")]
function set name(val:String){

__name = val;
invalidate();

}

function get name():String{
return(__name);

}

[Bindable]
[ChangeEvent("change")]
[Inspectable(defaultValue="")]
function set password(val:String){

__password=val;
invalidate();

}

function get password():String{
return(__password);

}

}

Incorporating existing components within your component 179

Testing and exporting the LogIn component
You’ve created the Flash file that contains the graphical elements, the base classes and the
class file that contains all the functionality of the LogIn component. Now it’s time to test
the component.

Ideally, you would test the component as you work, especially while you’re writing the class
file. The fastest way to test as you work is to convert the component to a compiled clip and
use it in the component’s FLA file.

When you’re completely finished creating a component, export it as a SWC file. For more
information, see “Exporting and distributing a component” on page 182.

To test the LogIn component:

1. In the LogIn.fla file, select the LogIn movie clip in the library and select Convert
to Compiled Clip from the Library context menu (Windows: Right-click, Mac:
control-click).

A compiled clip is added to the library with the name LogIn SWF. You are compiling the
movie clip to test it, only. Otherwise, you would follow the instructions later in this
section to export the LogIn movie clip.

2. Drag LogIn SWF to the Stage in frame 1 of the main Timeline (make sure you’re in the
main Timeline, Scene 1, not the movie clip timeline).

You can set the name and password property in the Parameters tab or the Component
Inspector. This is useful if you want default text such as “Enter your name here” to appear
before the user has entered anything. When you set its name and/or password property,
the default text in the name and password InputText sub-components will change
accordingly at runtime.
To test the value property at runtime, name the LogIn instance on the Stage myLogin
and add the following code to Frame 1 in the main Timeline:

// Creates a text field in which to view the login values.
createTextField("myLoginValues",10,10,10,340,40)
myLoginValues.border = true;
// Event handler for the login component instance’s dispatched click

event.
function click(evt){
/* Here is where authentication would occur.

N
O

T
E

If you’ve already created a compiled clip (for example, if this is the second or third
time you’re testing), a Resolve Library Conflict dialog box appears. Select Replace
Existing Items to add the new version to the document.
180 Creating Components

For example the name and password would be passed to a web service
which authenticates the name and password and returns a session ID
and/or permission roles attributed to the user. */
myLoginValues.text = "Processing...\r";
myLoginValues.text += "Name: " + myLogin.name + " Password: " +
myLogin.password;

}

myLogin.addEventListener("click",this);

3. Select Control > Test Movie to test the component in Flash Player.

To export the LogIn component:

1. In the LogIn.fla file, select the LogIn movie clip in the library and select Component
Definition from the Library context menu (Windows: Right-click, Mac: control-click).

2. Check the Display in Components panel.

3. Click OK.

4. In the LogIn.fla file, select the LogIn movie clip in the library, again, and select Export
SWC File from the Library context menu (Windows: Right-click, Mac: control-click).

5. Select a location to save the SWC file.

If you save it to the Components folder in the user-level configuration folder, you can
reload the Components panel without restarting Flash and the component appears in the
Components panel.

The completed LogIn component

N
O

T
E

Since you are testing this component within your original document, you may see a
warning message about having the same linkage identifier for two symbols. The
component will still work. In practice, you will use the new component within another
document in which case the linkaged identifier should be unique.

N
O

T
E

For information about folder locations, see “Configuration folders installed with
Flash” in Getting Started with Flash.
Incorporating existing components within your component 181

Exporting and distributing a component
Flash exports components as component packages (SWC files). Components may be
distributed as SWC files or as FLA files. (See the article on Macromedia DevNet at
www.macromedia.com/support/flash/applications/creating_comps/creating_comps12.html
for information about distributing a component as a FLA.)

The best way to distribute a component is to export is as a SWC file, because SWC files
contain all the ActionScript, SWF files, and other optional files needed to use the component.
SWC files are also useful if you are working at the same time on a component and the
application that uses the component.

SWC files can be used to distribute components for use in Macromedia Flash 8, Macromedia
Dreamweaver MX 2004, and Macromedia Director MX 2004.

Whether you’re developing a component for someone else’s use, or for your own, it’s
important to test the SWC file as an ongoing part of component development. For example,
problems can arise in a component’s SWC file that don’t appear in the FLA file.

This section describes a SWC file and explains how to import and export SWC files in Flash.

Understanding SWC files
A SWC file is a zip-like file (packaged and expanded by means of the PKZIP archive format)
generated by the Flash authoring tool.

The following table describes the contents of a SWC file:

File Description

catalog.xml (Required) Lists the contents of the component package and its individual
components, and serves as a directory to the other files in the SWC file.

ActionScript
(AS) files

If you create the component with Flash Professional 8, the source code is one
or more ActionScript files that contain a class declaration for the component.
The compiler uses the source code for type checking when a component is
extended. The AS file is not compiled by the authoring tool because the
compiled bytecode is already in the implementing SWF file.
The source code may contain intrinsic class definitions that contain no
function bodies and are provided purely for type checking.

 SWF files (Required) SWF files that implement the components. One or more
components can be defined in a single SWF file. If the component is created
with Flash 8, only one component is exported per SWF file.
182 Creating Components

http://www.macromedia.com/support/flash/applications/creating_comps/creating_comps12.html

You can optionally include other files in the SWC file, after you generate it from the Flash
environment. For example, you might want to include a Read Me file, or the FLA file if you
want users to have access to the component’s source code. To add additional files, use the
Macromedia Extension Manager (see www.macromedia.com/exchange/em_download/).

SWC files are expanded into a single directory, therefore each component must have a unique
file name to prevent conflicts.

Exporting SWC files
Flash provides the ability to export SWC files by exporting a movie clip as a SWC file. When
exporting a SWC file, Flash reports compile-time errors as if you were testing a Flash
application.

There are two reasons to export a SWC file:

■ To distribute a finished component
■ To test during development

Exporting a SWC for a completed component
You can export components as SWC files that contain all the ActionScript, SWF files, and
other optional files needed to use the component.

Live Preview
SWF files

(Optional) If specified, these SWF files are used for live preview in the
authoring tool. If omitted, the SWF files that implement the component are
used for live preview instead. The Live Preview SWF file can be omitted in
nearly all cases; it should be included only if the component’s appearance
depends on dynamic data (for example, a text field that shows the result of a
web service call).

SWD file (Optional) A SWD file corresponding to the implementing SWF file that allows
you to debug the SWF file. The filename is always the same as that of the
SWF file, but with the extension.swd.

PNG file (Optional) A PNG file containing the 18 x 18, 8-bit-per-pixel icon that you use
to display a component icon in the authoring tool user interfaces. If no icon is
supplied, a default icon is displayed. (See “Adding an icon” on page 185.)

Property
inspector
SWF file

(Optional) A SWF file that you use as a custom Property inspector in the
authoring tool. If you omit this file, the default Property inspector is displayed
to the user.

File Description
Exporting and distributing a component 183

http://www.macromedia.com/exchange/em_download/

To export a SWC file for a completed component:

1. Select the component movie clip in the Flash library.

2. Right-click (Windows) or control-click (Mac) to open the Library context menu.

3. Select Export SWC File from the Library context menu.

4. Save the SWC file.

Testing a SWC during development
At different stages of development, it’s a good idea to export the component as a SWC and
test it in an application. If you export the SWC to the Components folder in your user-
level Configuration folder, you can reload the Components panel without quitting and
restarting Flash.

To test a SWC during development:

1. Select the component movie clip in the Flash library.

2. Right-click (Windows) or control-click (Mac) to open the Library context menu.

3. Select Export SWC File from the Library context menu.

4. Browse to the Components folder in your user-level configuration folder.

Configuration/Components

5. Save the SWC file.

6. Select Reload from the Components panel’s options menu.

The component appears in the Component panel.
7. Drag the component from the Component panel into a document.

Importing component SWC files into Flash
When you distribute your components to other developers, you can include the following
instructions so that they can install and use them immediately.

To import a SWC file:

1. Copy the SWC file into the Configuration/Components directory.

2. Restart Flash.

The component’s icon should appear in the Components panel.

N
O

T
E

For information about the location of the folder, see “Configuration folders installed
with Flash” in Getting Started with Flash.
184 Creating Components

Final steps in component development
After you create the component and prepare it for packaging, you can add an icon and a tool
tip. To make sure you completed all the necessary steps, you can also refer to the “Component
development checklist” on page 186.

Adding an icon
You can add an icon that represents your component in the Components panel of the Flash
authoring environment.

To add an icon for your component:

1. Create a new image.

The image must measure 18 pixels square, and you must save it in PNG format. It must
be 8-bit with alpha transparency, and the upper left pixel must be transparent to support
masking.

2. Add the following definition to your component’s ActionScript class file before the
class definition:
[IconFile("component_name.png")]

3. Add the image to the same directory as the FLA file. When you export the SWC file, Flash
includes the image at the root level of the archive.

Adding a tooltip
Tooltips appear when a user rolls the mouse over your component name or icon in the
Components panel of the Flash authoring environment.

You define a tooltip in the Component Definition dialog box. You can access this dialog box
from the Library options menu (Windows: Right-click, Mac: control-click) of the
component’s FLA file.

To add a tooltip in the Component Definition dialog box:

1. With the FLA file of your component open in Flash, make sure the Library is visible
(Window > Library menu).

2. Click the Library options menu (Windows: Right-click, Mac: Control-click).

 The Library options menu is on the right side of the Library title bar, and appears as an
icon of three lines and a down triangle.

3. Select the Component Definition option.
Final steps in component development 185

4. In the Component Definition dialog box, under Options, select Display in the
Components Panel.

The Tool tip text box becomes editable.
5. Enter the tooltip text for your component in the Tool tip text box.

6. Click OK to save the changes.

Component development checklist
When you design a component, use the following practices:

■ Keep the file size as small as possible.
■ Make your component as reusable as possible by generalizing functionality.
■ Use the RectBorder class (mx.skins.halo.RectBorder) rather than graphical elements to

draw borders around objects. (See “RectBorder class” in the Components Language
Reference.)

■ Use tag-based skinning.
■ Define the symbolName, symbolOwner, and className variables.
■ Assume an initial state. Because style properties are now on the object, you can set initial

settings for styles and properties so your initialization code does not have to set them
when the object is constructed, unless the user overrides the default state.

■ When defining the symbol, do not select the Export in First Frame option unless
absolutely necessary. Flash loads the component just before it is used in your Flash
application, so if you select this option, Flash preloads the component in the first frame of
its parent. The reason you typically do not preload the component in the first frame is for
considerations on the web: the component loads before your preloader begins, defeating
the purpose of the preloader.

■ Avoid multiple frame movie clips (except for the two-frame Assets layer).
■ Always implement init() and size() methods and call Super.init() and

Super.size() respectively, but otherwise keep them lightweight.
■ Avoid absolute references, such as _root.myVariable.
■ Use createClassObject() instead of attachMovie().
■ Use invalidate() and invalidateStyle() to invoke the draw() method instead of

calling draw() explicitly.
■ When incorporating Flash components into your component, use their uncompiled

movie symbols located in the library of the StandardComponents.fla file from the
Configuration/ComponentFLA folder.
186 Creating Components

7

CHAPTER 7

Collection Properties
When you create a new custom component in Macromedia Flash, you can make property
values available for editing by the user. These properties are called collection properties. The
property values can be edited by the user in the Values dialog box (opened from a text box
within the Parameters tab for your component).

Components usually include functionality for a specific task, while remaining flexible for a
range of requirements by the component user. For a component to be flexible, the properties
within the component need to be flexible (in other words, for some components, the
properties can be changed by the component user, as well as by the property values).

Collection properties enable you to create an indeterminate number of editable properties in
an object model. Flash provides a Collection class to help you manage those properties
through the Component inspector.

Specifically, the Collection class is a helper class used to manage a group of related objects,
each called a collection item. If you define a property of your component as a collection item
and make it available to users through the Component inspector, they can add, delete, and
modify collection items in the Values dialog box while authoring.
187

You define collections and collection items as follows:

■ Define a collection property using the Collection metadata tag in a component’s
ActionScript file. For more information, see “About the Collection tag” on page 157.

■ Define a collection item as a class in a separate ActionScript file that contains its own
inspectable properties.

In Flash, Collections make it easier for you to manage groups of related items
programmatically. (In previous versions of Flash, component authors managed groups of
related items through multiple programmatically synchronized arrays).

In addition to the Values dialog box, Flash provides the Collection and Iterator interfaces to
manage Collection instances and values programmatically. See “Collection interface (Flash
Professional only)” and “Iterator interface (Flash Professional only)” in the Components
Language Reference.

This chapter contains the following sections:
Defining a collection property . 188

Simple collection example . 189

Defining the class for a collection item .191

Accessing collection information programmatically .191

Exporting components that have collections to SWC files . 194

Using a component that has a collection property . 194

Defining a collection property
You define a collection property by using the Collection tag in a component’s ActionScript
file. For more information, see “About the Collection tag” on page 157.

To define a collection property:

1. Create a FLA file for your component. See “Creating a component movie clip”
on page 138.

2. Create an ActionScript class. See “Creating the ActionScript class file” on page 143.

3. In the ActionScript class, insert a Collection metadata tag. For more information, see
“About the Collection tag” on page 157.

4. Define get and set methods for the collection in the component’s ActionScript file.

N
O

T
E

This section assumes that you know how to create components and inspectable
component properties.
188 Collection Properties

5. Add the utilities classes to your FLA file by selecting Window > Common Libraries >
Classes and dragging UtilsClasses into the component’s library.

UtilsClasses contains the mx.utils.* package for the Collection interface.

6. Code a class that contains the collection item properties.

See “Defining the class for a collection item” on page 191.

Simple collection example
The following is a simple example of a component class file called MyShelf.as. This example
contains a collection property along with a minimal set of imports, methods, and declarations
for a component that inherits from the UIObject class.

If you import mx.utils.* in this example, the class names from mx.utils no longer need to be
fully qualified. For instance, mx.utils.Collection can be written as Collection.
import mx.utils.*;
// standard class declaration
class MyShelf extends mx.core.UIObject
{
// required variables for all classes

static var symbolName:String = "MyShelf";
static var symbolOwner:Object = Object(MyShelf);
var className:String = "MyShelf";

// the Collection metadata tag and attributes
 [Collection(variable="myCompactDiscs",name="My Compact

Discs",collectionClass="mx.utils.CollectionImpl",
collectionItem="CompactDisc", identifier="Title")]

// get and set methods for the collection
public function get MyCompactDiscs():mx.utils.Collection
{

return myCompactDiscs;
}
public function set MyCompactDiscs(myCDs:mx.utils.Collection):Void
{

myCompactDiscs = myCDs;
}

// private class member
private var myCompactDiscs:mx.utils.Collection;

N
O

T
E

Because UtilsClasses is associated with the FLA file, not the ActionScript class,
Flash throws compiler errors when you check syntax while viewing the component’s
ActionScript class.
Simple collection example 189

// You must code a reference to the collection item class
// to force the compiler to include it as a dependency
// within the SWC

private var collItem:CompactDisc;

// You must code a reference to the mx.utils.CollectionImpl class
// to force the compiler to include it as a dependency
// within the SWC

private var coll:mx.utils.CollectionImpl;

// required methods for all classes
function init(Void):Void {

super.init();
}
function size(Void):Void {

super.size();
}

}

To create a FLA file to accompany this class for testing purposes:

1. In Flash, select File > New and create a Flash document.

2. Select Insert > New Symbol. Give it the name, linkage identifier, and AS 2.0 class
name MyShelf.

3. Deselect Export in First Frame and click OK.

4. Select the MyShelf symbol in the library and choose Component Definition from the
Library options menu. Enter the ActionScript 2.0 class name MyShelf.

5. Select Window > Common Libraries > Classes, and drag UtilClasses to the library of
MyShelf.fla.

6. In the MyShelf symbol’s Timeline, name one layer Assets. Create another layer and name
it Actions.

7. Place a stop() function on Frame 1 in the Actions layer.

8. Select Frame 2 in the Assets layer and select Insert > Timeline > Keyframe.

9. Open StandardComponents.fla from the Configuration/ComponentFLA folder, and drag
an instance of UIObject to the Stage of MyShelf in Frame 2 of the Assets layer.

You must include UIObject in the component’s FLA file because, as you can see in the
above class file, MyShelf extends UIObject.

10. In Frame 1 of the Assets layer, draw a shelf.

This can be a simple rectangle; it’s just a visual representation of the MyShelf component
to use for learning purposes.

11. Select the MyShelf movie clip in the library, and select Convert to Compiled Clip.
190 Collection Properties

This allows you to drag the MyShelf SWF file (the compiled clip that’s added to the
library) into the MyShelf.fla file to test the component. Whenever you recompile the
component, a Resolve Library Conflict dialog box appears, because an older version of the
component already exists in the library. Choose to replace existing items.

Defining the class for a collection item
You code the properties for a collection item in a separate ActionScript class, which you define
as follows:

■ Define the class such that it does not extend UIObject or UIComponent.
■ Define all properties using the Inspectable tag.
■ Define all properties as variables. Do not use get and set (getter/setter) methods.

The following is a simple example of a collection item class file called CompactDisc.as.
class CompactDisc{
 [Inspectable(type="String", defaultValue="Title")]
 var title:String;
 [Inspectable(type="String", defaultValue="Artist")]
 var artist:String;
}

To view the CompactDisc.as class file, see “Simple collection example” on page 189.

Accessing collection information
programmatically
Flash provides programmatic access to collection data through the Collection and Iterator
interfaces. The Collection interface lets you add, modify, and remove items in a collection.
The Iterator interface allows you to loop through the items in a collection.

There are two scenarios in which to use the Collection and Iterator interfaces:

■ “Accessing collection information in a component class (AS) file” on page 192
■ “Accessing collection items at runtime in a Flash application” on page 193

Advanced developers can also create, populate, access, and delete collections
programmatically; for more information, see “Collection interface (Flash Professional only)”
in the Components Language Reference.

N
O

T
E

You should have already created the CompactDisc class; otherwise, you’ll get
compiler errors when converting to a compiled clip.
Accessing collection information programmatically 191

Accessing collection information in a component
class (AS) file
In a component’s class file, you can write code that interacts with collection items defined
during authoring or at runtime.

To access collection item information in a component class file, you can use any of the
following approaches.

■ The Collection tag includes a variable attribute, for which you specify a variable of type
mx.utils.Collection. Use this variable to access the collection, as shown in this example:
[Collection(name="LinkButtons", variable="__linkButtons",

collectionClass="mx.utils.CollectionImpl", collectionItem="ButtonC",
identifier="ButtonLabel")]

public var __linkButtons:mx.utils.Collection;

■ Access the Iterator interface for the collection items by calling the
Collection.getIterator() method, as shown in this example:
var itr:mx.utils.Iterator = __linkButtons.getIterator();

■ Use the Iterator interface to step through the items in the collection. The
Iterator.next() method returns an Object, so you must define the type of your
collection item, as shown in this example:
while (itr.hasNext()) {

var button:ButtonC = ButtonC(itr.next());
...

}

■ Access collection item properties, as appropriate for your application, as shown in this
example:
item.label = button.ButtonLabel;

if (button.ButtonLink != undefined) {
item.data = button.ButtonLink;

}
else {

item.enabled = false;
}

192 Collection Properties

Accessing collection items at runtime in a
Flash application
If a Flash application uses a component that has a collection property, you can access the
collection property at runtime. This example adds several items to a collection property using
the Values dialog box and displays them at runtime using the Collection and Iterator APIs.

To access collection items at runtime:

1. Open the MyShelf.fla file that you created earlier.

See “Simple collection example” on page 189.
This example builds on the MyShelf component and CompactDisc collection.

2. Open the Library panel, drag the component onto the Stage, and give it an instance name.

This example uses the instance name myShelf.
3. Select the component, open the Component inspector, and display the Parameters tab.

Click the line that contains the collection property, and click the magnifying glass to the
right of the line. Flash displays the Values dialog box.

4. Use the Values dialog box to enter values into the collection property.

5. With the component selected on the Stage, open the Actions panel and enter the following
code (which must be attached to the component):
onClipEvent (mouseDown) {

import mx.utils.Collection;
import mx.utils.Iterator;
var myColl:mx.utils.Collection;
myColl = _parent.myShelf.MyCompactDiscs;

var itr:mx.utils.Iterator = myColl.getIterator();
while (itr.hasNext()) {

var cd:CompactDisc = CompactDisc(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;
trace("Title: " + title + " Artist: " + artist);

}
}

To access a collection, use the syntax componentName.collectionVariable; to access an
iterator and step through the collection items, use
componentName.collectionVariable.getIterator().

6. Select Control > Test Movie and click the shelf to see the collection data in the
Output panel.
Accessing collection information programmatically 193

Exporting components that have
collections to SWC files
When you distribute a component that has a collection, the SWC file must contain the
following dependent files:

■ Collection interface
■ Collection implementation class
■ Collection item class
■ Iterator interface

Of these files, your code typically uses the Collection and Iterator interfaces, which marks
them as dependent classes. Flash automatically includes dependent files in the SWC file and
output SWF file.

However, the collection implementation class (mx.utils.CollectionImpl) and component-
specific collection item class are not automatically included in the SWC file.

To include the collection implementation class and collection item class in the SWC file,
you define private variables in your component’s ActionScript file, as the following
example shows:
// collection item class
private var collItem:CompactDisc;
// collection implementation class
private var coll:mx.utils.CollectionImpl;

For more information on SWC files, see “Understanding SWC files” on page 182.

Using a component that has a collection
property
When you use a component that includes a collection property, you typically use the Values
dialog box to establish the items in the collection.

To use a component that includes a collection property:

1. Add the component to the Stage.

2. Use the Property inspector to name the component instance.

3. Open the Component inspector and display the Parameters tab.

4. Click the line that contains the collection property, and click the magnifying glass to the
right of the line.

Flash displays the Values dialog box.
194 Collection Properties

5. Click the Add (+) button and define a collection item.

6. Click the Add (+), Delete (-), and arrow buttons to add, modify, move, and delete
collection items.

7. Click OK.

For information on accessing a collection programmatically, see “Accessing collection items at
runtime in a Flash application” on page 193.
Using a component that has a collection property 195

196 Collection Properties

Index
Numerics
9-slice not supported 19

A
accessibility 20
ActionScript class files 143
audience for this document 8

B
best practices for component development 186
Binding tab, in sample application (tutorial) 30
bitmap caching not supported 19
broadcaster 64

C
class file

about 144
example 143, 189

class keyword 146
class style sheets 82
classes

and component inheritance 18
creating references to (tutorial) 25
creating. See creating components
defining 146
extending 137
importing 146
selecting a parent class 136
UIComponent 137
UIObject 137

className variable 147
code hints, triggering 58
collection item 191

collection properties
accessing programmatically 191
defining 188
defining classes 191
example 189
exporting components 194
using 194

Collection tag 157
colors

customizing 82
setting style properties 92

columns
adding (tutorial) 31

compiled clips
about 19
in Library panel 54

component class file. See class file
Component inspector

Binding tab 30
setting parameters 55

component parameters
about 55
defining 159
inspectable 151
setting 55
viewing 55
See also individual component names

components 143
ActionScript class 143
adding an icon 185
adding at runtime 52
adding to Flash documents 50
adding tooltips 185
architecture 17
assigning skins 168
available in Flash MX editions 12
categories, described 16
197

class file example 143
class overview 144
className variable 147
common events 167
creating movie clips 138
creating subobjects 162
defining draw() method 165
defining init() method 162
defining parameters 159
defining size() method 165
defining variables 148
deleting 57
development checklist 186
dispatching events 166
editing movie clips 139
events 63
example of building a component 127, 173
example of class file with collection 189
exporting and distributing 182
exporting component as SWC 183
exporting SWC files 183
extending classes 137
Flash Player support 17
getter/setter methods 148
importing SWC files 184
inheritance 18
installing 12
invalidation, about 166
loading 62
metadata tags 149
metadata, ComponentTask tag 158
preloading 60
previewing 60
registering skins to styles 169
selecting a parent class 136
selecting symbol names 147
source files 125
structure of 126
styles 169
symbolOwner variable 147
testing SWC files 184
using in an application (tutorial) 21
See also individual component names

Components panel 50
ComponentTask tag

JavaScript (JSFL) 158
createClassObject() method 162
CSSStyleDeclaration 86, 87
customizing

text 82
customizing color and text, using style sheets 82

D
data binding, with XML file (tutorial) 29
data grids. See DataGrid component
data types, setting for instances (tutorial) 27
DataGrid component

adding columns (tutorial) 31
binding to DataSet (tutorial) 29

DataSet component, binding to XMLConnector and
DataGrid (tutorial) 29

defaultPushButton property 59
Delegate class (tutorial) 73
deleting components 57
DepthManager class, overview 59
Dial component 127, 173
dispatcher (event broadcaster) 64
dispatching events 166
documentation

guide to terminology 9
overview 8

draw() method, defining 165

E
event listeners. See listeners
Event metadata tag 153
events

about 63
common 167
delegating scope 73
dispatching 166
event object 77
handler functions 63
metadata 153
See also individual component names

exporting components 182
extending classes 137

F
Flash JavaScript (JSFL), ComponentTask tag 158
Flash MX editions and available components 12
Flash Player

and components 17
support 62

FlashType not supported 19
FocusManager class, creating focus navigation for 58
198 Index

G
getter/setter methods 148
global style declarations 86
grids. See DataGrid component

H
Halo theme 108
handleEvent callback function 68
handler functions 63

I
icon, for a component 185
import statement 146
inheritance, in version 2 components 18
init() method, defining 162
inspectable parameters 151
installing components 12
instances

setting styles on 84
style declarations 82

invalidate() method 166

L
Label component

tutorial 40
library

compiled clips in 54
Library panel 54
StandardComponents 139

linkage identifiers for skins 96
listeners

about 64
functions 69
objects 65
scope 71
using with component instances (tutorial) 37
using with components (tutorial) 32

Live Preview feature 60
loading, components 62

M
metadata

about 149
Collection tag 157
ComponentTask tag 158
Event tag 153
Inspectable tag 151
tags, list of 150

movie clips
creating 138
defining as component 141

MovieClip class, extending 138

O
on() event handler 78

P
packages 18
parameters. See component parameters
parent class, selecting 136
preloading components 60
previewing components 60
Property inspector 55
prototype 106

R
resources, additional Macromedia 9

S
Sample theme 108
screen readers, accessibility 20
ScrollPane component

tutorial 40
size() method, defining 165
skin properties

changing in the prototype 106
setting 96

skinning components 96
skins

applying to components 101
applying to subcomponents 103
creating variables for 168
editing 99
linkage identifiers 96
See also individual component names
Index 199

StandardComponents library 139
style declarations

custom 87
default class 89
global 86
setting class 89

style properties, color 92
style sheets

class 82
custom 82

styles
about 82
creating components 169
determining precedence 92
setting 82
setting custom 87
setting global 86
setting on instance 84
using (tutorial) 27
See also individual component names

subclasses, using to replace skins 106
subcomponents, applying skins 103
subobjects, creating 162
superclass keyword 146
SWC files

about 19
and compiled clips 19
exporting 183
exporting collection properties 194
file format 182
importing 184
testing 184

symbolName variable 147
symbolOwner variable 147
system requirements for components 8

T
tabbing 58
tags. See metadata
terminology in documentation 9
testing SWC files 184
text, customizing 82
TextInput component (tutorial) 40
themes

about 108
applying 113
creating 111

tip text, adding 185
typographical conventions 9

U
UIComponent class

and component inheritance 18
overview 137

UIObject class
about 137

upgrading version 1 components 62

V
Values dialog box 187
variables, defining 148
version 1 components, upgrading 62
version 2 components

and Flash Player 17
benefits 16
inheritance 18

W
web service, connecting to (tutorial) 28
WebService class (tutorial) 28

X
XMLConnector component

binding to DataSet component (tutorial) 29
loading an external XML file (tutorial) 31
specifying schema (tutorial) 29
200 Index

	Introduction
	Intended audience
	System requirements
	About the documentation
	Typographical conventions
	Terms used in this manual
	Additional resources

	About Components
	Installing components
	Where component files are stored
	Modifying the component files
	Benefits of using components
	Component categories
	About version 2 component architecture
	Version 2 component features
	About compiled clips and SWC files
	Accessibility and components

	Creating an Application with Components (Flash Professional Only)
	About the Fix Your Mistake tutorial
	Build the main page
	Import the component classes
	Set the data types of component instances
	Customize the appearance of components
	Display offenses in the combo box

	Bind data components to display gift ideas
	Use schema to describe the XML data source
	Filter the gift ideas to match the offense
	Add columns to the Gift Ideas section
	Trigger the XML Connector
	Add an event listener to filter the gift ideas
	Add the cart

	Display gift details
	Add an event listener to trigger the display of gift details
	Add code to the ProductForm movie clip

	Create the checkout screen
	About the Billing, Shipping, and Credit Card panes
	Create the Billing Information pane
	Create the Shipping Information pane
	Create the Credit Card Information pane
	Add an event listener to the Checkout button
	Add code for the Checkout screen

	Test the application
	Viewing the completed application

	Working with Components
	The Components panel
	Adding components to Flash documents
	Adding components during authoring
	Adding components at runtime with ActionScript

	Components in the Library panel
	Setting component parameters
	Sizing components
	Deleting components from Flash documents
	Using code hints
	Creating custom focus navigation
	Managing component depth in a document
	Components in Live Preview
	Using a preloader with components
	About loading components
	Upgrading version 1 components to version 2 architecture

	Handling Component Events
	Using listeners to handle events
	Using listener objects
	Using the handleEvent callback function
	Using listener functions
	About scope in listeners

	Delegating events
	Delegating events to functions
	Delegating the scope of a function

	About the event object
	Using the on() event handler

	Customizing Components
	Using styles to customize component color and text
	Using style declarations and themes
	Understanding style settings
	Setting styles
	Setting styles on a component instance
	Setting global styles
	Setting custom styles for groups of components
	Setting styles for a component class
	Setting inheriting styles on a container
	Using global, custom, and class styles in the same document
	About color style properties
	Customizing component animations
	Getting style property values

	About skinning components
	Editing component skins in a document
	Creating new component skins
	Linking skin color to styles
	Applying new skins to a component
	Applying new skins to a subcomponent
	Changing skin properties in a subcomponent

	About themes
	Switching themes
	Creating a new theme
	Modifying default style property values in a theme
	Applying a new theme to a document
	Changing export settings

	Combining skinning and styles to customize a component
	Creating a component instance on the Stage
	Creating the new style declaration
	Assigning style definitions to the combo box
	Changing the combo box theme
	Editing the combo box skin assets

	Creating Components
	Component source files
	Overview of component structure
	Building your first component
	Creating the Dial Flash (FLA) file
	Creating the Dial class file
	Testing and exporting the Dial component

	Selecting a parent class
	Understanding the UIObject class
	Understanding the UIComponent class
	About extending other version 2 classes
	About extending the MovieClip class

	Creating a component movie clip
	Inserting a new movie clip symbol
	Editing the movie clip
	Defining the movie clip as a component

	Creating the ActionScript class file
	Simple example of a component class file
	Overview of a component class file
	Importing classes
	Defining the class and its superclass
	Identifying the class, symbol, and owner names
	Defining variables
	Using getter/setter methods to define parameters
	Adding component metadata
	Metadata tags
	About the Inspectable tag
	About the InspectableList tag
	About the Event tag
	About the Bindable tag
	About the ChangeEvent tag
	About the Collection tag
	About the IconFile tag
	About the ComponentTask tag

	Defining component parameters
	About core functions
	Defining the init() method
	Defining the createChildren() method
	About the constructor function
	Defining the draw() method
	Defining the size() method
	About invalidation

	Dispatching events
	Using the dispatchEvent() method
	Common events

	About assigning skins
	About styles
	Registering skins to styles
	Registering a new style name

	Incorporating existing components within your component
	Creating the LogIn Flash (FLA) file
	The LogIn class file
	Testing and exporting the LogIn component

	Exporting and distributing a component
	Understanding SWC files
	Exporting SWC files
	Exporting a SWC for a completed component
	Testing a SWC during development

	Importing component SWC files into Flash

	Final steps in component development
	Adding an icon
	Adding a tooltip
	Component development checklist

	Collection Properties
	Defining a collection property
	Simple collection example
	Defining the class for a collection item
	Accessing collection information programmatically
	Accessing collection information in a component class (AS) file
	Accessing collection items at runtime in a Flash application

	Exporting components that have collections to SWC files
	Using a component that has a collection property

	Index

