
Flash Lite 1.x ActionScript Language Reference

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Endocer, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in
the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases
mentioned within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and
may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Macromedia Flash 8 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights
Reserved. http://www.on2.com.

Visual SourceSafe is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Mary Leigh Burke

Writing: Guy Haas, Denise Green, Mike Krisher

Managing Editor: Rosana Francescato

Editing: Linda Adler, Geta Carlson, Evelyn Eldridge

Production Management: Patrice O’Neill, Kristin Conradi, Yuko Yagi

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman. John Francis, Geeta Karmarkar, Masayo Noda,
Paul Rangel, Arena Reed, Mario Reynoso

Special thanks to Lisa Friendly, Bonnie Loo, Erick Vera, the beta testers, and the entire Flash Lite engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.
San Francisco, CA 94103

Contents
Introduction . 7

Sample entry for most ActionScript elements . 7
Samples folder . 8
Typographical conventions . 8

Chapter 1: Flash Lite Global Functions. .9

call() .11
chr(). 12
duplicateMovieClip() . 12
eval () . 14
getProperty(). 15
getTimer() . 15
getURL() . 16
gotoAndPlay() . 19
gotoAndStop() . 19
ifFrameLoaded() . 20
int() . 21
length() . 22
loadMovie() . 22
loadMovieNum() . 24
loadVariables() . 25
loadVariablesNum(). 26
mbchr(). .27
mblength() . 28
mbord(). 29
mbsubstring() . 29
nextFrame(). 30
nextScene(). 31
Number() . 32
on() . 33
ord() . 34
play() . 34
prevFrame() . 35
prevScene(). 36
random() . 36
removeMovieClip() .37
3

set() . 38
setProperty() . 39
stop() . 39
stopAllSounds(). 40
String() . 41
substring(). 41
tellTarget() . 42
toggleHighQuality() . 43
trace() . 44
unloadMovie() . 44
unloadMovieNum() . 45

Chapter 2: Flash Lite Properties. 47

/ (Forward slash) . 48
_alpha. 49
_currentframe. 49
_focusrect . 50
_framesloaded . 51
_height . 52
_highquality. 52
_level . 53
maxscroll . 54
_name . 54
_rotation . 55
scroll. 56
_target . 56
_totalframes . 57
_visible . 57
_width. 58
_x. 58
_xscale . 59
_y. 60
_yscale . 61

Chapter 3: Flash Lite Statements. .63

break . 64
case . 65
continue. 66
do..while . 68
else . 69
else if . 70
for .71
if . 72
switch. 73
while . 74
4 Contents

Chapter 4: Flash Lite Operators . 77

add (string concatenation) . 80
+= (addition assignment). 81
and . 81
= (assignment). 82
/* (block comment) . 83
, (comma). 84
// (comment) . 85
?: (conditional) . 86
–– (decrement). 86
/ (divide) .87
/= (division assignment) . 88
. (dot). 88
++ (increment) . 89
&& (logical AND) . 90
! (logical NOT). 92
|| (logical OR). 92
% (modulo) . 93
%= (modulo assignment) . 94
*= (multiplication assignment) . 94
* (multiply) . 95
+ (numeric add) . 96
== (numeric equality) .97
> (numeric greater than) . 98
>= (numeric greater than or equal to) . 98
<> (numeric inequality) . 99
< (numeric less than) . 100
<= (numeric less than or equal to) . 100
() (parentheses) . 101
" " (string delimiter) .102
eq (string equality) .103
gt (string greater than) .103
ge (string greater than or equal to) .104
ne (string inequality) .105
lt (string less than) .106
le (string less than or equal to) .106
– (subtract) . 107
-= (subtraction assignment) .108

Chapter 5: Flash Lite Specific Language Elements 111

Capabilities. 114
fscommand(). .122
fscommand2() .124

Index . 157
Contents 5

6 Contents

Introduction
This manual describes the syntax and use of ActionScript elements as you use them to develop
applications for Flash Lite 1.0 and Flash Lite 1.1, collectively referred to as Flash Lite 1.x.
Flash Lite 1.x ActionScript is based on the version of ActionScript that was used in Flash 4. To
use examples in a script, copy the code example from this manual, and paste it into the Script
pane or into an external script file. The manual lists all ActionScript elements—operators,
keywords, statements, commands, properties, functions, classes, and methods.

Sample entry for most ActionScript
elements
The following sample entry explains the conventions used for all ActionScript elements.

Entry title
Entries are listed alphabetically within a chapter. The alphabetization ignores capitalization,
leading underscores, and so on.

Availability

Unless otherwise noted, the Availability section tells which versions of Flash Lite support
the element.

Usage

This section provides correct syntax for using the ActionScript element in your code. The
required portion of the syntax is in code font. Both the code that you provide and data type
information are in italicized code font. Data types can be distinguished from code that
you provide by the colon (:) that always precedes data type information. Brackets ([]) indicate
optional parameters.
7

Operands

This section describes any parameters listed in the syntax.

Description

This section identifies the type of element (for example, operator, function, and so on), what
values if any that the element returns, and then describes how to use the element.

Example

This section provides a code sample demonstrating how to use the element.

See also

This section lists related ActionScript dictionary entries.

Samples folder
A set of sample files can be found in the /Samples and Tutorials/Samples/FlashLite/ directory
within the Flash 8 installation directory.

Typical paths to this folder are as follows:

■ Windows: /Program Files/Macromedia/Flash 8/Samples and Tutorials/Samples/FlashLite/
■ Macintosh: HD/Applications/Macromedia/Flash 8/Samples and Tutorials/Samples/

FlashLite/

The FlashLite folder contains a set of FLA files that are complete Flash Lite projects that have
working ActionScript code.

Typographical conventions
The following typographical conventions are used in this book:

■ Italic font indicates a value that should be replaced (for example, in a folder path).
■ Code font indicates ActionScript code.
■ Code font italic indicates an ActionScript parameter.
■ Bold font indicates a verbatim entry.
■ Double quotation marks (" ") in code examples indicate delimited strings. However,

programmers can also use single quotation marks.
8 Introduction

1

CHAPTER 1

Flash Lite Global Functions
This section describes the syntax and use of the Macromedia Flash Lite 1.1 ActionScript
global functions. It includes the following functions:

Function Description

call() Executes the script in the called frame without moving the playhead
to that frame.

chr() Converts ASCII code numbers to characters.

duplicateMovieClip() Creates an instance of a movie clip while the SWF file plays.

eval () Accesses variables, properties, objects, or movie clips by name.

getProperty() Returns the value of the specified property for the specified
movie clip.

getTimer() Returns the number of milliseconds that elapsed since the SWF file
started playing.

getURL() Loads a document from a specific URL into a window or passes
variables to another application at a defined URL.

gotoAndPlay() Sends the playhead to the specified frame in a scene and begins
playing from that frame. If no scene is specified, the playhead moves
to the specified frame in the current scene.

gotoAndStop() Sends the playhead to the specified frame in a scene and stops it. If
no scene is specified, the playhead is sent to the frame in the
current scene.

ifFrameLoaded() Checks whether the contents of a specific frame are available locally.

int() Truncates a decimal number to an integer value.

length() Returns the number of characters of the specified string or
variable name.

loadMovie() Loads a SWF file into Flash Lite while the original SWF file plays.

loadMovieNum() Loads a SWF file into a level in Flash Lite while the originally loaded
SWF file plays.
9

loadVariables() Reads data from an external file, such as a text file or text generated
by a ColdFusion, CGI ASP, PHP, or Perl script, and sets the values
for variables in a Flash Lite level. This function can also update
variables in the active SWF file with new values.

loadVariablesNum() Reads data from an external file, such as a text file or text generated
by a ColdFusion, CGI, ASP, PHP, or Perl script, and sets the values
for variables in a Flash Lite level. This function can also update
variables in the active SWF file with new values.

mbchr() Converts an ASCII code number to a multibyte character.

mblength() Returns the length of the multibyte character string.

mbord() Converts the specified character to a multibyte number.

mbsubstring() Extracts a new multibyte character string from a multibyte
character string.

nextFrame() Sends the playhead to the next frame and stops it.

nextScene() Sends the playhead to Frame 1 of the next scene and stops it.

Number() Converts an expression to a number and returns a value.

on() Specifies the user event or keypress that triggers an event.

ord() Converts characters to ASCII code numbers.

play() Moves the playhead forward in the timeline.

prevFrame() Sends the playhead to the previous frame and stops it. If the current
frame is Frame 1, the playhead does not move.

prevScene() Sends the playhead to Frame 1 of the previous scene and stops it.

removeMovieClip() Deletes the specified movie clip that was originally created using
duplicateMovieClip().

set() Assigns a value to a variable.

setProperty() Changes a property value of a movie clip as the movie plays.

stop() Stops the SWF file that is currently playing.

stopAllSounds() Stops all sounds currently playing in a SWF file without stopping
the playhead.

String() Returns a string representation of the specified parameter.

substring() Extracts part of a string.

tellTarget() Applies the instructions specified in the statement(s) parameter to
the timeline specified in the target parameter.

Function Description
10 Flash Lite Global Functions

call()
Availability

Flash Lite 1.0.

Usage
call(frame)

call(movieClipInstance:frame)

Operands

frame The label or number of a frame in the timeline.

movieClipInstance The instance name of a movie clip.

Description

Function; executes the script in the called frame without moving the playhead to that frame.
Local variables do not exist after the script executes. The call() function can take two
possible forms:

■ The default form executes the script on the specified frame of the same timeline where the
call() function was executed, without moving the playhead to that frame.

■ The specified clip instance form executes the script on the specified frame of the movie
clip instance, without moving the playhead to that frame.

toggleHighQuality() Turns anti-aliasing on and off in Flash Lite. Anti-aliasing smooths the
edges of objects but slows down SWF file playback.

trace() Evaluates the expression and shows the result in the Output panel in
test mode.

unloadMovie() Removes a movie clip from Flash Lite that was loaded using
loadMovie() loadMovieNum(), or duplicateMovieClip().

unloadMovieNum() Removes a movie clip that was loaded using loadMovie()
loadMovieNum(), or duplicateMovieClip() from a level in Flash Lite.

N
O

T
E

The call() function operates synchronously; any ActionScript that follows a call()
function does not execute until all of the ActionScript at the specified frame has
completed.

Function Description
call() 11

Example

The following examples execute the script in the myScript frame:
// to execute functions in frame with label "myScript"
thisFrame = "myScript";
trace ("Calling the script in frame: " add thisFrame);

// to execute functions in any other frame on the same timeline
call("myScript");

chr()
Availability

Flash Lite 1.0.

Usage
chr(number)

Operands

number An ASCII code number.

Description

String function; converts ASCII code numbers to characters.

Example

The following example converts the number 65 to the letter A and assigns it to the
variable myVar:
myVar = chr(65);
trace (myVar);// Output: A

duplicateMovieClip()
Availability

Flash Lite 1.0.

Usage
duplicateMovieClip(target, newname, depth)
12 Flash Lite Global Functions

Operands

target The target path of the movie clip to duplicate.

newname A unique identifier for the duplicated movie clip.

depth A unique depth level for the duplicated movie clip. The depth level indicates a
stacking order for duplicated movie clips. This stacking order is much like the stacking order
of layers in the timeline; movie clips with a lower depth level are hidden under clips that have
a higher depth level. You must assign to each duplicated movie clip a unique depth level so
that it does not overwrite existing movie clips on occupied depth levels.

Description

Function; creates an instance of a movie clip while the SWF file plays and returns a reference
to the duplicated movie clip. The playhead in a duplicate movie clip always starts at Frame 1,
regardless of where the playhead is in the original (parent) movie clip. Variables in the parent
movie clip are not copied into the duplicate movie clip. If the parent movie clip is deleted, the
duplicate movie clip is also deleted. Use the removeMovieClip() function or method to
delete a movie clip instance created with duplicateMovieClip().

Example

The following example duplicates a movie clip named originalClip to create a new clip
named newClip, at a depth level of 10. The new clip’s x position is set to 100 pixels.
duplicateMovieClip("originalClip", "newClip", 10);
setProperty("newClip", _x, 100);

The following example uses duplicateMovieClip() in a for loop to create several new
movie clips at once. An index variable keeps track of the highest occupied stacking depth.
Each duplicate movie clip’s name contains a numeric suffix that corresponds to its stacking
depth (clip1, clip2, clip3).
for (i = 1; i <= 3; i++) {

newName = "clip" add i;
duplicateMovieClip("originalClip", newName); }

See also

removeMovieClip()
duplicateMovieClip() 13

eval ()
Availability

Flash Lite 1.0.

Usage
eval(expression)

Operands

expression A string containing the name of a variable, property, object, or movie clip
to retrieve.

Description

Function; accesses variables, properties, objects, or movie clips by name. If expression is a
variable or a property, the value of the variable or property is returned. If expression is an
object or movie clip, a reference to the object or movie clip is returned. If the element named
in expression cannot be found, undefined is returned.

You can use eval() to simulate arrays, or to dynamically set and retrieve the value of
a variable.

Example

The following example uses eval() to determine the value of the expression "piece" + x.
Because the result is a variable name, piece3, eval() returns the value of the variable and
assigns it to y:
piece3 = "dangerous";
x = 3;
y = eval("piece" add x);
trace(y);// Output: dangerous.

The following example demonstrates how an array could be simulated:
name1 = "mike";
name2 = "debbie";
name3 = "logan";
for(i = 1; i <= 3; i++) {

trace (eval("name" add i));// Output: mike, debbie, logan
}

14 Flash Lite Global Functions

getProperty()
Availability

Flash Lite 1.0.

Usage
getProperty(my_mc, property)

Operands

my_mc The instance name of a movie clip for which the property is being retrieved.

property A property of a movie clip.

Description

Function; returns the value of the specified property for the my_mc movie clip.

Example

The following example retrieves the horizontal axis coordinate (_x) for the my_mc movie clip
in the root movie timeline:
xPos = getProperty("person_mc", _x);
trace (xPos); // output: -75

See also

setProperty()

getTimer()
Availability

Flash Lite 1.0.

Usage
getTimer()

Operands

None.

Description

Function; returns the number of milliseconds that elapsed since the SWF file started playing.
getTimer() 15

Example

The following example sets the timeElapsed variable to the number of milliseconds that
elapsed since the SWF file started playing:
timeElapsed = getTimer();
trace (timeElapsed);// Output: milliseconds of time movie has been playing

getURL()
Availability

Flash Lite 1.0.

Usage
getURL(url [, window [, "variables"]])

Operands

url The URL from which to obtain the document.

window An optional parameter that specifies the window or HTML frame that the
document should load into.

You can enter an empty string, or the name of a specific window, or choose from the following
reserved target names:

■ _self specifies the current frame in the current window.
■ _blank specifies a new window.
■ _parent specifies the parent of the current frame.
■ _top specifies the top-level frame in the current window.

variables A GET or POST method for sending variables. If there are no variables, omit this
parameter. The GET method appends the variables to the end of the URL and is used for small
numbers of variables. The POST method sends the variables in a separate HTTP header and is
used for sending long strings of variables.

Description

Function; loads a document from a specific URL into a window or passes variables to another
application at a defined URL. To test this function, make sure the file you want to load is in
the specified location. To use an absolute URL (for example, http://www.myserver.com), you
need a network connection.

N
O

T
E

The window parameter is not specified for Flash Lite applications, because browsers on
cell phones do not support multiple windows.
16 Flash Lite Global Functions

Flash Lite 1.0 recognizes only the HTTP, HTTPS, mailto, and tel protocols. Flash Lite 1.1
recognizes these protocols, and in addition, the file, SMS (short message service), and MMS
(multimedia message service) protocols.

Flash Lite passes the call to the operating system, and the operating system handles the call
with the registered default application for the specified protocol.

Only one getURL() function is processed per frame or per event handler.

Certain handsets restrict the getURL() function to key events only, in which case the
getURL() call is processed only if it is triggered in a key event handler. Even under such
circumstances, only one getURL() function is processed per event handler.

Example

In the following ActionScript, the Flash Lite player opens mobile.macromedia.com in the
default browser:
myURL = "http://mobile.macromedia.com";
 on(keyPress "1") {

getURL(myURL);
}

You can also use GET or POST for sending variables from the current timeline. The following
example uses the GET method to append variables to a URL:
firstName = "Gus";
lastName = "Richardson";
age = 92;
getURL("http://www.macromedia.com", "_blank", "GET");

The following ActionScript uses POST to send variables in an HTTP header:
firstName = "Gus";
lastName = "Richardson";
age = 92;
getURL("http://www.macromedia.com", "POST");

You can assign a button function to open an e-mail composition window with the address,
subject, and body text fields already populated. Use one of the following methods to assign a
button function: Method 1 for either Shift-JIS or English character encoding; Method 2 only
for English character encoding.

Method 1: Set variables for each of the desired parameters, as in this example:
on (release, keyPress "#"){
subject = "email subject";
body = "email body";
getURL("mailto:somebody@anywhere.com", "", "GET");
}

getURL() 17

Method 2: Define each parameter within the getURL() function, as in this example:
on (release, keyPress "#"){
getURL("mailto:somebody@anywhere.com?cc=cc@anywhere.com&bcc=bcc@anywhere.
com&subject=I am the email subject&body=I am the email body");
}

Method 1 results in automatic URL encoding, while Method 2 preserves the spaces in the
strings. For example, the strings that result from using Method 1 are as follows:
email+subject
email+body

In contrast, Method 2 results in the following strings:
email subject
email body

The following example uses the tel protocol:
on (release, keyPress "#"){

getURL("tel:117");
}

In the following example, getURL() is used to send an SMS message:
mySMS = "sms:4156095555?body=sample sms message";
on(keyPress "5") {

getURL(mySMS);
}

In the following example, getURL() is used to send an MMS message:
// mms example
myMMS = "mms:4156095555?body=sample mms message";
on(keyPress "6") {

getURL(myMMS);
}

In the following example, getURL() is used to open a text file stored on the local file system:
// file protocol example
filePath = "file://c:/documents/flash/myApp/myvariables.txt";
on(keyPress "7") {

getURL(filePath);
}

18 Flash Lite Global Functions

gotoAndPlay()
Availability

Flash Lite 1.0.

Usage
gotoAndPlay([scene,] frame)

Operands

scene An optional string specifying the name of the scene to which the playhead is sent.

frame A number representing the frame number, or a string representing the label of the
frame, to which the playhead is sent.

Description

Function; sends the playhead to the specified frame in a scene and begins playing from that
frame. If no scene is specified, the playhead moves to the specified frame in the current scene.

You can use the scene parameter only on the root timeline, not within timelines for movie
clips or other objects in the document.

Example

In the following example, when the user clicks a button to which gotoAndPlay() is assigned,
the playhead moves to Frame 16 in the current scene and starts to play the SWF file:
on(keyPress "7") {

gotoAndPlay(16);
}

gotoAndStop()
Availability

Flash 1.0.

Usage
gotoAndStop([scene,] frame)

Operands

scene An optional string specifying the name of the scene to which the playhead is sent.

frame A number representing the frame number, or a string representing the label of the
frame, to which the playhead is sent.
gotoAndStop() 19

Description

Function; sends the playhead to the specified frame in a scene and stops it. If no scene is
specified, the playhead is sent to the frame in the current scene.

You can use the scene parameter only on the root timeline, not within timelines for movie
clips or other objects in the document.

Example

In the following example, when the user clicks a button to which gotoAndStop() is assigned,
the playhead is sent to Frame 5 in the current scene, and the SWF file stops playing:
on(keyPress "8") {

gotoAndStop(5);
}

ifFrameLoaded()
Availability

Flash Lite 1.0.

Usage
ifFrameLoaded([scene,] frame) {

statement(s);
}

Operands

scene An optional string specifying the name of the scene to be loaded.

frame The frame number or frame label to be loaded before the next statement can execute.

statement(s) The instructions to execute if the specified frame, or scene and frame,
are loaded.

Description

Function; checks whether the contents of a specific frame are available locally. Use the
ifFrameLoaded function to start playing a simple animation while the rest of the SWF file
downloads to the local computer. You can also use the _framesloaded property to check the
download progress of an external SWF file. The difference between using _framesloaded
and ifFrameLoaded is that _framesloaded lets you add custom if or else statements.
20 Flash Lite Global Functions

Example

The following example uses the ifFrameLoaded function to check if Frame 10 of the SWF
file is loaded. If the frame is loaded, the trace() command prints “frame number 10 is
loaded” to the Output panel. The output variable is also defined with a variable of frame
loaded: 10.
ifFrameLoaded(10) {
 trace ("frame number 10 is loaded");
 output = "frame loaded: 10";
 }

See also

_framesloaded

int()
Availability

Flash Lite 1.0.

Usage
int(value)

Operands

value A number or string to be truncated to an integer.

Description

Function; truncates a decimal number to an integer value.

Example

The following example truncates the numbers in the distance and myDistance variables:
distance = 6.04 - 3.96;
//trace ("distance = " add distance add " and rounded to:" add

int(distance));
// Output: distance = 2.08 and rounded to: 2
myDistance = "3.8";
//trace ("myDistance = " add int(myDistance));
// Output: 3
int() 21

length()
Availability

Flash Lite 1.0.

Usage
length(expression)

length(variable)

Operands

expression A string.

variable The name of a variable.

Description

String function; returns the number of characters of the specified string or variable name.

Example

The following example returns the length of the string "Hello":
length("Hello");

The result is 5.

The following example validates an e-mail address by checking that it contains at least six
characters:
email = "someone@macromedia.com";
if (length(email) > 6) {

//trace ("email appears to have enough characters to be valid");
}

loadMovie()
Availability

Flash Lite 1.1.

Usage
loadMovie(url, target [, method])
22 Flash Lite Global Functions

Operands

url A string specifying the absolute or relative URL of the SWF file to load. A relative path
must be relative to the SWF file at level 0. Absolute URLs must include the protocol
reference, such as http:// or file:///.

target A reference to a movie clip or a string representing the path to a target movie clip.
The target movie clip is replaced by the loaded SWF file.

method An optional string parameter specifying an HTTP method for sending variables.
The parameter must be the string GET or POST. If there are no variables to be sent, omit this
parameter. The GET method appends the variables to the end of the URL and is used for small
numbers of variables. The POST method sends the variables in a separate HTTP header and is
used for long strings of variables.

Description

Function; loads a SWF file into Flash Lite while the original SWF file plays.

To load a SWF file into a specific level, use the loadMovieNum() function instead
of loadMovie().

When a SWF file is loaded into a target movie clip, you can use the target path of that movie
clip to target the loaded SWF file. A SWF file loaded into a target inherits the position,
rotation, and scale properties of the targeted movie clip. The upper-left corner of the loaded
image or SWF file aligns with the registration point of the targeted movie clip. However, if the
target is the root timeline, the upper-left corner of the image or SWF file aligns with the
upper-left corner of the Stage.

Use the unloadMovie() function to remove SWF files that were loaded with loadMovie().

Example

The following example loads the SWF file circle.swf from the same directory and replaces a
movie clip called mySquare that already exists on the Stage:
loadMovie("circle.swf", "mySquare");
// Equivalent statement: loadMovie("circle.swf", _level0.mySquare);

See also

_level, loadMovieNum(), unloadMovie(), unloadMovieNum()
loadMovie() 23

loadMovieNum()
Availability

Flash Lite 1.1.

Usage
loadMovieNum(url, level [, method])

Operands

url A string specifying the absolute or relative URL of the SWF file to be loaded. A relative
path must be relative to the SWF file at level 0. For use in the stand-alone Flash Lite player or
for use in test mode in the Flash authoring application, all SWF files must be stored in the
same folder and the filenames cannot include folder or drive specifications.

level An integer specifying the level in Flash Lite where the SWF file loads.

method An optional string parameter specifying an HTTP method for sending variables. It
must have the value GET or POST. If there are no variables to be sent, omit this parameter. The
GET method appends the variables to the end of the URL and is used for small numbers of
variables. The POST method sends the variables in a separate HTTP header and is used for
long strings of variables.

Description

Function; loads a SWF file into a level in Flash Lite while the originally loaded SWF file plays.

Normally, Flash Lite displays a single SWF file and then closes. The loadMovieNum()
function lets you display several SWF files at once and switch among SWF files without
loading another HTML document.

To specify a target instead of a level, use the loadMovie() function instead of
loadMovieNum().

Flash Lite has a stacking order of levels starting with level 0. These levels are like layers of
acetate; they are transparent except for the objects on each level. When you use
loadMovieNum(), you must specify a level in Flash Lite where the SWF file will load. When a
SWF file is loaded into a level, you can use the syntax _levelN, where N is the level number,
to target the SWF file.

When you load a SWF file, you can specify any level number. You can load SWF files into a
level that already has a SWF file loaded into it, and the new SWF file replaces the existing file.
If you load a SWF file into level 0, every level in Flash Lite is unloaded, and level 0 is replaced
with the new file. The SWF file in level 0 sets the frame rate, background color, and frame size
for all other loaded SWF files.
24 Flash Lite Global Functions

Use unloadMovieNum() to remove SWF files or images that were loaded with
loadMovieNum().

Example

The following example loads the SWF file into level 2:
loadMovieNum("http://www.someserver.com/flash/circle.swf", 2);

See also

_level, loadMovie(), unloadMovieNum()

loadVariables()
Availability

Flash Lite 1.1.

Usage
loadVariables(url, target [, variables])

Operands

url A string representing an absolute or relative URL where the variables are located. If the
SWF file issuing this call is running in a web browser, url must be in the same domain as
the SWF file.

target The target path to a movie clip that receives the loaded variables.

variables An optional string parameter specifying an HTTP method for sending
variables. The parameter must be the string GET or POST. If there are no variables to be sent,
omit this parameter. The GET method appends the variables to the end of the URL and is used
for small numbers of variables. The POST method sends the variables in a separate HTTP
header and is used for long strings of variables.

Description

Function; reads data from an external file, such as a text file or text generated by a
ColdFusion, CGI, Active Server Pages (ASP), PHP, or Perl script, and sets the values for
variables in a target movie clip. This function can also update variables in the active SWF file
with new values.

The text at the specified URL must be in the standard MIME format application/x-www-
form-urlencoded (a standard format used by CGI scripts). Any number of variables can be
specified. For example, the following phrase defines several variables:
company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103
loadVariables() 25

To load variables into a specific level, use the loadVariablesNum() function instead of the
loadVariables() function.

Example

The following examples load variables from a text file and from a server:
// load variables from text file on local file system (Symbian Series 60)
on(release, keyPress "1") {

filePath = "file://c:/documents/flash/myApp/myvariables.txt";
loadVariables(filePath, _root);

}

// load variables (from server) into a movieclip
urlPath = "http://www.someserver.com/myvariables.txt";
loadVariables(urlPath, "myClip_mc");

See also

loadMovieNum(), loadVariablesNum(), unloadMovie()

loadVariablesNum()
Availability

Flash Lite 1.1.

Usage
loadVariablesNum(url, level [, variables])

Operands

url A string representing an absolute or relative URL where the variables to be loaded are
located. If the SWF file issuing this call is running in a web browser, url must be in the same
domain as the SWF file; for more information, see the following Description section.

level An integer that specifies the level in Flash Lite to receive the variables.

variables An optional string parameter specifying an HTTP method for sending
variables. The parameter must be the string GET or POST. If there are no variables to be sent,
omit this parameter. The GET method appends the variables to the end of the URL and is used
for small numbers of variables. The POST method sends the variables in a separate HTTP
header and is used for long strings of variables.
26 Flash Lite Global Functions

Description

Function; reads data from an external file, such as a text file or text generated by a
ColdFusion, CGI, ASP, PHP, or Perl script, and sets the values for variables in a Flash Lite
level. This function can also update variables in the active SWF file with new values.

The text at the specified URL must be in the standard MIME format application/x-www-
form-urlencoded (a standard format used by CGI scripts). Any number of variables can be
specified. The following example phrase defines several variables:
company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103

Normally, Flash Lite displays a single SWF file, and then closes. The loadVariablesNum()
function lets you display several SWF files at once and switch among SWF files without
loading another HTML document.

To load variables into a target movie clip, use the loadVariables() function instead of the
loadVariablesNum() function.

See also

getURL(), loadMovie(), loadMovieNum(), loadVariables()

mbchr()
Availability

Flash Lite 1.0.

Usage
mbchr(number)

Operands

number The number to convert to a multibyte character.

Description

String function; converts an ASCII code number to a multibyte character.
mbchr() 27

Example

The following example converts ASCII code numbers to their mulitibyte character
equivalents:
trace (mbchr(65));// Output: A
trace (mbchr(97));// Output: a
trace (mbchr(36));// Output: $

myString = mbchr(51) - mbchr(49);
trace ("result = " add myString);// Output: result = 2

See also

mblength(), mbsubstring()

mblength()
Availability

Flash Lite 1.0.

Usage
mblength(string)

Operands

string A string.

Description

String function; returns the length of the multibyte character string.

Example

The following example displays the length of the string in the myString variable:
myString = mbchr(36) add mbchr(50);
trace ("string length = " add mblength(myString));
// Output: string length = 2

See also

mbchr(), mbsubstring()
28 Flash Lite Global Functions

mbord()
Availability

Flash Lite 1.0.

Usage
mbord(character)

Operands

character The character to convert to a multibyte number.

Description

String function; converts the specified character to a multibyte number.

Example

The following examples convert the characters in the myString variable to
multibyte numbers:
myString = "A";
trace ("ord = " add mbord(myString));// Output: 65

myString = "$120";
for (i=1; i<=length(myString); i++)

char = substring(myString, i, 1);
trace ("char ord = " add mbord(char));// Output: 36, 49, 50, 48

}

See also

mbchr(), mbsubstring()

mbsubstring()
Availability

Flash Lite 1.0.

Usage
mbsubstring(value, index, count)
mbsubstring() 29

Operands

value The multibyte string from which to extract a new multibyte string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not including the
index character.

Description

String function; extracts a new multibyte character string from a multibyte character string.

Example

The following example extracts a new multibyte character string from the string contained in
the myString variable:
myString = mbchr(36) add mbchr(49) add mbchr(50) add mbchr(48);
trace (mbsubstring(myString, 0, 2));// Output: $1

See also

mbchr()

nextFrame()
Availability

Flash Lite 1.0.

Usage
nextFrame()

Operands

None.

Description

Function; sends the playhead to the next frame and stops it.
30 Flash Lite Global Functions

Example

In the following example, when the user clicks the button, the playhead moves to the next
frame and stops:
on (release) {

nextFrame();
}

See also

prevFrame()

nextScene()
Availability

Flash Lite 1.0.

Usage
nextScene()

Operands

None.

Description

Function; sends the playhead to Frame 1 of the next scene and stops it.

Example

In the following example, when a user releases the button, the playhead moves to Frame 1 of
the next scene:
on(release) {

nextScene();
}

See also

prevScene()
nextScene() 31

Number()
Availability

Flash Lite 1.0.

Usage
Number(expression)

Operands

expression An expression to convert to a number.

Description

Function; converts the parameter expression to a number and returns a value as described in
the following list:

■ If expression is a number, the return value is expression.
■ If expression is a Boolean value, the return value is 1 if expression is true; 0 if

expression is false.
■ If expression is a string, the function attempts to parse expression as a decimal

number with an optional trailing exponent (that is, 1.57505e-3).
■ If expression is undefined, the return value is -1.

Example

The following example converts the string in the myString variable to a number, stores the
number in the myNumber variable, adds 5 to the number, and stores the result in the variable
myResult. The final line shows the result when you call Number() on a Boolean value.
myString = "55";
myNumber = Number(myString);
myResult = myNumber + 5;

trace (myResult); // Output: 60

trace (Number(true));// Output: 1
32 Flash Lite Global Functions

on()
Availability

Flash Lite 1.0.

Usage
on(event) {

// statement(s)
}

Operands

statement(s) The instructions to execute when event occurs.

event This trigger is called an event. When a user event occurs, the statements following it
within curly braces ({}) execute. Any of the following values can be specified for the
event parameter:

■ press The button is pressed while the pointer is over the button.
■ release The button is released while the pointer is over the button.
■ rollOut The pointer rolls outside the button area.
■ rollOver The pointer rolls over the button.
■ keyPress "key" The specified key is pressed. For the key portion of the parameter,

specify a key code or key constant.

Description

Event handler; specifies the user event or keypress that triggers a function. Not all events
are supported.

Example

The following code, which scrolls the myText field down one line when the user presses the
8 key, tests against maxscroll before scrolling:
on (keyPress "8") {

if (myText.scroll < myText.maxscroll) {
myText.scroll++;

}
}

on() 33

ord()
Availability

Flash Lite 1.0.

Usage
ord(character)

Operands

character The character to convert to an ASCII code number.

Description

String function; converts characters to ASCII code numbers.

Example

The following example uses the ord() function to display the ASCII code for the character A:
trace ("multibyte number = " add ord("A"));// Output: multibyte number = 65

play()
Availability

Flash Lite 1.0.

Usage
play()

Operands

None.

Description

Function; moves the playhead forward in the timeline.
34 Flash Lite Global Functions

Example

The following example uses an if statement to check the value of a name that the user enters.
If the user enters Steve, the play() function is called, and the playhead moves forward in the
timeline. If the user enters anything other than Steve, the SWF file does not play, and a text
field with the variable name alert appears.
stop();
if (name == "Steve") {

play();
} else {

alert="You are not Steve!";
}

prevFrame()
Availability

Flash Lite 1.0.

Usage
prevFrame()

Operands

None.

Description

Function; sends the playhead to the previous frame and stops it. If the current frame is Frame
1, the playhead does not move.

Example

When the user clicks a button that has the following handler attached to it, the playhead is
sent to the previous frame:
on(release) {

prevFrame();
}

See also

nextFrame()
prevFrame() 35

prevScene()
Availability

Flash Lite 1.0.

Usage
prevScene()

Operands

None.

Description

Function; sends the playhead to Frame 1 of the previous scene and stops it.

Example

In this example, when the user clicks a button that has the following handler attached to it,
the playhead is sent to the previous scene:
on(release) {

prevScene();
}

See also

nextScene()

random()
Availability

Flash Lite 1.0.

Usage
random(value)

Operands

value An integer.

Description

Function; returns a random integer between 0 and one less than the integer specified in the
value parameter.
36 Flash Lite Global Functions

Example

The following examples generate a number based on an integer specifying the range:
//pick random number between 0 and 5
myNumber = random(5);
trace (myNumber);// Output: could be 0,1,2,3,4

//pick random number between 5 and 10
myNumber = random(5) + 5;
trace (myNumber);// Output: could be 5,6,7,8,9

The following examples generate a number, and then concatenate it onto the end of a string
being evaluated as a variable name. This is an example of how Flash Lite 1.1 syntax can be
used to simulate arrays.
// select random name from list
myNames1 = "Mike";
myNames2 = "Debbie";
myNames3 = "Logan";

ran = random(3) + 1;
ranName = "myNames" add ran;
trace (eval(ranName));// Output: will be mike, debbie, or logan

removeMovieClip()
Availability

Flash Lite 1.0.

Usage
removeMovieClip(target)

Operands

target The target path of a movie clip instance created with duplicateMovieClip().

Description

Function; deletes the specified movie clip that was originally created using
duplicateMovieClip().

Example

The following example deletes the duplicate movie clip named second_mc:
duplicateMovieClip("person_mc", "second_mc", 1);
second_mc:_x = 55;
second_mc:_y = 85;
removeMovieClip("second_mc");
removeMovieClip() 37

set()
Availability

Flash Lite 1.0.

Usage
set(variable, expression)

Operands

variable An identifier to hold the value of the expression parameter.

expression A value assigned to the variable.

Description

Statement; assigns a value to a variable. A variable is a container that holds data. The
container is always the same, but the contents can change. By changing the value of a variable
as the SWF file plays, you can record and save information about what the user has done,
record values that change as the SWF file plays, or evaluate whether a condition is true
or false.

Variables can hold any data type (for example, String, Number, Boolean, or MovieClip). The
timeline of each SWF file and movie clip has its own set of variables, and each variable has its
own value that is independent of variables on other timelines.

Example

The following example sets a variable called orig_x_pos, which stores the original x axis
position of the ship movie clip to reset the ship to its starting location later in the SWF file:
on(release) {

set("orig_x_pos", getProperty("ship", _x));
}

The preceding code gives the same result as the following code:
on(release) {

orig_x_pos = ship._x;
}

38 Flash Lite Global Functions

setProperty()
Availability

Flash Lite 1.0.

Usage
setProperty(target, property, value/expression)

Operands

target The path to the instance name of the movie clip whose property is to be set.

property The property to be set.

value The new literal value of the property.

expression An equation that evaluates to the new value of the property.

Description

Function; changes a property value of a movie clip as the movie plays.

Example

The following statement sets the _alpha property of the star movie clip to 30 percent when
the user clicks the button associated with this event handler:
on(release) {

setProperty("star", _alpha, "30");
}

See also

getProperty()

stop()
Availability

Flash Lite 1.0.

Usage
stop()

Operands

None.
stop() 39

Description

Function; stops the SWF file that is currently playing. The most common use of this function
is to control movie clips with buttons.

Example

The following statement calls the stop() function when the user clicks the button associated
with this event handler:
on(release) {

stop();
}

stopAllSounds()
Availability

Flash Lite 1.0.

Usage
stopAllSounds()

Operands

None.

Description

Function; stops all sounds currently playing in a SWF file without stopping the playhead.
Sounds set to stream will resume playing as the playhead moves over the frames that
contain them.

Example

The following code could be applied to a button that when clicked, stops all sounds in the
SWF file:
on(release) {

stopAllSounds();
}

40 Flash Lite Global Functions

String()
Availability

Flash Lite 1.0.

Usage
String(expression)

Operands

expression An expression to convert to a string.

Description

Function; returns a string representation of the specified parameter as described in the
following list:

■ If expression is a number, the return string is a text representation of the number.
■ If expression is a string, the return string is expression.
■ If expression is a Boolean value, the return string is true or false.
■ If expression is a movie clip, the return value is the target path of the movie clip in slash

(/) notation.

Example

The following example sets birthYearNum to 1976, converts it to a string using the String()
function, and then compares it to the string “1976” by using the eq operator.
birthYearNum = 1976;
birthYearStr = String(birthYearNum);
if (birthYearStr eq "1976") {

trace ("birthYears match");
}

substring()
Availability

Flash Lite 1.0.

Usage
substring(string, index, count)
substring() 41

Operands

string The string from which to extract the new string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not including the
index character.

Description

Function; extracts part of a string. This function is one-based, whereas the String class
methods are zero-based.

Example

The following example extracts the first five characters from the string “Hello World”:
origString = "Hello World!";
newString = substring(origString, 0, 5);
trace (newString);// Output: Hello

tellTarget()
Availability

Flash Lite 1.0.

Usage
tellTarget(target) {

statement(s);
}

Operands

target A string that specifies the target path of the timeline to control.

statement(s) The instructions to execute if the condition evaluates to true.

Description

Function; applies the instructions specified in the statement(s) parameter to the timeline
specified in the target parameter. The tellTarget() function is useful for navigation
controls. Assign tellTarget() to buttons that stop or start movie clips elsewhere on the
Stage. You can also make movie clips go to a particular frame in that clip. For example, you
might assign tellTarget() to buttons that stop or start movie clips on the Stage or prompt
movie clips to move to a particular frame.
42 Flash Lite Global Functions

Example

In the following example, tellTarget() controls the ball movie clip instance on the main
timeline. Frame 1 of the ball instance is blank and has a stop() function so that it isn’t
visible on the Stage. When the user presses the 5 key, tellTarget() tells the playhead in
ball to go to Frame 2 where the animation starts.
on(keyPress "5") {

tellTarget("ball") {
gotoAndPlay(2);

}
}

toggleHighQuality()
Availability

Flash Lite 1.0.

Usage
toggleHighQuality()

Operands

None.

Description

Function; turns anti-aliasing on and off in Flash Lite. Anti-aliasing smooths the edges of
objects but slows down SWF file playback. This function affects all SWF files in Flash Lite.

Example

The following code could be applied to a button that when clicked, would toggle anti-aliasing
on and off:
on(release) {

toggleHighQuality();
}

toggleHighQuality() 43

trace()
Availability

Flash Lite 1.0.

Usage
trace(expression)

Operands

expression An expression to evaluate. When a SWF file opens in the Flash authoring
tool (by means of the Test Movie command), the value of the expression parameter appears
in the Output panel.

Description

Function; evaluates the expression and shows the result in the Output panel in test mode.

Use this function to record programming notes or to display messages in the Output panel
while testing a SWF file. Use the expression parameter to check if a condition exists, or to
display values in the Output panel. The trace() function is similar to the alert function
in JavaScript.

You can use the Omit Trace Actions command in publish settings to remove trace()
functions from the exported SWF file.

Example

The following example uses the trace() function to observe the behavior of a while loop:
i = 0;
while (i++ < 5){

trace("this is execution " add i);
}

unloadMovie()
Availability

Flash Lite 1.0.

Usage
unloadMovie(target)

Operands

target The target path of a movie clip.
44 Flash Lite Global Functions

Description

Function; removes a movie clip from Flash Lite that was loaded by means of loadMovie(),
loadMovieNum(), or “duplicateMovieClip()”.

Example

When the user presses the 3 key, the following code responds by unloading the draggable_mc
movie clip on the main timeline and loading movie.swf into level 4 of the document stack:
on (keypress "3") {

unloadMovie ("/draggable_mc");
loadMovieNum(“movie.swf”, 4);

}

When the user presses the 3 key, the following example unloads the movie that was loaded
into level 4:
on (keypress "3") {
 unloadMovieNum(4);
}

See also

loadMovie()

unloadMovieNum()
Availability

Flash Lite 1.0.

Usage
unloadMovieNum(level)

Operands

level The level (_levelN) of a loaded movie.

Description

Function; removes a movie clip from Flash Lite that was loaded by means of loadMovie(),
loadMovieNum(), or “duplicateMovieClip()”.

Normally, Flash Lite displays a single SWF file, and then closes. The unloadMovieNum()
function lets you affect several SWF files at once and switch among SWF files without loading
another HTML document.

See also

loadMovieNum()
unloadMovieNum() 45

46 Flash Lite Global Functions

2

CHAPTER 2

Flash Lite Properties
This section describes the properties that Macromedia Flash Lite 1.x recognizes. The entries
are listed alphabetically, ignoring any leading underscores. The properties are summarized in
the following table:

Property Description

/ (Forward slash) Specifies or returns a reference to the main movie timeline.

_alpha Returns the alpha transparency value of a movie clip.

_currentframe Returns the number of the frame in which the playhead is located in
the timeline.

_focusrect Specifies whether a yellow rectangle appears around the button or
text field that has the current focus.

_framesloaded Returns the number of frames that have been loaded from a
dynamically loaded SWF file.

_height Specifies the height of the movie clip, in pixels.

_highquality Specifies the level of anti-aliasing applied to the current SWF file.

_level Returns a reference to the root timeline of _levelN. You must use the
loadMovieNum() function to load SWF files into the Flash Lite player
before you use the _level property to target them. You can also use
_levelN to target a loaded SWF file at the level assigned by N.

maxscroll Indicates the line number of the first visible line of text in a scrollable
text field when the last line in the field is also visible.

_name Returns the instance name of a movie clip. It applies only to movie
clips and not to the main timeline.

_rotation Returns the rotation of the movie clip, in degrees, from its original
orientation.

scroll Controls the display of information in a text field associated with a
variable. The scroll property defines where the text field begins
displaying content; after you set it, Flash Lite updates it as the user
scrolls through the text field.
47

/ (Forward slash)
Availability

Flash Lite 1.0

Usage
/

/targetPath

/:varName

Description

Identifier; specifies or returns a reference to the main movie timeline. The functionality
provided by this property is similar to that provided by the _root property in Flash 5.

Example

To specify a variable on a timeline, use slash syntax (/) combined with the colon (:).

Example 1: The car variable on the main Timeline:
/:car

Example 2: The car variable in the movie clip instance mc1 that resides on the
main Timeline:
/mc1/:car

_target Returns the target path of the movie clip instance.

_totalframes Returns the total number of frames in a movie clip.

_visible Indicates whether a movie clip is visible.

_width Returns the width of the movie clip, in pixels.

_x Contains an integer that sets the x coordinate of a movie clip.

_xscale Sets the horizontal scale (percentage) of the movie clip, as applied
from the registration point of the movie clip.

_y Contains an integer that sets the y coordinate of a movie clip, relative
to the local coordinates of the parent movie clip.

_yscale Sets the vertical scale (percentage) of the movie clip, as applied from
the registration point of the movie clip.

Property Description
48 Flash Lite Properties

Example 3: The car variable in the movie clip instance mc2 nested in the movie clip instance
mc1 that resides on the main Timeline:
/mc1/mc2/:car

Example 4: The car variable in the movie clip instance mc2 that resides on the current
Timeline:
mc2/:car

_alpha
Availability

Flash Lite 1.0.

Usage
my_mc:_alpha

Property; the alpha transparency value of the movie clip specified by the my_mc variable. Valid
values are 0 (fully transparent) to 100 (fully opaque), which is the default value. Objects in a
movie clip with _alpha set to 0 are active, even though they are invisible. For example, you
can click a button in a movie clip whose _alpha property is set to 0.

Example

The following code for a button event handler sets the _alpha property of the my_mc movie
clip to 30% when the user clicks the button:
on(release) {

tellTarget("my_mc") {
_alpha = 30;

}
}

_currentframe
Availability

Flash Lite 1.0.

Usage
my_mc:_currentframe

Description

Property (read-only); returns the number of the frame in which the playhead is located in the
timeline that the my_mc variable specifies.
_currentframe 49

Example

The following example uses the _currentframe property and the gotoAndStop() function
to direct the playhead of the my_mc movie clip to advance five frames ahead of its current
location:
tellTarget("my_mc") {

gotoAndStop(_currentframe + 5);
}

See also

gotoAndStop()

_focusrect
Availability

Flash Lite 1.0.

Usage
_focusrect = Boolean;

Description

Property (global); specifies whether a yellow rectangle appears around the button or text field
that has the current focus. The default value, true, displays a yellow rectangle around the
currently focused button or text field as the user presses the Up or Down Arrow keys on their
phone or mobile device to navigate through objects in a SWF file. Specify false if you do not
want the yellow rectangle to appear.

Example

The following example disables the yellow focus rectangle from appearing in the application:
_focusrect = false;
50 Flash Lite Properties

_framesloaded
Availability

Flash Lite 1.0.

Usage
my_mc:_framesloaded

Description

Property (read-only); the number of frames that have been loaded from a dynamically loaded
SWF file. This property is useful for determining whether the contents of a specific frame,
and all the frames before it, have loaded and are available locally in the browser. It is also
useful as a monitor while large SWF files download. For example, you might want to display a
message to users indicating that the SWF file is loading until a specified frame in the SWF file
finishes loading.

Example

The following example uses the _framesloaded property to start a SWF file when all the
frames are loaded. If all the frames aren’t loaded, the _xscale property of the movie clip
instance loader is increased proportionally to create a progress bar.
if (_framesloaded >= _totalframes) {

gotoAndPlay ("Scene 1", "start");
} else {

tellTarget(“loader”) {
_xscale = (_framesloaded/_totalframes)*100;

}
}

_framesloaded 51

_height
Availability

Flash Lite 1.0.

Usage
my_mc:_height

Description

Property (read-only); the height of the movie clip, in pixels.

Example

The following example of event handler code sets the height of a movie clip when the user
clicks the mouse button:
on(release) {

tellTarget("my_mc") {
_height = 200;

}
}

_highquality
Availability

Flash Lite 1.0.

Usage
_highquality

Description

Property (global); specifies the level of anti-aliasing applied to the current SWF file. Specify 2
for best quality anti-aliasing. Specify 1 for high quality anti-aliasing. Specify 0 to prevent
anti aliasing.

Example

The following statement applies high quality anti-aliasing to the current SWF file:
_highquality = 1;

See also

toggleHighQuality()
52 Flash Lite Properties

_level
Availability

Flash Lite 1.0.

Usage
_levelN

Description

Identifier; a reference to the root timeline of _levelN. You must use the loadMovieNum()
function to load SWF files into the Flash Lite player before you use the _level property to
target them. You can also use _levelN to target a loaded SWF file at the level assigned by N.

The initial SWF file that loads into an instance of the Flash Lite player automatically loads
into _level0. The SWF file in _level0 sets the frame rate, background color, and frame size
for all subsequently loaded SWF files. SWF files are then stacked in higher-numbered levels
above the SWF file in _level0.

You must assign a level to each SWF file that you load into the Flash Lite player by using the
loadMovieNum() function. You can assign levels in any order. If you assign a level that already
contains a SWF file (including _level0), the SWF file at that level is unloaded and replaced
by the new SWF file.

Example

The following example loads a SWF file into Level 1, and then stops the playhead of the
loaded SWF file on Frame 6:
loadMovieNum("mySWF.swf", 1);

// at least 1 frame later
tellTarget(_level1) {

gotoAndStop(6);
}

See also

loadMovie()
_level 53

maxscroll
Availability

Flash Lite 1.1

Usage
variable_name:maxscroll

Description

Property (read-only); indicates the line number of the first visible line of text in a scrollable
text field when the last line in the field is also visible. The maxscroll property works with the
scroll property to control how information appears in a text field. This property can be
retrieved but not modified.

Example

The following code, which scrolls the myText text field down one line when the user presses
the 8 key, tests against maxscroll before scrolling:
on(keyPress "8") {

if (myText:scroll < myText:maxscroll) {
myText:scroll++;

}
}

See also

scroll

_name
Availability

Flash Lite 1.0.

Usage
my_mc:_name
54 Flash Lite Properties

Description

Property; the instance name of the movie clip that my_mc specifies. It applies only to movie
clips and not to the main timeline.

Example

The following example displays the name of the bigRose movie clip in the Output panel as
a string:
trace(bigRose:_name);

_rotation
Availability

Flash Lite 1.0.

Usage
my_mc:_rotation

Description

Property; the rotation of the movie clip, in degrees, from its original orientation. Values from
0 to 180 represent clockwise rotation; values from 0 to -180 represent counterclockwise
rotation. Values outside this range are added to or subtracted from 360 to obtain a value
within the range. For example, the statement my_mc:_rotation = 450 is the same as
my_mc:_rotation = 90.

Example

The following example rotates the my_mc movie clip 15 degrees clockwise when the user
presses the 2 key:
on (keyPress "2") {

my_mc:_rotation += 15;
}

_rotation 55

scroll
Availability

Flash Lite 1.1.

Usage
textFieldVariableName:scroll

Description

Property; controls the display of information in a text field associated with a variable. The
scroll property defines where the text field begins displaying content; after you set it, Flash
Lite updates it as the user scrolls through the text field. You can use the scroll property to
create a scrolling text field or to direct a user to a specific paragraph in a long passage.

Example

The following code scrolls the myText text field up one line each time the user clicks the
2 key:
on(keyPress "2") {

if (myText:scroll > 1) {
myText:scroll--;

}
}

See also

maxscroll

_target
Availability

Flash Lite 1.0.

Usage
my_mc:_target

Description

Property (read-only); returns the target path of the movie clip instance that my_mc specifies.
56 Flash Lite Properties

_totalframes
Availability

Flash Lite 1.0.

Usage
my_mc:_totalframes

Description

Property (read-only); returns the total number of frames in the my_mc movie clip.

Example

The following code loads mySWF.swf into Level 1, and then 25 frames later, checks to see
whether it is loaded:
loadMovieNum("mySWF.swf", 1);

// 25 frames later in the main timeline
if (_level1._framesloaded >= _level1._totalframes) {

tellTarget("_level1/") {
gotoAndStop("myLabel");

}
} else {

// loop...
}

_visible
Availability

Flash Lite 1.0.

Usage
my_mc:_visible

Description

Property; a Boolean value that indicates whether the movie clip that my_mc specifies is visible.
Movie clips that are not visible (_visible property set to false) are disabled. For example, a
button in a movie clip with _visible set to false cannot be clicked. Movie clips are visible
unless explicitly made invisible in this manner.
_visible 57

Example

The following code disables the my_mc movie clip when the user presses the 3 key, and enables
it when the user presses the 4 key:
on(keyPress "3") {
 my_mc:_visible = 0;
 }

 on(keyPress "4") {
 my_mc:_visible = 1;
 }

_width
Availability

Flash Lite 1.0.

Usage
my_mc:_width

Description

Property; the width of the movie clip, in pixels.

Example

The following example sets the width properties of a movie clip when the user presses the
5 key:
on(keyPress "5") {

my_mc:_width = 10;
}

_x
Availability

Flash Lite 1.0.

Usage
my_mc:_x
58 Flash Lite Properties

Description

Property; an integer that sets the x coordinate of a movie clip (represented here by my_mc),
relative to the local coordinates of the parent movie clip. If a movie clip is in the main
timeline, its coordinate system refers to the upper-left corner of the Stage as (0, 0).

If the movie clip is inside another movie clip that has transformations, the movie clip is in
the local coordinate system of the enclosing movie clip. For example, if a movie clip is
rotated 90 degrees counterclockwise, the child movie clips inherit a coordinate system that is
rotated 90 degrees counterclockwise. The movie clip’s coordinates refer to the registration
point position.

Example

The following example changes the horizontal position of the my_mc movie clip when the user
presses the 6 key:
on(keyPress "6") {

my_mc:_x = 10;
}

See also

_xscale, _y, _yscale

_xscale
Availability

Flash Lite 1.0.

Usage
my_mc:_xscale

Description

Property; sets the horizontal scale (percentage) of the movie clip, as applied from the
registration point of the movie clip. The default registration point is (0, 0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined
in pixels. For example, if the parent movie clip is scaled to 50%, setting the _x property moves
an object in the movie clip by half of the number of pixels that it would if the movie were set
at 100%.
_xscale 59

Example

The following example changes the horizontal scale of the my_mc movie clip when the user
presses the 7 key:
on(keyPress "7") {

my_mc:_xscale = 10;
}

See also

_x, _y, _yscale

_y
Availability

Flash Lite 1.0.

Usage
my_mc:_y

Description

Property; an integer that sets the y coordinate of a movie clip (represented here by my_mc),
relative to the local coordinates of the parent movie clip. If a movie clip is in the main
Timeline, its coordinate system refers to the upper-left corner of the Stage as (0, 0).

If the move clip is inside another movie clip that has transformations, the movie clip is in the
local coordinate system of the enclosing movie clip. For example, if a movie clip is rotated 90
degrees counterclockwise, the child movie clips inherit a coordinate system that is rotated 90
degrees counterclockwise. The movie clip’s coordinates refer to the registration point position.

Example

The following code sets the y coordinates of the my_mc movie clip 10 pixels below the (0, 0)
coordinate of is parent clip when the user presses the 1 key:
on(keyPress "1") {

my_mc:_y = 10;
}

See also

_x, _xscale, _yscale
60 Flash Lite Properties

_yscale
Availability

Flash Lite 1.0.

Usage
my_mc:_yscale

Description

Property; sets the vertical scale (percentage) of the movie clip, as applied from the
registration point of the movie clip. The default registration point is (0, 0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined
in pixels. For example, if the parent movie clip is scaled to 50%, setting the _y property moves
an object in the movie clip by half the number of pixels as it would if the movie were set
at 100%.

Example

The following example changes the vertical scale of the my_mc movie clip to 10% when the
user presses the 1 key:
on(keyPress "1") {

my_mc:_yscale = 10;
}

See also

_x, _xscale, _y
_yscale 61

62 Flash Lite Properties

3

CHAPTER 3

Flash Lite Statements
This section describes the syntax and use of the Macromedia Flash Lite 1.x ActionScript
statements, which are language elements that perform or specify an action. The statements are
summarized in the following table:

Statement Description

break Instructs Flash Lite to skip the rest of the loop body, stop the looping
action, and execute the statement following the loop statement.

case Defines a condition for the switch statement. The statements in the
statements parameter execute if the expression parameter that
follows the case keyword equals the expression parameter of the
switch statement.

continue Jumps past all remaining statements in the innermost loop and starts
the next iteration of the loop as if control had passed normally through
to the end of the loop.

do..while Executes the statements, and then evaluates the condition in a loop
for as long as the condition is true.

else Specifies the statements to run if the condition in the if statement
evaluates to false.

else if Evaluates a condition and specifies the statements to run if the
condition in the initial if statement returns a false value.

for Evaluates the init (initialize) expression once, and then begins a
looping sequence by which, as long as the condition evaluates to
true, statement is executed, and the next expression is evaluated.

if Evaluates a condition to determine the next action in a SWF file. If the
condition is true, Flash Lite runs the statements that follow the
condition inside curly braces ({}). If the condition is false, Flash Lite
skips the statements inside the curly braces and runs the statements
following the braces.
63

break
Availability

Flash Lite 1.0.

Usage
break

Parameters

None.

Description

Statement; appears within a loop (for, do..while or while) or within a block of statements
associated with a particular case within a switch statement. The break statement instructs
Flash Lite to skip the rest of the loop body, stop the looping action, and execute the statement
following the loop statement. When using the break statement, the ActionScript interpreter
skips the rest of the statements in that case block and jumps to the first statement following
the enclosing switch statement. Use this statement to break out of a series of nested loops.

Example

The following example uses the break statement to exit an otherwise infinite loop:
i = 0;
while (true) {

if (i >= 100) {
break;

}
i++;

}

See also

case, do..while, for, switch, while

switch Similar to the if statement, the switch statement tests a condition
and executes statements if the condition evaluates to true.

while Tests an expression and runs a statement or series of statements
repeatedly in a loop as long as the expression is true.

Statement Description
64 Flash Lite Statements

case
Availability

Flash Lite 1.0.

Usage
case expression: statements

Parameters

expression Any expression.

statements Any statements.

Description

Statement; defines a condition for the switch statement. The statements in the statements
parameter execute if the expression parameter that follows the case keyword equals the
expression parameter of the switch statement.

If you use the case statement outside a switch statement, it produces an error and the code
doesn’t compile.

Example

In the following example, if the myNum parameter evaluates to 1, the trace() statement that
follows case 1 executes; if the myNum parameter evaluates to 2, the trace() statement that
follows case 2 executes; and so on. If no case expression matches the number parameter, the
trace() statement that follows the default keyword executes.
switch (myNum) {

case 1:
trace ("case 1 tested true");
break;

case 2:
trace ("case 2 tested true");
break;

case 3:
trace ("case 3 tested true");
break;

default:
trace ("no case tested true")

}

case 65

In the following example, no break occurs in the first case group, so if the number is 1, both A
and B appear in the Output panel:
switch (myNum) {

case 1:
trace ("A");

case 2:
trace ("B");
break;

default:
trace ("D")

}

See also

switch

continue
Availability

Flash Lite 1.0.

Usage
continue

Parameters

None.

Description

Statement; jumps past all remaining statements in the innermost loop and starts the next
iteration of the loop as if control had passed through to the end of the loop normally. It has no
effect outside a loop.

■ In a while loop, continue causes the Flash interpreter to skip the rest of the loop body
and jump to the top of the loop, where the condition is tested.

■ In a do..while loop, continue causes the Flash interpreter to skip the rest of the loop
body and jump to the bottom of the loop, where the condition is tested.

■ In a for loop, continue causes the Flash interpreter to skip the rest of the loop body and
jump to the evaluation of the for loop’s post-expression.
66 Flash Lite Statements

Example

In the following while loop, continue causes Flash Lite to skip the rest of the loop body and
jump to the top of the loop, where the condition is tested:
i = 0;
while (i < 10) {

if (i % 3 == 0) {
i++;
continue;

}
trace(i);
i++;

}

In the following do..while loop, continue causes Flash Lite to skip the rest of the loop body
and jump to the bottom of the loop, where the condition is tested:
i = 0;
do {

if (i % 3 == 0) {
i++;
continue;

}
trace(i);
i++;

} while (i < 10);

In a for loop, continue causes Flash Lite to skip the rest of the loop body. In the following
example, if i modulo 3 equals 0, the trace(i) statement is skipped:
for (i = 0; i < 10; i++) {

if (i % 3 == 0) {
continue;

}
trace(i);

}

See also

do..while, for, while
continue 67

do..while
Availability

Flash Lite 1.0.

Usage
do {

statement(s)
} while (condition)

Parameters

statement(s) The statement(s) to execute as long as the condition parameter evaluates
to true.

condition The condition to evaluate.

Description

Statement; executes the statements, and then evaluates the condition in a loop for as long as
the condition is true.

Example

The following example increments the index variable as long as the variable’s value is less
than 10:
i = 0;
 do {
 //trace (i); // output: 0,1,2,3,4,5,6,7,8,9
 i++;
 } while (i<10);

See also

break, continue, for, while
68 Flash Lite Statements

else
Availability

Flash Lite 1.0.

Usage
if (condition){

t-statement(s);
} else {

f-statement(s);
}

Parameters

condition An expression that evaluates to true or false.

t-statement(s) The instructions to execute if the condition evaluates to true.

f-statement(s) An alternative series of instructions to execute if the condition evaluates
to false.

Description

Statement; specifies the statements to run if the condition in the if statement evaluates
to false.

Example

The following example shows the use of the else statement with a condition. An actual
example would include code to take some action based on the condition.
currentHighestDepth = 1;
 if (currentHighestDepth == 2) {
 //trace ("currentHighestDepth is 2");
 } else {
 //trace ("currentHightestDepth is not 2");
 }

See also

if
else 69

else if
Availability

Flash Lite 1.0.

Usage
if (condition){

statement(s);
} else if (condition){

statement(s);
}

Parameters

condition An expression that evaluates to true or false.

statement(s) A series of statements to run if the condition specified in the if statement
is false.

Description

Statement; evaluates a condition and specifies the statements to run if the condition in the
initial if statement returns a false value. If the else if condition returns a true value, the
Flash interpreter runs the statements that follow the else if condition inside curly braces
({}). If the else if condition is false, Flash skips the statements inside the curly braces and
runs the statements following the curly braces. Use the else if statement to create branching
logic in your scripts.

Example

The following example uses else if statements to check whether each side of an object is
within a specific boundary:
person_mc.xPos = 100;
leftBound = 0;
rightBound = 100;

if (person_mc.xPos <= leftBound) {
//trace ("Clip is to the far left");

} else if (person_mc.xPos >= rightBound) {
//trace ("Clip is to the far right");

} else {
//trace ("Your clip is somewhere in between");

}

See also

if
70 Flash Lite Statements

for
Availability

Flash Lite 1.0.

Usage
for (init; condition; next) {

statement(s);
}

Parameters

init An expression to evaluate before beginning the looping sequence, typically an
assignment expression.

condition An expression that evaluates to true or false. The condition is evaluated
before each loop iteration; the loop exits when the condition evaluates to false.

next An expression to evaluate after each loop iteration; usually an assignment expression
using the increment (++) or decrement (--) operator.

statement(s) One or more instructions to execute in the loop.

Description

Statement; a loop construct that evaluates the init (initialize) expression once and then
begins a looping sequence by which, as long as the condition evaluates to true, statement
is executed, and the next expression is evaluated.

Some properties cannot be enumerated by the for or for..in statements. For example,
movie clip properties, such as _x and _y, are not enumerated.

Example

The following example uses the for loop to sum the numbers from 1 to 100:
sum = 0;

for (i = 1; i <= 100; i++) {
sum = sum + i;

}

See also

++ (increment), –– (decrement), do..while, while
for 71

if
Availability

Flash Lite 1.0.

Usage
if (condition) {

statement(s);
}

Parameters

condition An expression that evaluates to true or false.

statement(s) The instructions to execute if the condition evaluates to true.

Description

Statement; evaluates a condition to determine the next action in a SWF file. If the condition
is true, Flash Lite runs the statements that follow the condition inside curly braces ({}). If the
condition is false, Flash Lite skips the statements inside the curly braces and runs the
statements following the braces. Use the if statement to create branching logic in
your scripts.

Example

In the following example, the condition inside the parentheses evaluates the variable name to
see if it has the literal value "Erica". If it does, the play() function runs.
if(name eq "Erica"){

play();
}

72 Flash Lite Statements

switch
Availability

Flash Lite 1.0.

Usage
switch (expression){

caseClause:
[defaultClause:]

}

Parameters

expression Any numeric expression.

caseClause A case keyword followed by an expression, a colon, and a group of statements
to execute if the expression matches the switch expression parameter.

defaultClause An optional default keyword followed by statements to execute if none of
the case expressions match the switch expression parameter.

Description

Statement; creates a branching structure for ActionScript statements. Similar to the if
statement, the switch statement tests a condition and executes statements if the condition
evaluates to true.

Switch statements contain a fallback option called default. If no other statements are true, the
default statement is executed.
switch 73

Example

In the following example, if the myNum parameter evaluates to 1, the trace() statement that
follows case 1 executes; if the myNum parameter evaluates to 2, the trace() statement that
follows case 2 executes; and so on. If no case expression matches the number parameter, the
trace() statement that follows the default keyword executes.
switch (myNum) {

case 1:
trace ("case 1 tested true");
break;

case 2:
trace ("case 2 tested true");
break;

case 3:
trace ("case 3 tested true");
break;

default:
trace ("no case tested true")

}

In the following example, the first case group doesn’t contain a break, so if the number is 1,
both A and B appear in the Output panel:
switch (myNum) {

case 1:
trace ("A");

case 2:
trace ("B");
break;

default:
trace ("D")

}

See also

case

while
Availability

Flash Lite 1.0.

Usage
while(condition) {

statement(s);
}

74 Flash Lite Statements

Parameters

condition The expression that is evaluated each time the while statement executes.

statement(s) The instructions to execute when the condition evaluates to true.

Description

Statement; tests an expression and runs a statement or series of statements repeatedly in a loop
as long as the expression is true.

Before the statement block is run, the condition is tested; if the test returns true, the
statement block is run. If the condition is false, the statement block is skipped and the first
statement after the while statement’s statement block is executed.

Looping is commonly used to perform an action when a counter variable is less than a
specified value. At the end of each loop, the counter is incremented until the specified value is
reached. At that point, the condition is no longer true, and the loop ends.

The while statement performs the following series of steps. Each repetition of steps 1 through
4 is called an iteration of the loop. The condition is tested at the beginning of each iteration:

1. The expression condition is evaluated.

2. If condition evaluates to true or a value that converts to the Boolean value true, such as
a nonzero number, go to step 3.

Otherwise, the while statement completes and execution resumes at the next statement
after the while loop.

3. Run the statement block statement(s).

4. Go to step 1.

Example

The following example executes a loop as long as the value of the index variable i is less
than 10:
i = 0;
while(i < 10) {

trace ("i = " add ++i);// Output: 1,2,3,4,5,6,7,8,9
}

See also

continue, do..while, for
while 75

76 Flash Lite Statements

4

CHAPTER 4

Flash Lite Operators
This section describes the syntax and use of the Macromedia Flash Lite 1.x ActionScript
operators. All entries are listed alphabetically. However, some operators are symbols and are
alphabetized by their text descriptions.

The operators in this section are summarized in the following table:

Operator Description

add (string
concatenation)

Concatenates (combines) two or more strings.

+= (addition
assignment)

Assigns expression1 the value of expression1 + expression2.

and Performs a logical AND operation.

= (assignment) Assigns the value of expression2 (the operand on the right) to the
variable or property in expression1.

/* (block comment) Indicates one or more lines of script comments. Any characters that
appear between the opening comment tag (/*) and the closing
comment tag (*/) are interpreted as a comment and ignored by the
ActionScript interpreter.

, (comma) Evaluates expression1, then expression2, and returns the value
of expression2.

// (comment) Indicates the beginning of a script comment. Any characters that
appear between the comment delimiter (//) and the end-of-line
character are interpreted as a comment and ignored by the
ActionScript interpreter.

?: (conditional) Instructs Flash Lite to evaluate expression1, and if the value of
expression1 is true, the operator returns the value of expression2;
otherwise, it returns the value of expression3.
77

–– (decrement) Subtracts 1 from expression. The pre-decrement form of the operator
(––expression) subtracts 1 from expression and returns the result as a
number. The post-decrement form of the operator (expression––)
subtracts 1 from expression and returns the initial value of expression
(the value before the subtraction).

/ (divide) Divides expression1 by expression2.

/= (division
assignment)

Assigns expression1 the value of expression1 / expression2.

. (dot) Used to navigate movie clip hierarchies to access nested (child)
movie clips, variables, or properties.

++ (increment) Adds 1 to expression. The expression can be a variable, element in an
array, or property of an object. The pre-increment form of the
operator (++expression) adds 1 to expression and returns the result as
a number. The post-increment form of the operator (expression++)
adds 1 to expression and returns the initial value of expression (the
value before the addition).

&& (logical AND) Evaluates expression1 (the expression on the left side of the operator)
and returns false if the expression evaluates to false. If expression1
evaluates to true, expression2 (the expression on the right side of the
operator) is evaluated. If expression2 evaluates to true, the final result
is true; otherwise, it is false.

! (logical NOT) Inverts the Boolean value of a variable or expression. If expression is a
variable with the absolute or converted value of true, the value of
!expression is false. If the expression x && y evaluates to false, the
expression !(x && y) evaluates to true.

|| (logical OR) Evaluates expression1 and expression2. The result is true if either or
both expressions evaluate to true; the result is false only if both
expressions evaluate to false. You can use the logical OR operator
with any number of operands; if any operand evaluates to true, the
result is true.

% (modulo) Calculates the remainder of expression1 divided by expression2. If an
expression operand is non-numeric, the modulo operator attempts to
convert it to a number.

%= (modulo
assignment)

Assigns expression1 the value of expression1 % expression2.

*= (multiplication
assignment)

Assigns expression1 the value of expression1 * expression2 .

* (multiply) Multiples two numeric expressions.

+ (numeric add) Adds numeric expressions.

Operator Description
78 Flash Lite Operators

== (numeric
equality)

Tests for equality; if expression1 is equal to expression2 , the result
is true.

> (numeric greater
than)

Compares two expressions and determines whether expression1 is
greater than expression2 ; if it is, the operator returns true. If
expression1 is less than or equal to expression2 , the operator
returns false.

>= (numeric greater
than or equal to)

Compares two expressions and determines whether expression1 is
greater than or equal to expression2 (true) or whether expression1 is
less than expression2 (false).

<> (numeric
inequality)

Tests for inequality; if expression1 is equal to expression2 , the result
is false.

< (numeric less
than)

Compares two expressions and determines whether expression1 is
less than expression2 ; if so, the operator returns true. If expression1
is greater than or equal to expression2, the operator returns false.

<= (numeric less
than or equal to)

Compares two expressions and determines whether expression1 is
less than or equal to expression2. If it is, the operator returns true;
otherwise, it returns false.

() (parentheses) Groups one or more parameters, performs sequential evaluation of
expressions, or surrounds one or more parameters and passes them
as parameters to a function outside the parentheses.

" " (string
delimiter)

When used before and after a sequence of zero or more characters,
quotation marks indicate that the characters have a literal value and
are considered a string; they are not a variable, numeric value, or
other ActionScript element.

eq (string equality) Compares two expressions for equality and returns true if the string
representation of expression1 is equal to the string representation of
expression2; otherwise, the operation returns false.

gt (string greater
than)

Compares the string representation of expression1 to the string
representation of expression2 and returns true if expression1 is
greater than expression2; otherwise, it returns false.

ge (string greater
than or equal to)

Compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1
is greater than or equal to expression2; otherwise, it returns false.

ne (string
inequality)

Compares the string representations of expression1 to expression2
and returns true if expression1 is not equal to expression2; otherwise,
it returns false.

Operator Description
79

add (string concatenation)
Availability

Flash Lite 1.0.

Usage
string1 add string2

Operands

string1, string2 Strings.

Description

Operator; concatenates (combines) two or more strings.

Example

The following example combines two string values to produce the string catalog.
conStr = "cat" add "alog";
trace (conStr);// output: catalog

See also

+ (numeric add)

lt (string less
than)

Compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1
is less than expression2; otherwise, it returns false.

le (string less than
or equal to)

Compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1
is less than or equal to expression2; otherwise, it returns false.

– (subtract) Used for negating or subtracting.

-= (subtraction
assignment)

Assigns expression1 the value of expression1 - expression2.

Operator Description
80 Flash Lite Operators

+= (addition assignment)
Availability

Flash Lite 1.0.

Usage
expression1 += expression2

Operands

expression1, expression2 Numbers or strings.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of
expression1 + expression2. For example, the following two statements have the
same result:
x += y;
x = x + y;

All the rules of the addition (+) operator apply to the addition assignment (+=) operator.

Example

The following example uses the addition assignment (+=) operator to increase the value of x
by the value of y:
x = 5;
y = 10;
x += y;
trace(x);// output: 15

See also

+ (numeric add)

and
Availability

Flash Lite 1.0.

Usage
condition1 and condition2

Operands

condition1, condition2 Conditions or expressions that evaluate to true or false.
and 81

Description

Operator; performs a logical AND operation.

Example

The following example uses the and operator to test whether a player has won the game. The
turns variable and the score variable are updated when a player takes a turn or scores points
during the game. The following script shows “You Win the Game!” in the Output panel when
the player’s score reaches 75 or higher in three turns or less.
turns = 2;
score = 77;
winner = (turns <= 3) and (score >= 75);
if (winner) {

trace("You Win the Game!");
} else {

trace("Try Again!");
}
// output: You Win the Game!

See also

&& (logical AND)

= (assignment)
Availability

Flash Lite 1.0.

Usage
expression1 = expression2

Operands

expression1 A variable or a property.

expression2 A value.

Description

Operator; assigns the value of expression2 (the operand on the right) to the variable or
property in expression1.
82 Flash Lite Operators

Example

The following example uses the assignment (=) operator to assign a numeric value to the
variable weight:
weight = 5;

The following example uses the assignment (=) operator to assign a string value to the variable
greeting:
greeting = "Hello, " and personName;

/* (block comment)
Availability

Flash Lite 1.0

Usage
/* comment */
/* comment
comment */

Operands

comment Any characters.

Description

Comment delimiter; indicates one or more lines of script comments. Any characters that
appear between the opening comment tag (/*) and the closing comment tag (*/) are
interpreted as a comment and ignored by the ActionScript interpreter.

Use the // (comment delimiter) to identify single-line comments. Use the /* comment
delimiter to identify comments on multiple successive lines. Leaving off the closing tag (*/)
when using this form of comment delimiter returns an error message. Attempting to nest
comments also returns an error message.

After you use an opening comment tag (/*), the first closing comment tag (*/) will end the
comment, regardless of the number of opening comment tags (/*) placed between them.

See also

// (comment)
/* (block comment) 83

, (comma)
Availability

Flash Lite 1.0.

Usage
expression1, expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator; evaluates expression1, then expression2, and returns the value of expression2.

Example

The following example uses the comma (,) operator without the parentheses () operator and
illustrates that the comma operator returns only the value of the first expression without the
parentheses () operator:
v = 0;
v = 4, 5, 6;
trace(v); // output: 4

The following example uses the comma (,) operator with the parentheses () operator and
illustrates that the comma operator returns the value of the last expression when used with the
parentheses () operator:
v = 0;
v = (4, 5, 6);
trace(v); // output: 6

The following example uses the comma (,) operator without the parentheses () operator and
illustrates that the comma operator sequentially evaluates all of the expressions but returns the
value of the first expression. The second expression, z++, is evaluated and z is incremented by
1.
v = 0;
z = 0;
v = v + 4 , z++, v + 6;
trace(v); // output: 4
trace(z); // output: 1
84 Flash Lite Operators

The following example is identical to the previous example except for the addition of the
parentheses () operator and illustrates once again that when used with the parentheses ()
operator, the comma (,) operator returns the value of the last expression in the series:
v = 0;
z = 0;
v = (v + 4, z++, v + 6);
trace(v); // output: 6
trace(z); // output: 1

See also

for, () (parentheses)

// (comment)
Availability

Flash Lite 1.0

Usage
// comment

Operands

comment Any characters.

Description

Comment delimiter; indicates the beginning of a script comment. Any characters that appear
between the comment delimiter (//) and the end-of-line character are interpreted as a
comment and ignored by the ActionScript interpreter.

Example

The following example uses comment delimiters to identify the first, third, fifth, and seventh
lines as comments:
// Record the X position of the ball movie clip.
ballX = ball._x;
// Record the Y position of the ball movie clip.
ballY = ball._y;
// Record the X position of the bat movie clip.
batX = bat._x;
// Record the Y position of the bat movie clip.
batY = bat._y;

See also

/* (block comment)
// (comment) 85

?: (conditional)
Availability

Flash Lite 1.0.

Usage
expression1 ? expression2 : expression3

Operands

expression1 An expression that evaluates to a Boolean value, usually a comparison
expression, such as x < 5.

expression2, expression3 Values of any type.

Description

Operator; instructs Flash Lite to evaluate expression1, and if the value of expression1 is
true, it returns the value of expression2; otherwise, it returns the value of expression3.

Example

The following example assigns the value of variable x to variable z because expression1
evaluates to true:
x = 5;
y = 10;
z = (x < 6) ? x: y;
trace (z);// output: 5

–– (decrement)
Availability

Flash Lite 1.0.

Usage
––expression

expression––

Operands

None.
86 Flash Lite Operators

Description

Operator (arithmetic); a pre-decrement and post-decrement unary operator that subtracts 1
from expression. The pre-decrement form of the operator (––expression) subtracts 1 from
expression and returns the result as a number. The post-decrement form of the operator
(expression––) subtracts 1 from expression and returns the initial value of expression
(the value before the subtraction).

Example

The following example shows the pre-decrement form of the operator, decrementing aWidth
to 2 (aWidth - 1 = 2) and returning the result as bWidth:
aWidth = 3;
bWidth = --aWidth;
// The bWidth value is equal to 2.

The next example shows the post-decrement form of the operator decrementing aWidth to 2
(aWidth - 1 = 2) and returning the original value of aWidth as the result bWidth:
aWidth = 3;
bWidth = aWidth--;
// The bWidth value is equal to 3.

/ (divide)
Availability

Flash Lite 1.0.

Usage
expression1 / expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator (arithmetic); divides expression1 by expression2. The result of the division
operation is a double-precision floating-point number.

Example

The following statement divides the floating-point number 22.0 by 7.0 and then shows the
result in the Output panel:
trace(22.0 / 7.0);

The result is 3.1429, which is a floating-point number.
/ (divide) 87

/= (division assignment)
Availability

Flash Lite 1.0.

Usage
expression1 /= expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of
expression1 / expression2. For example, the following two statements are equivalent:
x /= y
x = x / y

Example

The following example uses the /= operator with variables and numbers:
x = 10;
y = 2;
x /= y;
// The expression x now contains the value 5.

. (dot)
Availability

Flash Lite 1.0.

Usage
instancename.variable

instancename.childinstance.variable

Operands

instancename The instance name of a movie clip.

childinstance A movie clip instance that is a child of, or nested in, another movie clip.

variable A variable on the timeline of the specified movie clip instance name.
88 Flash Lite Operators

Description

Operator; used to navigate movie clip hierarchies to access nested (child) movie clips,
variables, or properties.

Example

The following example identifies the current value of the variable hairColor in the
movie clip person_mc:
person_mc.hairColor

This is equivalent to the following slash notation syntax:
/person_mc:hairColor

See also

/ (Forward slash)

++ (increment)
Availability

Flash Lite 1.0.

Usage
++expression

expression++

Operands

None.

Description

Operator (arithmetic); a pre-increment and post-increment unary operator that adds 1 to
expression. The expression can be a variable, element in an array, or property of an object.
The pre-increment form of the operator (++expression) adds 1 to expression and returns
the result as a number. The post-increment form of the operator (expression++) adds 1 to
expression and returns the initial value of expression (the value before the addition).
++ (increment) 89

Example

The following example uses ++ as a post-increment operator to make a while loop run five
times:
i = 0;
while (i++ < 5){

trace("this is execution " + i);
}

The following example uses ++ as a pre-increment operator:
a = "";
i = 0;
while (i < 10) {

a = a add (++i) add ",";
}
trace(a);// output: 1,2,3,4,5,6,7,8,9,10,

This script shows the following result in the Output panel:
1,2,3,4,5,6,7,8,9,10,

The following example uses ++ as a post-increment operator:
a = "";
i = 0;
while (i < 10) {

a = a add (i++) add ",";
}
trace(a);// output: 0,1,2,3,4,5,6,7,8,9,

This script shows the following result in the Output panel:
0,1,2,3,4,5,6,7,8,9,

&& (logical AND)
Availability

Flash Lite 1.0.

Usage
expression1 && expression2

Operands

expression1, expression2 Boolean values or expressions that convert to Boolean values.
90 Flash Lite Operators

Description

Operator (logical); performs a Boolean operation on the values of one or both of the
expressions. The operator evaluates expression1 (the expression on the left side of the
operator) and returns false if the expression evaluates to false. If expression1 evaluates to
true, expression2 (the expression on the right side of the operator) is evaluated. If
expression2 evaluates to true, the final result is true; otherwise, it is false.

Example

The following example uses the && operator to perform a test to determine if a player has won
the game. The turns variable and the score variable are updated when a player takes a turn
or scores points during the game. The following script shows “You Win the Game!” in the
Output panel when the player’s score reaches 75 or higher in three turns or less.
turns = 2;
score = 77;
winner = (turns <= 3) && (score >= 75);
if (winner) {

trace("You Win the Game!");
} else {

trace("Try Again!");
}

The following example demonstrates testing to see if an imaginary x position is in between a
range:
xPos = 50;
if (xPos >= 20 && xPos <= 80) {

trace (“the xPos is in between 20 and 80”);
}

&& (logical AND) 91

! (logical NOT)
Availability

Flash Lite 1.0.

Usage
!expression

Operands

None.

Description

Operator (logical); inverts the Boolean value of a variable or expression. If expression is a
variable with the absolute or converted value of true, the value of !expression is false. If
the expression x && y evaluates to false, the expression !(x && y) evaluates to true.

The following expressions show the result of using the ! operator:

!true returns false

!false returns true

Example

In the following example, the variable happy is set to false. The if condition evaluates the
condition !happy, and if the condition is true, the trace() function sends a string to the
Output panel.
happy = false;
if (!happy) {

trace("don’t worry, be happy");
}

|| (logical OR)
Availability

Flash Lite 1.0.

Usage
expression1 || expression2

Operands

expression1, expression2 Boolean values or expressions that convert to Boolean values.
92 Flash Lite Operators

Description

Operator (logical); evaluates expression1 and expression2. The result is true if either or
both expressions evaluate to true; the result is false only if both expressions evaluate to
false. You can use the logical OR operator with any number of operands; if any operand
evaluates to true, the result is true.

With non-Boolean expressions, the logical OR operator causes Flash Lite to evaluate the
expression on the left; if it can be converted to true, the result is true. Otherwise, it evaluates
the expression on the right, and the result is the value of that expression.

Example

Usage 1: The following example uses the || operator in an if statement. The second
expression evaluates to true, so the final result is true:
theMinimum = 10;
theMaximum = 250;
start = false;
if (theMinimum > 25 || theMaximum > 200 || start){

trace("the logical OR test passed");
}

% (modulo)
Availability

Flash Lite 1.0.

Usage
expression1 % expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator (arithmetic); calculates the remainder of expression1 divided by expression2. If
an expression operand is non-numeric, the modulo operator attempts to convert it to a
number. The expression can be a number or string that converts to a numeric value.

When targeting Flash Lite 1.0 or 1.1, the Flash compiler expands the % operator in the
published SWF file by using the following formula:
expression1 - int(expression1/expression2) * expression2

The performance of this approximation might not be as fast or as accurate as versions of Flash
Player that natively support the modulo operator.
% (modulo) 93

Example

The following code shows a numeric example that uses the modulo (%) operator:
trace (12 % 5);// output: 2
trace (4.3 % 2.1);// output: 0.0999...

%= (modulo assignment)
Availability

Flash Lite 1.0.

Usage
expression1 %= expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of
expression1 % expression2. For example, the following two expressions are equivalent:
x %= y
x = x % y

Example

The following example assigns the value 4 to the variable x:
x = 14;
y = 5;
trace(x %= y);// output: 4

See also

% (modulo)

*= (multiplication assignment)
Availability

Flash Lite 1.0.

Usage
expression1 *= expression2
94 Flash Lite Operators

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of
expression1 * expression2.

For example, the following two expressions are the same:
x *= y
x = x * y

Example

Usage 1: The following example assigns the value 50 to the variable x:
x = 5;
y = 10;
trace (x *= y);// output: 50

Usage 2: The second and third lines of the following example calculate the expressions on the
right side of the equals sign (=) and assign the results to x and y:
i = 5;
x = 4 - 6;
y = i + 2;
trace(x *= y);// output: -14

* (multiply)
Availability

Flash Lite 1.0.

Usage
expression1 * expression2

Operands

expression1, expression2 Numeric expressions.

Description

Operator (arithmetic); multiplies two numeric expressions. If both expressions are integers,
the product is an integer. If either or both expressions are floating-point numbers, the product
is a floating-point number.
* (multiply) 95

Example

Usage 1: The following statement multiplies the integers 2 and 3:
2 * 3

The result is 6, which is an integer.

Usage 2: The following statement multiplies the floating-point numbers 2.0 and 3.1416:
2.0 * 3.1416

The result is 6.2832, which is a floating-point number.

+ (numeric add)
Availability

Flash Lite 1.0.

Usage
expression1 + expression2

Operands

expression1, expression2 Numbers.

Description

Operator; adds numeric expressions. The + is a numeric operator only; it cannot be used for
string concatenation.

If both expressions are integers, the sum is an integer; if either or both expressions are floating-
point numbers, the sum is a floating-point number.

Example

The following example adds the integers 2 and 3; the resulting integer, 5, appears in the
Output panel:
trace (2 + 3);

The following example adds the floating-point numbers 2.5 and 3.25; the result, 5.75, a
floating-point number, appears in the Output panel:
trace (2.5 + 3.25);

See also

add (string concatenation)
96 Flash Lite Operators

== (numeric equality)
Availability

Flash Lite 1.0.

Usage
expression1 == expression2

Operands

expression1, expression2 Numbers, Boolean values, or variables.

Description

Operator (comparison); tests for equality; the exact opposite of the <> operator. If
expression1 is equal to expression2, the result is true. As with the <> operator, the
definition of equal depends on the data types being compared:

■ Numbers and Boolean values are compared by value.
■ Variables are compared by reference.

Example

The following examples show true and false return values:
trees = 7;
bushes = "7";
shrubs = "seven";

trace (trees == "7");// output: 1(true)
trace (trees == bushes);// output: 1(true)
trace (trees == shrubs);// output: 0(false)

See also

eq (string equality)
== (numeric equality) 97

> (numeric greater than)

Availability
Flash Lite 1.0.

Usage
expression1 > expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.

Operator (comparison); compares two expressions and determines whether expression1 is
greater than expression2; if it is, the operator returns true. If expression1 is less than or
equal to expression2, the operator returns false.

Example

The following examples show true and false results for numeric comparisons:
trace(3.14 > 2);// output: 1(true)
trace(1 > 2);// output: 0(false)

See also

gt (string greater than)

>= (numeric greater than or equal to)
Availability

Flash Lite 1.0.

Usage
expression1 >= expression2

Operands

expression1, expression2 Integers or floating-point numbers.

Description

Operator (comparison); compares two expressions and determines whether expression1 is
greater than or equal to expression2 (true) or whether expression1 is less than
expression2 (false).
98 Flash Lite Operators

Example

The following examples show true and false results:
trace(3.14 >= 2);// output: 1(true)
trace(3.14 >= 4);// output: 0(false)

See also

ge (string greater than or equal to)

<> (numeric inequality)
Availability

Flash Lite 1.0.

Usage
expression1 <> expression2

Operands

expression1, expression2 Numbers, Boolean values, or variables.

Description

Operator (comparison); tests for inequality; the exact opposite of the equality (==) operator. If
expression1 is equal to expression2, the result is false. As with the equality (==) operator,
the definition of equal depends on the data types being compared:

■ Numbers and Boolean values are compared by value.
■ Variables are compared by reference.

Example

The following examples show true and false returns:
trees = 7;
B = "7";

trace(trees <> 3);// output: 1(true)
trace(trees <> B);// output: 0(false)

See also

ne (string inequality)
<> (numeric inequality) 99

< (numeric less than)
Availability

Flash Lite 1.0.

Usage
expression1 < expression2

Operands

expression1, expression2 Numbers.

Description

Operator (comparison); compares two expressions and determines whether expression1 is
less than expression2; if so, the operator returns true. If expression1 is greater than or
equal to expression2, the operator returns false. The < (less than) operator is a numeric
operator.

Example

The following examples show true and false results for both numeric and
string comparisons:
trace (3 < 10);// output: 1(true)

trace (10 < 3);// output: 0(false)

See also

lt (string less than)

<= (numeric less than or equal to)
Flash Lite 1.0.

Usage
expression1 <= expression2

Operands

expression1, expression2 Numbers.

Description

Operator (comparison); compares two expressions and determines whether expression1 is
less than or equal to expression2. If it is, the operator returns true; otherwise, it returns
false. This operator is for numeric comparison only.
100 Flash Lite Operators

Example

The following examples show true and false results for numeric comparisons:
trace(5 <= 10);// output: 1(true)
trace(2 <= 2);// output: 1(true)
trace (10 <= 3);// output: 0 (false)

See also

le (string less than or equal to)

() (parentheses)
Availability

Flash Lite 1.0.

Usage
(expression1 [, expression2])
(expression1, expression2)

expression1, expression2 Numbers, strings, variables, or text.

parameter1,..., parameterN A series of parameters to execute before the results are
passed as parameters to the function outside the parentheses.

Description

Operator; groups one or more parameters, performs sequential evaluation of expressions, or
surrounds one or more parameters and passes them as parameters to a function outside the
parentheses.

Usage 1: Controls the order in which the operators execute in the expression. Parentheses
override the normal precedence order and cause the expressions within the parentheses to be
evaluated first. When parentheses are nested, the contents of the innermost parentheses are
evaluated before the contents of the outer ones.

Usage 2: Evaluates a series of expressions, separated by commas, in sequence, and returns the
result of the final expression.
() (parentheses) 101

Example

Usage 1: The following statements show the use of parentheses to control the order in which
expressions are executed (the value of each expression appears in the Output panel):
trace((2 + 3) * (4 + 5)); // displays 45
trace(2 + (3 * (4 + 5))); // // displays 29
trace(2 + (3 * 4) + 5); // displays 19

Usage 1: The following statements show the use of parentheses to control the order in which
expressions are executed (the value of each expression is written to the log file):
trace((2 + 3) * (4 + 5)); // writes 45
trace(2 + (3 * (4 + 5))); // writes 29
trace(2 + (3 * 4) + 5); // writes 19

" " (string delimiter)
Availability

Flash Lite 1.0.

Usage
"text"

Operands

text Zero or more characters.

Description

String delimiter; when used before and after a sequence of zero or more characters, quotation
marks indicate that the characters have a literal value and are considered a string; they are not
a variable, numeric value, or other ActionScript element.

Example

This example uses quotation marks to indicate that the value of the variable yourGuess is the
literal string "Prince Edward Island" and not the name of a variable. The value of
province is a variable, not a literal; to determine the value of province, the value of
yourGuess must be located.
yourGuess = "Prince Edward Island";

on(release){
province = yourGuess;
trace(province);// output: Prince Edward Island

}

102 Flash Lite Operators

eq (string equality)
Availability

Flash Lite 1.0.

Usage
expression1 eq expression2

Operands

expression1, expression2 Numbers, strings, or variables.

Description

Comparison operator; compares two expressions for equality and returns true if the string
representation of expression1 is equal to the string representation of expression2;
otherwise, the operation returns false.

Example

The following examples show true and false results:
word = "persons";
figure = "55";

trace("persons" eq "people");// output: 0(false)
trace("persons" eq word);// output: 1(true)
trace(figure eq 50 + 5);// output: 1(true)
trace(55.0 eq 55);// output: 1(true)

See also

== (numeric equality)

gt (string greater than)
Availability

Flash Lite 1.0.

Usage
expression1 gt expression2

Operands

expression1, expression2 Numbers, strings, or variables.
gt (string greater than) 103

Description

Operator (comparison); compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1 is greater than
expression2; otherwise, it returns a false value. Strings are compared using alphabetical
order; digits precede all letters, and all capital letters precede lowercase letters.

Example

The following examples show true and false results:
animals = "cats";
breeds = 7;

trace ("persons" gt "people");// output: 1(true)
trace ("cats" gt "cattle");// output: 0(false)
trace (animals gt "cats");// output: 0(false)
trace (animals gt "Cats");// output: 1(true)
trace (breeds gt "5");// output: 1(true)
trace (breeds gt 7);// output: 0(false)

See also

> (numeric greater than)

ge (string greater than or equal to)
Availability

Flash Lite 1.0.

Usage
expression1 ge expression2

Operands

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1 is greater than or
equal to expression2; otherwise, it returns a false value. Strings are compared using
alphabetical order; digits precede all letters, and all capital letters precede lowercase letters.
104 Flash Lite Operators

Example

The following examples show true and false results:
animals = "cats";
breeds = 7;

trace ("cats" ge "cattle");// output: 0(false)
trace (animals ge "cats");// output: 1(true)
trace ("persons" ge "people");// output: 1(true)
trace (animals ge "Cats");// output: 1(true)
trace (breeds ge "5");// output: 1(true)
trace (breeds ge 7);// output: 1(true)

See also

>= (numeric greater than or equal to)

ne (string inequality)
Availability

Flash Lite 1.0.

Usage
expression1 ne expression2

Operands

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares the string representations of expression1 to expression2
and returns true if expression1 is not equal to expression2; otherwise, it returns false.

Example

The following examples show true and false results:
word = "persons";
figure = "55";

trace ("persons" ne "people");// output: 1(true)
trace ("persons" ne word);// output: 0(false)
trace (figure ne 50 + 5);// output: 0(false)
trace (55.0 ne 55); // output: 0(false)

See also

<> (numeric inequality)
ne (string inequality) 105

lt (string less than)
Availability

Flash Lite 1.0.

Usage
expression1 lt expression2

Operands

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1 is less than
expression2; otherwise, it returns a false value. Strings are compared using alphabetical
order; digits precede all letters, and all capital letters precede lowercase letters.

Example

The following examples show the output of various string comparisons. In the last line, notice
that lt does not return an error when you compare a string to an integer because ActionScript
1.0 syntax tries to convert the integer data type to a string and returns false.
animals = "cats";
breeds = 7;

trace ("persons" lt "people");// output: 0(false)
trace ("cats" lt "cattle");// output: 1(true)
trace (animals lt "cats");// output: 0(false)
trace (animals lt "Cats");// output: 0(false)
trace (breeds lt "5");// output: 0(false)
trace (breeds lt 7);// output: 0(false)

See also

< (numeric less than)

le (string less than or equal to)
Availability

Flash Lite 1.0.

Usage
expression1 le expression2
106 Flash Lite Operators

Operands

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares the string representation of expression1 to the string
representation of expression2 and returns a true value if expression1 is less than or equal
to expression2; otherwise, it returns a false value. Strings are compared using alphabetical
order; digits precede all letters, and all capital letters precede lowercase letters.

Example

The following examples show the output of various string comparisons:
animals = "cats";
breeds = 7;

trace ("persons" le "people");// output: 0(false)
trace ("cats" le "cattle");// output: 1(true)
trace (animals le "cats");// output: 1(true)
trace (animals le "Cats");// output: 0(false)
trace (breeds le "5");// output: 0(false)
trace (breeds le 7);// output: 1(true)

See also

<= (numeric less than or equal to)

– (subtract)
Availability

Flash Lite 1.0.

Usage

(Negation) -expression

(Subtraction) expression1 - expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.
– (subtract) 107

Description

Operator (arithmetic); used for negating or subtracting.

Usage 1: When used for negating, it reverses the sign of the numeric expression.

Usage 2: When used for subtracting, it performs an arithmetic subtraction on two numeric
expressions, subtracting expression2 from expression1. When both expressions are
integers, the difference is an integer. When either or both expressions are floating-point
numbers, the difference is a floating-point number.

Example

Usage 1: The following statement reverses the sign of the expression 2 + 3:
trace(-(2 + 3));
// output: -5.

Usage 2: The following statement subtracts the integer 2 from the integer 5:
trace(5 - 2);
// output: 3.

The result, 3, is an integer.

Usage 3: The following statement subtracts the floating-point number 1.5 from the floating-
point number 3.25:
trace(3.25 - 1.5);
// output: 1.75.

The result, 1.75, is a floating-point number.

-= (subtraction assignment)
Availability

Flash Lite 1.0.

Usage
expression1 -= expression2

Operands

expression1, expression2 Numbers or expressions that evaluate to numbers.
108 Flash Lite Operators

Description

Operator (arithmetic compound assignment); assigns expression1 the value of
expression1 - expression2. No value is returned.

For example, the following two statements are the same:
x -= y;
x = x - y;

String expressions must be converted to numbers; otherwise, -1 is returned.

Example

Usage 1: The following example uses the -= operator to subtract 10 from 5 and assign the
result to the variable x:
x = 2;
y = 3;
x -= y
trace(x);// output: -1

Usage 2: The following example shows how strings are converted to numbers:
x = "2";
y = "5";
x -= y;
trace(x);// output: -3
-= (subtraction assignment) 109

110 Flash Lite Operators

5

CHAPTER 5

Flash Lite Specific Language
Elements
This section describes both the platform capabilities and variables that Macromedia Flash Lite
1.1 recognizes, and the Flash Lite commands you can execute using the fscommand() and
fscommand2() functions. The functionality described in this section is specific to Flash Lite.

The contents of this section are summarized in the following table:

Language element Description

_capCompoundSound Indicates whether Flash Lite can process compound sound.

_capEmail Indicates whether the Flash Lite client can send e-mail messages
using the GetURL() ActionScript command.

_capLoadData Indicates whether the host application can dynamically load
additional data through calls to the loadMovie(), loadMovieNum(),
loadVariables(), and loadVariablesNum() functions.

_capMFi Indicates whether the device can play sound data in the Melody
Format for i-mode (MFi) audio format

_capMIDI Indicates whether the device can play sound data in the Musical
Instrument Digital Interface (MIDI) audio format.

_capMMS Indicates whether Flash Lite can send Multimedia Messaging
Service (MMS) messages by using the GetURL() ActionScript
command.

_capMP3 Indicates whether the device can play sound data in the MPEG
Audio Layer 3 (MP3) audio format.

_capSMAF Indicates whether the device can play multimedia files in the
Synthetic music Mobile Application Format (SMAF).

_capSMS Indicates whether Flash Lite can send Short Message Service
(SMS) messages by using the GetURL() ActionScript command.

_capStreamSound Indicates whether the device can play streaming
(synchronized) sound.
111

_cap4WayKeyAS Indicates whether Flash Lite executes ActionScript expressions
attached to key event handlers associated with the Right, Left,
Up, and Down Arrow keys.

$version Contains the version number of Flash Lite.

fscommand() A function used to execute the Launch command (see next entry).

Launch (The only command supported for fscommand()) Allows the SWF
file to communicate with either Flash Lite or the host
environment, such as the phone’s or device’s operating system.

fscommand2() A function used to execute the commands in this table, except
for fscommand().

Escape Encodes an arbitrary string into a format that is safe for
network transfer.

FullScreen Sets the size of the display area to be used for rendering.

GetBatteryLevel Returns the current battery level.

GetDateDay Returns the day of the current date as a numeric value.

GetDateMonth Returns the month of the current date as a numeric value.

GetDateWeekday Returns the number of the day of the current date as a
numeric value.

GetDateYear Returns a four-digit numeric value that is the year of the
current date.

GetDevice Sets a parameter that identifies the device on which Flash Lite
is running.

GetDeviceID Sets a parameter that represents the unique identifier of the
device; for example, the serial number.

GetFreePlayerMemory Returns the amount of heap memory, in kilobytes, currently
available to Flash Lite.

GetLanguage Sets a parameter that identifies the language currently used by
the device.

GetLocaleLongDate Sets a parameter to a string that represents the current date, in
long form, formatted according to the currently defined locale.

GetLocaleShortDate Sets a parameter to a string that represents the current date, in
abbreviated form, formatted according to the currently
defined locale.

GetLocaleTime Sets a parameter to a string that represents the current time,
formatted according to the currently defined locale.

Language element Description
112 Flash Lite Specific Language Elements

GetMaxBatteryLevel Returns the maximum battery level of the device.

GetMaxSignalLevel Returns the maximum signal strength level.

GetMaxVolumeLevel Returns the maximum volume level of the device as a
numeric value.

GetNetworkConnectStatus Returns a value that indicates the current network
connection status.

GetNetworkName Sets a parameter to the name of the current network.

GetNetworkRequestStatus Returns a value that indicates the status of the most recent
HTTP request.

GetNetworkStatus Returns a value that indicates the network status of the phone
(that is, whether there is a network registered and whether the
phone is currently roaming).

GetPlatform Sets a parameter that identifies the current platform, which
broadly describes the class of device. For devices with open
operating systems, this identifier is typically the name and version
of the operating system.

GetPowerSource Returns a value that indicates whether the power source is
currently supplied from a battery or from an external
power source.

GetSignalLevel Returns the current signal strength as a numeric value.

GetTimeHours Returns the hour of the current time of day, based on a 24-hour
clock as a numeric value.

GetTimeMinutes Returns the minute of the current time of day as a numeric value.

GetTimeSeconds Returns the second of the current time of day as a numeric value.

GetTimeZoneOffset Sets a parameter to the number of minutes between the local
time zone and universal time (UTC).

GetTotalPlayerMemory Returns the total amount of heap memory, in kilobytes, allocated
to Flash Lite.

GetVolumeLevel Returns the current volume level of the device as a numeric value.

Quit Causes the Flash Lite player to stop playback and exit.

ResetSoftKeys Resets the soft keys to their original settings.

SetInputTextType Specifies the mode in which the input text field should
be opened.

SetQuality Sets the rendering quality of the animation.

Language element Description
113

Capabilities
This section describes the platform capabilities and variables that Macromedia Flash Lite 1.1
recognizes. The entries are listed alphabetially, ignoring any leading underscores.

_capCompoundSound
Availability

Flash Lite 1.1.

Usage
_capCompoundSound

Description

Numeric variable; indicates whether Flash Lite can process compound sound data. If so, this
variable is defined and has a value of 1; if not, this variable is undefined.

As an example, a single Flash file can contain the same sound represented in both MIDI and
MFi formats. The player will then play back data in the appropriate format based on the
format supported by the device. This variable defines whether the Flash Lite player supports
this ability on the current handset.

In the following example, useCompoundSound is set to 1 in Flash Lite 1.1, but is undefined in
Flash Lite 1.0:
useCompoundSound = _capCompoundSound;

if (useCompoundSound == 1) {
gotoAndPlay("withSound");

} else {
gotoAndPlay("withoutSound");

}

SetSoftKeys Remaps the Left and Right soft keys of the device, provided that
they can be accessed and remapped.

StartVibrate Starts the phone’s vibration feature.

StopVibrate Stops the current vibration, if any.

Unescape Decodes an arbitrary string that was encoded to be safe for
network transfer into its normal, unencoded form.

Language element Description
114 Flash Lite Specific Language Elements

_capEmail
Availability

Flash Lite 1.1.

Usage
_capEmail

Description

Numeric variable; indicates whether the Flash Lite client can send e-mail messages by using
the GetURL() ActionScript command. If so, this variable is defined and has a value of 1; if
not, this variable is undefined.

Example

If the host application can send e-mail messages by using the GetURL() ActionScript
command, the following example sets canEmail to 1:
canEmail = _capEmail;

if (canEmail == 1) {
getURL("mailto:someone@somewhere.com?subject=foo&body=bar");

}

_capLoadData
Availability

Flash Lite 1.1.

Usage
_capLoadData

Description

Numeric variable; indicates whether the host application can dynamically load additional data
through calls to the loadMovie(), loadMovieNum(), loadVariables(), and
loadVariablesNum() functions. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.
Capabilities 115

Example

If the host application can perform dynamic loading of movies and variables, the following
example sets iCanLoad to 1:
canLoad = _capLoadData;

if (canLoad == 1) {
loadVariables("http://www.somewhere.com/myVars.php", GET);

} else {
trace ("client does not support loading dynamic data");

}

_capMFi
Availability

Flash Lite 1.1.

Usage
_capMFi

Description

Numeric variable; indicates whether the device can play sound data in the Melody Format for
i-mode (MFi) audio format. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

If the device can play MFi sound data, the following example sets canMfi to 1:
canMFi = _capMFi;

if (canMFi == 1) {
// send movieclip buttons to frame with buttons that trigger events
sounds
tellTarget("buttons") {

 gotoAndPlay(2);
 }
}

116 Flash Lite Specific Language Elements

_capMIDI
Availability

Flash Lite 1.1.

Usage
_capMIDI

Description

Numeric variable; indicates whether the device can play sound data in the Musical Instrument
Digital Interface (MIDI) audio format. If so, this variable is defined and has a value of 1; if
not, this variable is undefined.

Example

If the device can play MIDI sound data, the following example sets canMidi to 1:
canMIDI = _capMIDI;

if (canMIDI == 1) {
// send movieclip buttons to frame with buttons that trigger events
sounds
tellTarget("buttons") {

 gotoAndPlay(2);
 }
}

_capMMS
Availability

Flash Lite 1.1.

Usage
_capMMS

Description

Numeric variable; indicates whether Flash Lite can send Multimedia Messaging Service
(MMS) messages by using the GetURL() ActionScript command. If so, this variable is defined
and has a value of 1; if not, this variable is undefined.
Capabilities 117

Example

The following example sets canMMS to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite
1.0 (however, not all Flash Lite 1.1 phones can send MMS messages, so this code is still
dependent on the phone):
on(release) {

canMMS = _capMMS;
if (canMMS == 1) {

// send an MMS
myMessage = "mms:4156095555?body=sample mms message";

} else {
// send an SMS
myMessage = "sms:4156095555?body=sample sms message";

}
getURL(myMessage);

}

_capMP3
Availability

Flash Lite 1.1.

Usage
_capMP3

Description

Numeric variable; indicates whether the device can play sound data in the MPEG Audio
Layer 3 (MP3) audio format. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

If the device can play MP3 sound data, the following example sets canMP3 to 1:
canMP3 = _capMP3;
if (canMP3 == 1) {

tellTarget("soundClip") {
gotoAndPlay(2);

}
}

118 Flash Lite Specific Language Elements

_capSMAF
Availability

Flash Lite 1.1.

Usage
_capSMAF

Description

Numeric variable; indicates whether the device can play multimedia files in the Synthetic
music Mobile Application Format (SMAF). If so, this variable is defined and has a value of 1;
if not, this variable is undefined.

Example

The following example sets canSMAF to 1 in Flash Lite 1.1, but leaves it undefined in Flash
Lite 1.0 (however, not all Flash Lite 1.1 phones can send SMAF messages, so this code is still
dependent on the phone):
canSMAF = _capSMAF;

if (canSMAF) {
// send movieclip buttons to frame with buttons that trigger events
sounds
tellTarget("buttons") {

 gotoAndPlay(2);
 }
}

_capSMS
Availability

Flash Lite 1.1.

Usage
_capSMS

Description

Numeric variable; indicates whether Flash Lite can send Short Message Service (SMS) messages
by using the GetURL() ActionScript command. If so, this variable is defined and has a value
of 1; if not, this variable is undefined.
Capabilities 119

Example

The following example sets canSMS to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite
1.0 Flash Lite 1.0 (however, not all Flash Lite 1.1 phones can send SMS messages, so this code
is still dependent on the phone):
on(release) {

canSMS = _capSMS;
if (canSMS) {

// send an SMS
myMessage = "sms:4156095555?body=sample sms message";
getURL(myMessage);

}
}

_capStreamSound
Availability

Flash Lite 1.1.

Usage
_capStreamSound

Description

Numeric variable; indicates whether the device can play streaming (synchronized) sound. If
so, this variable is defined and has a value of 1; if not, this variable is undefined.

Example

The following example plays streaming sound if canStreamSound is enabled:
on(press) {

canStreamSound = _capStreamSound;
if (canStreamSound) {

// play a streaming sound in a movieclip with this button
tellTarget("music") {

gotoAndPlay(2);
}

}
}

120 Flash Lite Specific Language Elements

_cap4WayKeyAS
Availability

Flash Lite 1.1.

Usage
_cap4WayKeyAS

Description

Numeric variable; indicates whether Flash Lite executes ActionScript expressions attached to
key event handlers associated with the Right, Left, Up, and Down Arrow keys. This variable is
defined and has a value of 1 only when the host application uses four-way key navigation
mode to move between Flash controls (buttons and input text fields). Otherwise, this variable
is undefined.

When one of the four-way keys is pressed, if the value of this variable is 1, Flash Lite first
looks for a handler for that key. If it finds none, Flash control navigation occurs. However, if
an event handler is found, no navigation action occurs for that key. For example, if a key press
handler for the Down Arrow key is found, the user cannot navigate.

Example

The following example sets canUse4Way to 1 in Flash Lite 1.1, but leaves it undefined in Flash
Lite 1.0 (however, not all Flash Lite 1.1 phones support four-way keys, so this code is still
dependent on the phone):
canUse4Way = _cap4WayKeyAS;
 if (canUse4Way == 1) {
 msg = "Use your directional joypad to navigate this application";
 } else {
 msg = "Please use the 2 key to scroll up, the 6 key to scroll right, the

8 key to scroll down, and the 4 key to scroll left.";
 }
Capabilities 121

$version
Availability

Flash Lite 1.1.

Usage
$version

Description

String variable; contains the version number of Flash Lite. It contains a major number,
minor number, build number, and an internal build number, which is generally 0 in all
released versions.

The major number reported for all Flash Lite 1.x products is 5. Flash Lite 1.0 has a minor
number of 1; Flash Lite 1.1 has a minor number of 2.

Example

In the Flash Lite 1.1 player, the following code sets the value of myVersion to "5, 2, 12, 0":
myVersion = $version;

fscommand()
Availability

Flash Lite 1.1.

Usage
status = fscommand("Launch", "application-path, arg1, arg2,..., argn")

Parameters

"Launch" The command specifier. The Launch command is the only command that you
use the fscommand() function to execute.

"application-path, arg1, arg2,..., argn" The name of the application being started
and the parameters to it, separated by commas.

Description

Function; allows the SWF file to communicate with either Flash Lite or the host
environment, such as the phone’s or device’s operating system.

See also

fscommand2()
122 Flash Lite Specific Language Elements

Launch
Availability

Flash Lite 1.1.

Usage
status = fscommand("Launch", "application-path, arg1, arg2,..., argn")

Parameters

"Launch" The command specifier. In Flash Lite, you use the fscommand() function only to
execute the Launch command.

"application-path, arg1, arg2,..., argn" The name of the application being started
and the parameters to it, separated by commas.

Description

Command executed through the fscommand() function; launches another application on the
device. The name of the application being launched and the parameters to it are passed in as a
single argument.

This command is supported only when the Flash Lite player is running in stand-alone mode.
It is not supported when the player is running in the context of another application (for
example, as a plug-in to a browser).

Example

The following example would open wap.yahoo.com on the services/Web browser on Series 60
phones:
on(keyPress "9") {

status = fscommand("launch",
"z:\\system\\apps\\browser\\browser.app,http://wap.yahoo.com");

}

See also

fscommand2()

N
O

T
E

This feature is operating-system dependent.
fscommand() 123

fscommand2()
Availability

Flash Lite 1.1.

Usage
returnValue = fscommand2(command [, expression1 ... expressionN])

Parameters

command A string passed to the host application for any use or a command passed to
Flash Lite.

parameter1...parameterN A comma-delimited list of strings passed as parameters to the
command specified by command.

Description

Function; allows the SWF file to communicate with either Flash Lite or the host
environment, such as the phone or device’s operating system. The value that fscommand2()
returns depends on the specific command.

The fscommand2() function is similar to the fscommand() function, with the following
differences:

■ The fscommand2() function can take an arbitrary number of arguments.
■ Flash Lite executes fscommand2() immediately, whereas fscommand() is executed at the

end of the frame being processed.
■ The fscommand2() function returns a value that can be used to report success, failure, or

the result of the command.

The strings and expressions that you pass to the function as commands and parameters are
described in the tables in this section.

The tables have the following three columns:

■ The Command column shows the string literal parameter that identifies the command.
■ The Parameters column explains what kinds of values to pass for the additional

parameters, if any.
■ The Value returned column explains the expected return values.
124 Flash Lite Specific Language Elements

Example

Examples are provided with the specific commands that you execute using the fscommand2()
function, which are described in the rest of this section.

See also

fscommand()

Escape
Availability

Flash Lite 1.1.

Description

Encodes an arbitrary string into a format that is safe for network transfer. Replaces each
nonalphanumeric character with a hexadecimal escape sequence (%xx, or %xx%xx in the case of
multibyte characters).

Example

The following example shows the conversion of a sample string to its encoded form:
original_string = "Hello, how are you?";
status = fscommand2("escape", original_string, "encoded_string");
trace (encoded_string); // output: Hello%2C%20how%20are%20you%3F

See also

Unescape

Command Parameters Value returned

"Escape" original String to be encoded into a format safe
for URLs.
encoded Resulting encoded string.
These parameters are either names of variables or
constant string values (for example,
"Encoded_String").

0: Failure.
1: Success.
fscommand2() 125

FullScreen
Availability

Flash Lite 1.1.

Description

Sets the size of the display area to be used for rendering. The size can be full screen or less-
than full screen.

This command is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Example

The following example attempts to set the display area to full screen. If the returned value is
other than 0, it sends the playback head to the frame labeled smallScreenMode:
status = fscommand2("FullScreen", true);
if(status != 0) {
 gotoAndPlay("smallScreenMode");
}

GetBatteryLevel
Availability

Flash Lite 1.1.

Description

Returns the current battery level. It is a numeric value that ranges from 0 to the maximum
value returned by the GetMaxBatteryLevel variable.

Command Parameters Value returned

"FullScreen" size Either a defined variable or a constant string
value, with one of these values: true (full screen) or
false (less than full screen). Any other value is
treated as the value false.

-1: Not supported.
0: Supported.

Command Parameters Value returned

"GetBatteryLevel" None. -1: Not supported.
Other numeric values: The current battery level.
126 Flash Lite Specific Language Elements

Example

The following example sets the battLevel variable to the current level of the battery:
battLevel = fscommand2("GetBatteryLevel");

See also

GetMaxBatteryLevel

GetDateDay
Availability

Flash Lite 1.1.

Description

Returns the day of the current date. It is a numeric value (without a leading 0). Valid days are
1 through 31.

Example

The following example collects the date information and constructs a complete date string:
today = fscommand2("GetDateDay");
weekday = fscommand2("GetDateWeekday");
thisMonth = fscommand2("GetDateMonth");
thisYear = fscommand2("GetDateYear");
when = weekday add ", " add ThisMonth add " " add today add ", " add

thisYear;

See also

GetDateMonth, GetDateWeekday, GetDateYear

Command Parameters Value returned

"GetDateDay" None. -1: Not supported.
1 to 31: The day of the month.
fscommand2() 127

GetDateMonth
Availability

Flash Lite 1.1.

Description

Returns the month of the current date as a numeric value (without a leading 0).

Example

The following example collects the date information and constructs a complete date string:
today = fscommand2("GetDateDay");
weekday = fscommand2("GetDateWeekday");
thisMonth = fscommand2("GetDateMonth");
thisYear = fscommand2("GetDateYear");
when = weekday add ", " add thisMonth add " " add today add ", " add

thisYear;

See also

GetDateDay, GetDateWeekday, GetDateYear

Command Parameters Value returned

"GetDateMonth" None. -1: Not supported.
1 to 12: The number of the current month.
128 Flash Lite Specific Language Elements

GetDateWeekday
Availability

Flash Lite 1.1.

Description

Returns a numeric value that is the name of the day of the current date, represented as a
numeric value.

Example

The following example collects the date information and constructs a complete date string:
today = fscommand2("GetDateDay");
weekday = fscommand2("GetDateWeekday");
thisMonth = fscommand2("GetDateMonth");
thisYear = fscommand2("GetDateYear");
when = weekday add ", " add thisMonth add " " add today add ", " add

thisYear;

See also

GetDateDay, GetDateMonth, GetDateYear

Command Parameters Value returned

"GetDateWeekday" None. -1: Not supported.
0: Sunday.
1: Monday.
2: Tuesday.
3: Wednesday.
4: Thursday.
5: Friday.
6: Saturday.
fscommand2() 129

GetDateYear
Returns a four-digit numeric value that is the year of the current date.

Availability

Flash Lite 1.1.

Example

The following example collects the date information and constructs a complete date string:
today = fscommand2("GetDateDay");
weekday = fscommand2("GetDateWeekday");
thisMonth = fscommand2("GetDateMonth");
thisYear = fscommand2("GetDateYear");
when = weekday add ", " add thisMonth add " " add today add ", " add

thisYear;

See also

GetDateDay, GetDateMonth, GetDateWeekday

GetDevice
Sets a parameter that identifies the device on which Flash Lite is running. This identifier is
typically the model name.

Availability

Flash Lite 1.1.

Command Parameters Value returned

"GetDateYear" None. -1: Not supported.
0 to 9999: The current year.

Command Parameters Value returned

"GetDevice" device String to receive the identifier of the
device. It can be either the name of a variable or
a string value that contains the name of
a variable.

-1: Not supported.
0: Supported.
130 Flash Lite Specific Language Elements

Example

The following code example assigns the device identifier to the statusdevice variable, and
then updates a text field with the generic device name.

These are some sample results and the devices they signify:

D506i A Mitsubishi 506i phone.

DFOMA1 A Mitsubishi FOMA1 phone.

F506i A Fujitsu 506i phone.

FFOMA1 A Fujitsu FOMA1 phone.

N506i An NEC 506i phone.

NFOMA1 An NEC FOMA1 phone.

Nokia3650 A Nokia 3650 phone.

p506i A Panasonic 506i phone.

PFOMA1 A Panasonic FOMA1 phone.

SH506i A Sharp 506i phone.

SHFOMA1 A Sharp FOMA1 phone.

SO506i A Sony 506iphone.
statusdevice = fscommand2("GetDevice", "devicename");
switch(devicename) {

case "D506i":
/:myText += "device: Mitsubishi 506i" add newline;
break;

case "DFOMA1":
/:myText += "device: Mitsubishi FOMA1" add newline;
break;

case "F506i":
/:myText += "device: Fujitsu 506i" add newline;
break;

case "FFOMA1":
/:myText += "device: Fujitsu FOMA1" add newline;
break;

case "N506i":
/:myText += "device: NEC 506i" add newline;
break;

case "NFOMA1":
/:myText += "device: NEC FOMA1" add newline;
break;

case "Nokia 3650":
/:myText += "device: Nokia 3650" add newline;
break;
fscommand2() 131

case "P506i":
/:myText += "device: Panasonic 506i" add newline;
break;

case "PFOMA1":
/:myText += "device: Panasonic FOMA1" add newline;
break;

case "SH506i":
/:myText += "device: Sharp 506i" add newline;
break;

case "SHFOMA1":
/:myText += "device: Sharp FOMA1" add newline;
break;

case "SO506i":
/:myText += "device: Sony 506i" add newline;
break;

}

GetDeviceID
Sets a parameter that represents the unique identifier of the device (for example, the
serial number).

Availability

Flash Lite 1.1.

Example

The following example assigns the unique identifier to the deviceID variable:
status = fscommand2("GetDeviceID", "deviceID");

Command Parameters Value returned

"GetDeviceID" id A string to receive the unique
identifier of the device. It can be
either the name of a variable or a
string value that contains the name of
a variable.

-1: Not supported.
0: Supported.
132 Flash Lite Specific Language Elements

GetFreePlayerMemory
Returns the amount of heap memory, in kilobytes, currently available to Flash Lite.

Availability

Flash Lite 1.1.

Example

The following example sets status equal to the amount of free memory:
status = fscommand2("GetFreePlayerMemory");

See also

GetTotalPlayerMemory

GetLanguage
Availability

Flash Lite 1.1.

Command Parameters Value returned

"GetFreePlayerMemory" None. -1: Not supported.
0 or positive value: Available kilobytes of
heap memory.
fscommand2() 133

Sets a parameter that identifies the language currently used by the device. The language is
returned as a string in a variable that is passed in by name.

Command Parameters Value returned

"GetLanguage" language String to receive the language code. It can
be either the name of a variable or a string value that
contains the name of a variable. The value returned is
one of the following:
cs: Czech.
da: Danish.
de: German.
en-UK: UK or international English.
en-US: US English.
es: Spanish.
fi: Finnish.
fr: French.
hu: Hungarian.
it: Italian.
jp: Japanese.
ko: Korean.
nl: Dutch.
no: Norwegian.
pl: Polish.
pt: Portuguese.
ru: Russian.
sv: Swedish.
tr: Turkish.
xu: an undetermined language.
zh-CN: simplified Chinese.
zh-TW: traditional Chinese.

-1: Not
supported.
0: Supported.

N
O

T
E

When Japanese phones are set to display English, en_US is returned for language.
134 Flash Lite Specific Language Elements

Example

The following example assigns the language code to the language variable, and then updates
a text field with the language recognized by the Flash Lite player:
statuslanguage = fscommand2("GetLanguage", "language");
switch(language) {

case "cs":
/:myText += "language is Czech" add newline;
break;

case "da":
/:myText += "language is Danish" add newline;
break;

case "de":
/:myText += "language is German" add newline;
break;

case "en-UK":
/:myText += "language is UK" add newline;
break;

case "en-US":
/:myText += "language is US" add newline;
break;

case "es":
/:myText += "language is Spanish" add newline;
break;

case "fi":
/:myText += "language is Finnish" add newline;
break;

case "fr":
/:myText += "language is French" add newline;
break;

case "hu":
/:myText += "language is Hungarian" add newline;
break;

case "it":
/:myText += "language is Italian" add newline;
break;

case "jp":
/:myText += "language is Japanese" add newline;
break;

case "ko":
/:myText += "language is Korean" add newline;
break;

case "nl":
/:myText += "language is Dutch" add newline;
break;

case "no":
/:myText += "language is Norwegian" add newline;
break;
fscommand2() 135

case "pl":
/:myText += "language is Polish" add newline;
break;

case "pt":
/:myText += "language is Portuguese" add newline;
break;

case "ru":
/:myText += "language is Russian" add newline;
break;

case "sv":
/:myText += "language is Swedish" add newline;
break;

case "tr":
/:myText += "language is Turkish" add newline;
break;

case "xu":
/:myText += "language is indeterminable" add newline;
break;

case "zh-CN":
/:myText += "language is simplified Chinese" add newline;
break;

case "zh-TW":
/:myText += "language is traditional Chinese" add newline;
break;

}

GetLocaleLongDate
Availability

Flash Lite 1.1.

Description

Sets a parameter to a string that represents the current date, in long form, formatted according
to the currently defined locale.

Command Parameters Value returned

"GetLocaleLongDate" longdate String variable to receive the long
form of the value of the current date, such as
"October 16, 2004" or "16 October 2004".
It can be either the name of a variable or a string
value that contains the name of a variable.
The value returned in longdate is a
multicharacter, variable-length string. The
actual formatting depends on the device and
the locale.

-1: Not supported.
0: Supported.
136 Flash Lite Specific Language Elements

Example

The following example attempts to return the long form of the current date in the longDate
variable. It also sets the value of status to report whether it was able to do so.
status = fscommand2("GetLocaleLongDate", "longdate");
trace (longdate); // output: Tuesday, June 14, 2005

See also

GetLocaleShortDate, GetLocaleTime

GetLocaleShortDate
Availability

Flash Lite 1.1.

Description

Sets a parameter to a string that represents the current date, in abbreviated form, formatted
according to the currently defined locale.

Example

The following example attempts to get the short form of the current date into the shortDate
variable. It also sets the value of status to report whether it was able to do so.
status = fscommand2("GetLocaleShortDate", "shortdate");
trace (shortdate); // output: 06/14/05

See also

GetLocaleLongDate, GetLocaleTime

Command Parameters Value
returned

"GetLocaleShortDate" shortdate String variable to receive the long form
of the value of the current date, such as "10/16/
2004" or "16-10-2004".
It can be either the name of a variable or a string
value that contains the name of a variable.
The value returned in shortdate is a multicharacter,
variable-length string. The actual formatting
depends on the device and the locale.

-1: Not
supported.
0: Supported.
fscommand2() 137

GetLocaleTime
Availability

Flash Lite 1.1.

Description

Sets a parameter to a string representing the current time, formatted according to the
currently defined locale.

Example

The following example attempts to get the current local time into the time variable. It also
sets the value of status to report whether it was able to do so.
status = fscommand2("GetLocaleTime", "time");
trace(time); // output: 14:30:21

See also

GetLocaleLongDate, GetLocaleShortDate

GetMaxBatteryLevel
Availability

Flash Lite 1.1.

Description

Returns the maximum battery level of the device. It is a numeric value greater than 0.

Command Parameters Value returned

"GetLocaleTime" time String variable to receive the value of the
current time, such as "6:10:44 PM" or "18:10:44".
It can be either the name of a variable or a string value
that contains the name of a variable.
The value returned in time is a multicharacter, variable-
length string. The actual formatting depends on the
device and the locale.

-1: Not
supported.
0: Supported.

Command Parameters Value returned

"GetMaxBatteryLevel" None. -1: Not supported.
other values: The maximum battery level.
138 Flash Lite Specific Language Elements

Example

The following example sets the maxBatt variable to the maximum battery level:
maxBatt = fscommand2("GetMaxBatteryLevel");

GetMaxSignalLevel
Availability

Flash Lite 1.1.

Description

Returns the maximum signal strength level. It is a numeric value greater than 0.

Example

The following example assigns the maximum signal strength to the sigStrengthMax variable:
sigStrengthMax = fscommand2("GetMaxSignalLevel");

GetMaxVolumeLevel
Availability

Flash Lite 1.1.

Description

Returns the maximum volume level of the device as a numeric value.

Command Parameters Value returned

"GetMaxSignalLevel" None. -1: Not supported.
Other numeric values: The maximum
signal level.

Command Parameters Value returned

"GetMaxVolumeLevel" None. -1: Not supported.
Other values: The maximum volume
level.
fscommand2() 139

Example

The following example sets the maxvolume variable to the maximum volume level of
the device:
maxvolume = fscommand2("GetMaxVolumeLevel");
trace (maxvolume); // output: 80

See also

GetVolumeLevel

GetNetworkConnectStatus
Availability

Flash Lite 1.1.

Description

Returns a value that indicates the current network connection status.

Command Parameters Value returned

"GetNetworkConnectStatus" None. -1: Not supported.
0: There is currently an active
network connection.
1: The device is attempting to connect to
the network.
2: There is currently no active
network connection.
3: The network connection is suspended.
4: The network connection cannot
be determined.
140 Flash Lite Specific Language Elements

Example

The following example assigns the network connection status to the connectstatus variable,
and then uses a switch statement to update a text field with the status of the connection:
connectstatus = fscommand2("GetNetworkConnectStatus");
switch (connectstatus) {

case -1 :
/:myText += "connectstatus not supported" add newline;
break;

case 0 :
/:myText += "connectstatus shows active connection" add newline;
break;

case 1 :
/:myText += "connectstatus shows attempting connection" add newline;
break;

case 2 :
/:myText += "connectstatus shows no connection" add newline;
break;

case 3 :
/:myText += "connectstatus shows suspended connection" add newline;
break;

case 4 :
/:myText += "connectstatus shows indeterminable state" add newline;
break;

}

GetNetworkName
Availability

Flash Lite 1.1.

Description

Sets a parameter to the name of the current network.

Command Parameters Value returned

"GetNetworkName" networkName String representing the
network name. It can be either the name
of a variable or a string value that
contains the name of a variable.
If the network is registered and its name
can be determined, networkname is set to
the network name; otherwise, it is set to
the empty string.

-1: Not supported.
0: No network is registered.
1: Network is registered, but
network name is not known.
2: Network is registered, and
network name is known.
fscommand2() 141

Example

The following example assigns the name of the current network to the myNetName variable
and a status value to the netNameStatus variable:
netNameStatus = fscommand2("GetNetworkName", myNetName);

GetNetworkRequestStatus
Availability

Flash Lite 1.1.

Description

Returns a value indicating the status of the most recent HTTP request.

Command Parameters Value returned

"GetNetworkRequestStatus" None. -1: The command is not supported.
0: There is a pending request, a network
connection has been established, the server’s
host name has been resolved, and a connection
to the server has been made.
1: There is a pending request, and a network
connection is being established.
2: There is a pending request, but a network
connection has not yet been established.
3: There is a pending request, a network
connection has been established, and the
server’s host name is being resolved.
4: The request failed because of a network error.
5: The request failed because of a failure in
connecting to the server.
6: The server has returned an HTTP error (for
example, 404).
7: The request failed because of a failure in
accessing the DNS server or in resolving the
server name.
8: The request has been successfully fulfilled.
9: The request failed because of a timeout.
10: The request has not yet been made.
142 Flash Lite Specific Language Elements

Example

The following example assigns the status of the most recent HTTP request to the
requesttatus variable, and then uses a switch statement to update a text field with
the status:
requeststatus = fscommand2("GetNetworkRequestStatus");
switch (requeststatus) {

case -1:
/:myText += "requeststatus not supported" add newline;
break;

case 0:
/:myText += "connection to server has been made" add newline;
break;

case 1:
/:myText += "connection is being established" add newline;
break;

case 2:
/:myText += "pending request, contacting network" add newline;
break;

case 3:
/:myText += "pending request, resolving domain" add newline;
break;

case 4:
/:myText += "failed, network error" add newline;
break;

case 5:
/:myText += "failed, couldn't reach server" add newline;
break;

case 6:
/:myText += "HTTP error" add newline;
break;

case 7:
/:myText += "DNS failure" add newline;
break;

case 8:
/:myText += "request has been fulfilled" add newline;
break;

case 9:
/:myText += "request timedout" add newline;
break;

case 10:
/:myText += "no HTTP request has been made" add newline;
break;

}

fscommand2() 143

GetNetworkStatus
Availability

Flash Lite 1.1.

Description

Returns a value indicating the network status of the phone (that is, whether there is a network
registered and whether the phone is currently roaming).

Example

The following example assigns the status of the network connection to the networkstatus
variable, and then uses a switch statement to update a text field with the status:
networkstatus = fscommand2("GetNetworkStatus");
switch(networkstatus) {

case -1:
/:myText += "network status not supported" add newline;
break;

case 0:
/:myText += "no network registered" add newline;
break;

case 1:
/:myText += "on home network" add newline;
break;

case 2:
/:myText += "on extended home network" add newline;
break;

case 3:
/:myText += "roaming" add newline;
break;

}

Command Parameters Value returned

"GetNetworkStatus" None. -1: The command is not supported.
0: No network registered.
1: On home network.
2: On extended home network.
3: Roaming (away from home network).
144 Flash Lite Specific Language Elements

GetPlatform
Availability

Flash Lite 1.1.

Description

Sets a parameter that identifies the current platform, which broadly describes the class of
device. For devices with open operating systems, this identifier is typically the name and
version of the operating system.

Example

The following code example assigns the platform identifier to the statusplatform variable,
and then updates a text field with the generic platform name.

These are some sample results for myPlatform and the classes of device they signify:

506i A 506i phone.

FOMA1 A FOMA1 phone.

Symbian6.1_s60.1 A Symbian 6.1, Series 60 version 1 phone.

Symbian7.0 A Symbian 7.0 phone
statusplatform = fscommand2("GetPlatform", "platform");
switch(platform){

case "506i":
/:myText += "platform: 506i" add newline;
break;

case "FOMA1":
/:myText += "platform: FOMA1" add newline;
break;

case "Symbian6.1-Series60v1":
/:myText += "platform: Symbian6.1, Series 60 version 1 phone" add

newline;
break;

case "Symbian7.0":
/:myText += "platform: Symbian 7.0" add newline;
break;

}

Command Parameters Value returned

"GetPlatform" platform String to receive the
identifier of the platform. It can be
either the name of a variable or a
string value that contains the name of
a variable.

-1: Not supported.
0: Supported.
fscommand2() 145

GetPowerSource
Availability

Flash Lite 1.1.

Description

Returns a value that indicates whether the power source is currently supplied from a battery or
from an external power source.

Example

The following example sets the myPower variable to indicate the power source, or to -1 if it
was unable to do so:
myPower = fscommand2("GetPowerSource");

GetSignalLevel
Availability

Flash Lite 1.1.

Description

Returns the current signal strength as a numeric value.

Example

The following example assigns the signal level value to the sigLevel variable:
sigLevel = fscommand2("GetSignalLevel");

Command Parameters Value returned

"GetPowerSource" None. -1: Not supported.
0: Device is operating on battery power.
1: Device is operating on an external
power source.

Command Parameters Value returned

"GetSignalLevel" None. -1: Not supported.
Other numeric values: The current signal level, ranging
from 0 to the maximum value returned by
GetMaxSignalLevel.
146 Flash Lite Specific Language Elements

GetTimeHours
Availability

Flash Lite 1.1.

Description

Returns the hour of the current time of day, based on a 24-hour clock. It is a numeric value
(without a leading 0).

Example

The following example sets the hour variable to the hour portion of the current time of day,
or to -1:
hour = fscommand2("GetTimeHours");
trace (hour); // output: 14

See also

GetTimeMinutes, GetTimeSeconds, GetTimeZoneOffset

GetTimeMinutes
Availability

Flash Lite 1.1.

Description

Returns the minute of the current time of day. It is a numeric value (without a leading 0).

Command Parameters Value returned

"GetTimeHours" None. -1: Not supported.
0 to 23: The current hour.

Command Parameters Value returned

"GetTimeMinutes" None. -1: Not supported.
0 to 59: The current minute.
fscommand2() 147

Example

The following example sets the minutes variable to the minute portion of the current time of
day, or to -1:
minutes = fscommand2("GetTimeMinutes");
trace (minutes); // output: 38

See also

GetTimeHours, GetTimeSeconds, GetTimeZoneOffset

GetTimeSeconds
Availability

Flash Lite 1.1.

Description

Returns the second of the current time of day. It is a numeric value (without a leading 0).

Example

The following example sets the seconds variable to the seconds portion of the current time
of day, or to -1:
seconds = fscommand2("GetTimeSeconds");
trace (seconds); // output: 41

See also

GetTimeHours, GetTimeMinutes, GetTimeZoneOffset

Command Parameters Value returned

"GetTimeSeconds" None. -1: Not supported.
0 to 59: The current second.
148 Flash Lite Specific Language Elements

GetTimeZoneOffset
Availability

Flash Lite 1.1.

Description

Sets a parameter to the number of minutes between the local time zone and universal
time (UTC).

Example

The following example either assigns the minutes of offset from UTC to the timezoneoffset
variable and sets status to 0 or else sets status to -1:
status = fscommand2("GetTimeZoneOffset", "timezoneoffset");
trace (timezoneoffset);// output: 300

See also

GetTimeHours, GetTimeMinutes, GetTimeSeconds

GetTotalPlayerMemory
Availability

Flash Lite 1.1.

Description

Returns the total amount of heap memory, in kilobytes, allocated to Flash Lite.

Command Parameters Value returned

"GetTimeZoneOffset" timezoneOffset Number of minutes between
the local time zone and UTC. It can be either the
name of a variable or a string value that
contains the name of a variable.
A positive or a negative numeric value is
returned, such as the following:
540: Japan standard time
-420: Pacific daylight saving time

-1: Not supported.
0: Supported.

Command Parameters Value returned

"GetTotalPlayerMemory" None. -1: Not supported.
0 or positive value: Total kilobytes of
heap memory.
fscommand2() 149

Example

The following example sets the status variable to the total amount of heap memory:
status = fscommand2("GetTotalPlayerMemory");

See also

GetFreePlayerMemory

GetVolumeLevel
Availability

Flash Lite 1.1.

Description

Returns the current volume level of the device as a numeric value.

Example

The following example assigns the current volume level to the volume variable:
volume = fscommand2("GetVolumeLevel");
trace (volume); // output: 50

See also

GetVolumeLevel

Command Parameters Value returned

"GetVolumeLevel" None. -1: Not supported.
Other numeric values: The current volume level, ranging
from 0 to the value returned by
fscommand2("GetMaxVolumeLevel").
150 Flash Lite Specific Language Elements

Quit
Availability

Flash Lite 1.1.

Description

Causes the Flash Lite player to stop playback and exit.

This command is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Example

The following example causes Flash Lite to stop playback and quit when running in stand-
alone mode:
status = fscommand2("Quit");

ResetSoftKeys
Availability

Flash Lite 1.1.

Description

Resets the soft keys to their original settings.

This command is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Command Parameters Value returned

"Quit" None. -1: Not supported.

Command Parameters Value returned

"ResetSoftKeys" None. -1: Not supported.
0: Supported.
fscommand2() 151

Example

The following statement resets the soft keys to their original settings:
status = fscommand2("ResetSoftKeys");

See also

SetSoftKeys

SetInputTextType
Availability

Flash Lite 1.1.

Description

Specifies the mode in which the input text field should be opened:

Flash Lite supports input text functionality by asking the host application to start the generic
device-specific text input interface, often referred to as the front-end processor (FEP). When
the SetInputTextType command is not used, the FEP is opened in default mode.

Command Parameters Value returned

"SetInputTextType" variableName Name of the input text field. It
can be either the name of a variable or a string
value that contains the name of a variable.
type One of the values Numeric, Alpha,
Alphanumeric, Latin, NonLatin, or NoRestriction.

0: Failure.
1: Success.
152 Flash Lite Specific Language Elements

The following table shows what effect each mode has, and what modes are substituted:

Example

The following line of code sets the input text type of the field associated with the input1
variable to receive numeric data:
status = fscommand2("SetInputTextType", "input1", "Numeric");

SetQuality
Availability

Flash Lite 1.1.

Description

Sets the quality of the rendering of the animation.

Example

The following example sets the rendering quality to low:
status = fscommand2("SetQuality", "low");

Mode
specified

Sets the FEP to one of these mutually
exclusive modes

If not supported on
current device, opens
the FEP in this mode

Numeric Numbers only (0 to 9) Alphanumeric

Alpha Alphabetic characters only (A to Z, a to z) Alphanumeric

Alphanumeric Alphanumeric characters only (0 to 9, A to Z,
a to z)

Latin

Latin Latin characters only (alphanumeric and
punctuation)

NoRestriction

NonLatin Non-Latin characters only (for example, Kanji
and Kana)

NoRestriction

NoRestriction Default mode (sets no restriction on the FEP)

N
O

T
E

Not all mobile phones support these input text field types. For this reason, you must
validate the input text data.

Command Parameters Value returned

"SetQuality" quality The rendering quality; must be
"high", "medium", or "low".

-1: Not supported.
0: Supported.
fscommand2() 153

SetSoftKeys
Availability

Flash Lite 1.1.

Description

Remaps the Left and Right soft keys of the device, provided that they can be accessed
and remapped.

After this command is executed, pressing the left key generates a PageUp keypress event, and
pressing the right key generates a PageDown keypress event. ActionScript associated with the
PageUp and PageDown keypress events is executed when the respective key is pressed.

This command is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Example

The following example directs that the Left soft key be labeled Previous and the Right soft key
be labeled Next:
status = fscommand2("SetSoftKeys", "Previous", "Next");

See also

ResetSoftKeys

Command Parameters Value returned

"SetSoftKeys" left Text to be displayed for the Left soft key.
right Text to be displayed for the Right soft key.
These parameters are either names of variables or
constant string values (for example, "Previous").

-1: Not supported.
0: Supported.
154 Flash Lite Specific Language Elements

StartVibrate
Availability

Flash Lite 1.1.

Description

Starts the phone’s vibration feature. If a vibration is already occurring, Flash Lite stops that
vibration before starting the new one. Vibrations also stop when playback of the Flash
application is stopped or paused, and when Flash Lite player quits.

Example

The following example attempts to start a vibration sequence of 2.5 seconds on, 1 second off,
repeated twice. It assigns a value to the status variable that indicates success or failure.
status = fscommand2("StartVibrate", 2500, 1000, 2);

See also

StopVibrate

StopVibrate
Availability

Flash Lite 1.1.

Description

Stops the current vibration, if any.

Command Parameters Value returned

"StartVibrate" time_on Amount of time, in milliseconds (to a
maximum of 5 seconds), that the vibration is on.
time_off Amount of time, in milliseconds (to a
maximum of 5 seconds), that the vibration is off.
repeat Number of times (to a maximum of 3) to
repeat this vibration.

-1: Not supported.
0: Vibration was started.
1: An error occurred and
vibration could not
be started.

Command Parameters Value returned

"StopVibrate" None. -1: Not supported.
0: The vibration stopped.
fscommand2() 155

Example

The following example calls StopVibrate and saves the result (not supported or vibration
stopped) in the status variable:
status = fscommand2("StopVibrate");

See also

StartVibrate

Unescape
Availability

Flash Lite 1.1.

Description

Decodes an arbitrary string that was encoded to be safe for network transfer into its normal,
unencoded form. All characters that are in hexadecimal format, that is, a percent character
(%) followed by two hexadecimal digits, are converted into their decoded form.

Example

The following example shows the decoding of an encoded string:
encoded_string = "Hello%2C%20how%20are%20you%3F";
status = fscommand2("unescape", encoded_string, "normal_string");
trace (normal_string); // output: Hello, how are you?

See also

Escape

Command Parameters Value returned

"Unescape" original String to be decoded from a format
safe for URLs to a normal form.
decoded Resulting decoded string.
(This parameter can be either the name of a
variable or a string value that contains the name
of a variable.)

0: Failure.
1: Success.
156 Flash Lite Specific Language Elements

Index
Symbols
! (logical NOT) operator 92
" " (string delimiter) operator 102
$version variable 122
% (modulo) operator 93
%= (modulo assignment) operator 94
&& (logical AND) operator 90
|| (logical OR) operator 92
* (multiply) operator 95
*= (multiplication assignment) operator 94
+ (numeric add) operator 96
++ (increment) operator 89
+= (addition assignment) operator 81
, (comma) operator 84
-= (subtraction assignment) operator 108
. (dot) operator 88
/ (divide) operator 87
/ (forward slash - root timeline) property 48
/* (block comment) operator 83
// (comment) operator 85
/= (division) operator 88
< (numeric less than or equal to) operator 100
< (numeric less than) operator 100
<> (numeric inequality) operator 99
= (assignment) operator 82
== (numeric equality) operator 97
> (greater than or equal to) operator 98
> (greater than) operator 98
? (conditional) operator 86
_alpha variable 49
_cap4WayKeyAS variable 121
_capCompoundSound variable 114
_capEmail variable 115
_capLoadData variable 115
_capMFi variable 116
_capMIDI variable 117

_capMMS variable 117
_capSMAF variable 119
_capSMS variable 119
_capStreamSound variable 120
_currentframe property 49
_focusrect property 50
_framesloaded property 51
_height property 52
_highquality property 52
_level property 53
_name property 54
_rotation property 55
_scroll property 56
_target property 56
_visible property 57
_width property 58
_x property 58
_xscale property 59
_y property 60
_yscale property 61
– (subtract) operator 107
–– (decrement) operator 86

A
add (string concatenation) operator 80
addition assignment operator 81
_alpha variable 49
AND operator 90
and operator 81
assignment operator 82

B
block comment operator 83
break statement 64
157

C
call 11
_cap4WayKeyAS variable 121
_capCompoundSound variable 114
_capEmail variable 115
_capLoadData variable 115
_capMFi variable 117
_capMMS variable 117
_capSMAF variable 119
_capSMS variable 119
_capStreamSound variable 120
case statement 65
chr() function 12
comma operator 84
comments

block 83
one-line 85

concatenation 80
conditional operator 86
conditions 72
continue statement 66
_currentframe property 49

D
division 87
division assignment operator 88
do..while statement 68
dot operator 88
duplicateMovieClip() function 12

E
e-mail capability variable 115
else if statement 70
else statement 69
eq (string equal) operator 103
eval() function 14

F
_focusrect property 50
for loop 71
for statement 71
_framesloaded property 51
fscommand() command 122

functions
chr() 12
duplicateMovieClip() 12
eval() 14
fscommand() 122
getProperty() 15
getTimer() 15
getURL() 16
gotoAndPlay() 19
gotoAndStop() 19
ifFrameLoaded() 20
int() 21
length() 22
loadMovie() 22
loadMovieNum() 24
loadVariables() 25
loadVariablesNum() 26
mbchr() 27
mbsubstring() 29
nextFrame() 30
nextScene() 31
Number() 32
on() 33
ord() 34
play() 34
prevFrame() 35
prevScene() 36
random() 36
removeMovieClip() 37
set() 38
setProperty() 39
stop() 39
stopAllSounds() 40
String() 41
substring() 41
tellTarget() 42
toggleHighQuality() 43
trace() 44
unloadMovie() 44
unloadMovieNum() 45

G
ge (string greater than or equal to) operator 104
getProperty() function 15
getTimer() function 15
getURL() function 16
158 Index

gotoAndPlay() function 19
gotoAndStop() function 19
greater than operator 98
greater than or equal to operator 98
gt (string greater than) operator 103

H
_height property 52
_highquality property 52

I
if statement 72
ifFrameLoaded() function 20
increment operator 89
inequality operator 99
int() function 21

L
le (string less than or equal to) operator 106
length() function 22
less than operator 100
less than or equal to operator 100
_level property 53
loadMovie() function 22
loadMovieNum() function 24
loadVariables() function 25
loadVariablesNum() function 26
logical AND operator 90
logical NOT operator 92
logical OR operator 92
lt (string less than) operator 106

M
maxscroll property 54
mbchr() function 27
mbsubstring() function 29
messaging variables 117, 119
MFI sound 116
MIDI sound 117
MMS messaging 117
modulo assignment 94
modulo operator 93
multiplication 95

N
_name property 54
ne (string not equal) operator 105
nextFrame() function 30
nextScene() function 31
NOT operator 92
Number() function 32
numeric addition 96

O
on() function 33
operators

addition assignment 81
and 81
assignment 82
block comment 83
comma 84
comment 85
conditional 86
division 87
division assignment 88
dot 88
greater than 98
greater than or equal to 98
increment 89
logical AND 90
logical NOT 92
logical OR 92
modulo 93
modulo assignment 94
multiply 95
numeric add 96
numeric equality 97
numeric inequality 99
numeric less than 100
numeric less than or equal to 100
string concatenation 80
string delimiter 102
string equal 103
string greater than 103
string greater than or equal to 104
string less than 106
string less than or equal to 106
string not equal 105
subtraction assignment 108

OR operator 92
ord() function 34
Index 159

P
play() function 34
prevFrame() function 35
prevScene() function 36
properties

_alpha 49
_currentframe 49
_focusrect 50
_framesloaded 51
_height 52
_highquality 52
_level 53
_name 54
_rotation 55
_scroll 56
_target 56
_visible 57
_width 58
_x 58
_xscale 59
_y 60
_yscale 61
forward slash 48
maxscroll 54
scroll 56

R
random() function 36
removeMovieClip() function 37
root timeline identifier 48
_rotation property 55

S
scroll property 56
set() function 38
setProperty() function 39
sound variables 114, 116, 117, 119, 120
statements

break 64
case 65
continue 66
do..while 68
else 69
else if 70
for 71

if 72
logical NOT 92
switch 73
while 74

stop() function 39
stopAllSounds() functions 40
string delimiter operator 102
string equal operator 103
string greater than operator 103
string greater than or equal to 104
string less than or equal to 106
String() function 41
substring() function 41
subtraction assignment operator 108
switch statement 73

T
_target property 56
tellTarget() function 42
toggleHighQuality() function 43
_totalframes property 57
trace() function 44

U
unloadMovie() function 44
unloadMovieNum() function 45

V
variables

$version 122
_alpha 49
_cap4WayKeyAS 121
_capCompoundSound 114
_capEmail 115
_capLoadData 115
_capMFi 116
_capMIDI 117
_capMMS 117
_capSMAF 119
_capSMS 119
_capStreamSound 120
arrow key navigation 121
capability to load data 115
e-mail capability 115
version number of Flash Lite 122
160 Index

variables, messaging
_capMMS 117
_capSMS 119

variables, sound
_capCompoundSound 114
_capMFi 116
_capMIDI 117
_capSMAF 119
_capStreamSound 120

_visible property 57

W
while loop 68
while statement 74
_width property 58

X
_x property 58
_xscale property 59

Y
_y property 60
_yscale property 61
Index 161

162 Index

	Contents
	Sample entry for most ActionScript elements
	Entry title

	Samples folder
	Typographical conventions

	Flash Lite Global Functions
	call()
	chr()
	duplicateMovieClip()
	eval ()
	getProperty()
	getTimer()
	getURL()
	gotoAndPlay()
	gotoAndStop()
	ifFrameLoaded()
	int()
	length()
	loadMovie()
	loadMovieNum()
	loadVariables()
	loadVariablesNum()
	mbchr()
	mblength()
	mbord()
	mbsubstring()
	nextFrame()
	nextScene()
	Number()
	on()
	ord()
	play()
	prevFrame()
	prevScene()
	random()
	removeMovieClip()
	set()
	setProperty()
	stop()
	stopAllSounds()
	String()
	substring()
	tellTarget()
	toggleHighQuality()
	trace()
	unloadMovie()
	unloadMovieNum()

	Flash Lite Properties
	/ (Forward slash)
	_alpha
	_currentframe
	_focusrect
	_framesloaded
	_height
	_highquality
	_level
	maxscroll
	_name
	_rotation
	scroll
	_target
	_totalframes
	_visible
	_width
	_x
	_xscale
	_y
	_yscale

	Flash Lite Statements
	break
	case
	continue
	do..while
	else
	else if
	for
	if
	switch
	while

	Flash Lite Operators
	add (string concatenation)
	+= (addition assignment)
	and
	= (assignment)
	/* (block comment)
	, (comma)
	// (comment)
	?: (conditional)
	-- (decrement)
	/ (divide)
	/= (division assignment)
	. (dot)
	++ (increment)
	&& (logical AND)
	! (logical NOT)
	|| (logical OR)
	% (modulo)
	%= (modulo assignment)
	*= (multiplication assignment)
	* (multiply)
	+ (numeric add)
	== (numeric equality)
	> (numeric greater than)
	>= (numeric greater than or equal to)
	<> (numeric inequality)
	< (numeric less than)
	<= (numeric less than or equal to)
	() (parentheses)
	" " (string delimiter)
	eq (string equality)
	gt (string greater than)
	ge (string greater than or equal to)
	ne (string inequality)
	lt (string less than)
	le (string less than or equal to)
	- (subtract)
	-= (subtraction assignment)

	Flash Lite Specific Language Elements
	Capabilities
	_capCompoundSound
	_capEmail
	_capLoadData
	_capMFi
	_capMIDI
	_capMMS
	_capMP3
	_capSMAF
	_capSMS
	_capStreamSound
	_cap4WayKeyAS
	$version

	fscommand()
	Launch

	fscommand2()
	Escape
	FullScreen
	GetBatteryLevel
	GetDateDay
	GetDateMonth
	GetDateWeekday
	GetDateYear
	GetDevice
	GetDeviceID
	GetFreePlayerMemory
	GetLanguage
	GetLocaleLongDate
	GetLocaleShortDate
	GetLocaleTime
	GetMaxBatteryLevel
	GetMaxSignalLevel
	GetMaxVolumeLevel
	GetNetworkConnectStatus
	GetNetworkName
	GetNetworkRequestStatus
	GetNetworkStatus
	GetPlatform
	GetPowerSource
	GetSignalLevel
	GetTimeHours
	GetTimeMinutes
	GetTimeSeconds
	GetTimeZoneOffset
	GetTotalPlayerMemory
	GetVolumeLevel
	Quit
	ResetSoftKeys
	SetInputTextType
	SetQuality
	SetSoftKeys
	StartVibrate
	StopVibrate
	Unescape

