

CSS
Pocket Reference

THIRD EDITION

Eric A. Meyer

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

CSS™ Pocket Reference, Third Edition
by Eric A. Meyer

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Loranah Dimant
Proofreader: Loranah Dimant
Indexer: Reg Aubry

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:
May 2001: First Edition.
July 2004: Second Edition.
October 2007: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, CSS Pocket Reference, Third Edition, the image of salmon, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51505-7
ISBN-13: 978-0-596-51505-8
[TM]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Contents

Conventions Used in This Book 1

Adding Styles to HTML and XHTML 2

Rule Structure 5

Style Precedence 6

Element Classification 9

Element Display Roles 10

Basic Visual Layout 11

Floating Rules 14

Positioning Rules 15

Table Layout 21

Values 28

Selectors 34

Pseudo-Classes and Pseudo-Elements 41

Property Reference 48

Tables 126

Paged Media 131

iv | Contents

Dropped from CSS2.1 135

Visual Styles 136

Paged Media 138

Aural Styles 140

Index 155

1

CSS Pocket Reference

Cascading Style Sheets (CSS) is the W3C standard for the
visual presentation of web pages (although it can be used in
other settings as well). After a short introduction to the key
concepts of CSS, this pocket reference provides an alphabeti-
cal reference to all CSS2.1 selectors, followed by an alphabet-
ical reference to all CSS2.1 properties.

Conventions Used in This Book
The following typographical conventions are used in this
book:

Italic
Used to indicate new terms, URLs, filenames, file exten-
sions, directories, commands and options, and program
names. For example, a path in the filesystem will appear
as C:\windows\system.

Constant width
Used to show the contents of files or the output from
commands.

For more information, visit O’Reilly’s web site for this book,
where examples, errata, and any plans for future editions are
listed:

http://www.oreilly.com/catalog/9780596515058

2 | CSS Pocket Reference

Safari® Books Online
When you see a Safari® Books Online
icon on the cover of your favorite technol-
ogy book, that means the book is avail-
able online through the O’Reilly Network

Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a vir-
tual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, cur-
rent information. Try it for free at http://safari.oreilly.com.

Adding Styles to HTML and XHTML
Styles can be applied to documents in three distinct ways, as
discussed in the following sections.

Inline Styles
In HTML and XHTML, style information can be specified
for an individual element via the style attribute. The value of
a style attribute is a declaration block (see the upcoming
section “Rule Structure”) without the curly braces:

<p style="color: red; background: yellow;">Look out!
This text is alarmingly presented!</p>

Note that, as of this writing, a full style sheet cannot be
placed into a style attribute. Only the content of a single
declaration block can be used as a style attribute value. For
example, it is not possible to place hover styles (using :hover)
in a style attribute, nor can one use @import in this context.

Although typical XML document languages (e.g., XHTML
1.0, XHTML 1.1, and SVG) support the style attribute, it is
unlikely that all XML languages will support a similar capa-
bility. Due to this and the fact that it encourages poor
authoring practices, authors are generally discouraged from
using the style attribute.

http://safari.oreilly.com

Adding Styles to HTML and XHTML | 3

Embedded Style Sheets
A style sheet can be embedded at the top of an HTML or
XHTML document using the style element, which must
appear within the head element:

<html><head><title>Stylin'!</title>
<style type="text/css">
h1 {color: purple;}
p {font-size: smaller; color: gray;}
</style>
</head>
 ...
</html>

XML languages may or may not provide an equivalent capa-
bility; always check the language DTD to be certain.

External Style Sheets
Styles can be listed in a separate file. The primary advantage
to a separate file is that by collecting commonly used styles
in a single file, all pages using that style sheet can be updated
by editing a single style sheet. Another key advantage is that
external style sheets are cached, which can help reduce band-
width usage. An external style sheet can be referenced in one
of the following three ways:

@import directive

One or more @import directives can be placed at the begin-
ning of any style sheet. For HTML and XHTML documents,
this would be done within an embedded style sheet:

<head>
<title>My Document</title>
<style type="text/css">
@import url(site.css);
@import url(navbar.css);
@import url(footer.css);
body {background: yellow;}
</style>
</head>

4 | CSS Pocket Reference

Note that @import directives can appear at the top (and,
according to the specification, only at the top) of any style
sheet. Thus, one style sheet could import another, which in
turn would import a third.

link element

In HTML and XHTML documents, the link element can be
used to associate a style sheet with a document. Multiple
link elements are permitted. The media attribute can be used
to restrict a style sheet to one or more media:

<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css"
 media="all">
<link rel="stylesheet" type="text/css" href="web.css"
 media="screen">
<link rel="stylesheet" type="text/css" href="paper.css"
 media="print">
</head>

It is also possible to link to alternate style sheets. If alternate
style sheets are supplied, it is up to the user agent (or the
author) to provide a means for the user to select one of the
alternates:

<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css">
<link rel="alternate stylesheet" title="Classic"
type="text/css" href="oldschool.css">
<link rel="alternate stylesheet" title="Futuristic"
type="text/css" href="3000ad.css">
</head>

As of this writing, most or all known user agents load all
linked style sheets, including the alternate style sheets,
regardless of whether the user ever implements them. This
can have implications for bandwidth use and server load.

Rule Structure | 5

xml-stylesheet processing instruction

In XML documents (such as XHTML documents sent with a
mime-type of “text/xml,” “application/xml,” or “application/
xhtml+xml”), an xml-stylesheet processing instruction can be
used to associate a style sheet with a document. Any xml-
stylesheet processing instructions must be placed in the
prolog of an XML document. Multiple xml-stylesheet process-
ing instructions are permitted. The media pseudoattribute can
be used to restrict a style sheet to one or more forms of media:

<?xml-stylesheet type="text/css" href="basic.css"
 media="all"?>
<?xml-stylesheet type="text/css" href="web.css"
 media="screen"?>
<?xml-stylesheet type="text/css" href="paper.css"
 media="print"?>

It is also possible to link to alternate style sheets with the
xml-stylesheet processing instruction:

<?xml-stylesheet type="text/css" href="basic.css"?>
<?xml-stylesheet alternate="yes" title="Classic"
 type="text/css" href="oldschool.css"?>
<?xml-stylesheet alternate="yes" title="Futuristic"
 type="text/css" href="3000ad.css"?>

Rule Structure
A style sheet consists of one or more rules that describe how
page elements should be presented. Every rule has two funda-
mental parts: the selector and the declaration block. Figure 1
illustrates the structure of a rule.

Figure 1. Rule structure

{color: red; background: yellow}

Selector

H1

Declaration

Property Value Property Value

Declaration

Declaration
block

6 | CSS Pocket Reference

On the left side of the rule, we find the selector, which selects
the parts of the document to which the rule should be
applied. On the right side of the rule, we have the declara-
tion block. A declaration block is made up of one or more
declarations; each declaration is a combination of a CSS
property and a value of that property.

The declaration block is always enclosed in curly braces. A
declaration block can contain several declarations; each dec-
laration must be terminated with a semicolon (;). The excep-
tion is the final declaration in a declaration block, for which
the semicolon is optional.

Each property, which represents a particular stylistic parame-
ter, is separated from its value by a colon (:). Property names
in CSS are not case-sensitive. Legal values for a property are
defined by the property description. The “Property Refer-
ence” section, later in this book, provides details on accept-
able values for CSS properties.

Style Precedence
A single HTML or XHTML document can import and link to
multiple external style sheets, contain one or more embed-
ded style sheets, and make use of inline styles. In the pro-
cess, it is quite possible that some rules will conflict with
each other. CSS uses a mechanism called the cascade to
resolve any such conflicts and arrive at a final set of styles to
be applied to the document. Two key components of the
cascade are specificity and inheritance.

Specificity Calculations
Specificity describes the weight of a selector and any declara-
tions associated with it. The following table summarizes the
components of specificity summation.

Style Precedence | 7

Specificity values are cumulative; thus, a selector containing
two element identifiers and a class identifier (e.g., div.aside
p) has a specificity of 0,0,1,2. Specificity values are sorted in
right-to-left precedence; thus, a selector containing 11 ele-
ment identifiers (0,0,0,11) has a lower specificity than a
selector containing just a single class identifier (0,0,1,0).

The !important directive gives a declaration more weight
than nonimportant declarations. The declaration retains the
specificity of its selectors and is used only in comparison
with other important declarations.

Inheritance
The elements in a document form a tree-like hierarchy with
the root element at the top and the rest of the document
structure spreading out below it (which makes it look more
like a tree root system, really). In an HTML document, the
html element is at the top of the tree, with the head and body
elements descending from it. The rest of the document struc-
ture descends from those elements. In such a structure, ele-
ments lower down in the tree are descendants of the
ancestors, which are higher in the tree.

Selector type Specificity

Universal selector
Combinators

0,0,0,0

Element identifier
Pseudo-element identifier

0,0,0,1

Class identifier
Pseudo-class identifier
Attribute identifier

0,0,1,0

ID identifier 0,1,0,0

Inline style attribute 1,0,0,0

8 | CSS Pocket Reference

CSS uses the document tree for the mechanism of inheritance,
in which a style applied to an element is inherited by its
descendants. For example, if the body element is set to have a
color of red, that value propagates down the document tree
to the elements that descend from the body element. Inherit-
ance is interrupted only by a style rule that applies directly to
an element. Inherited values have no specificity at all (which
is not the same as having zero specificity).

Note that some elements are not inherited. A property will
always define whether it is inherited. Some examples of non-
inherited properties are padding, border, margin, and background.

The Cascade
The cascade is how CSS resolves conflicts between styles; in
other words, it is the mechanism by which a user agent
decides, for example, what color to make an element when
two different rules apply to it and each one tries to set a dif-
ferent color. The following steps constitute the cascade:

1. Find all declarations that contain a selector that matches
a given element.

2. Sort by explicit weight all declarations applying to the
element. Those rules marked !important are given greater
weight than those that are not. Also, sort by origin all
declarations applying to a given element. There are three
origins: author, reader, and user agent. Under normal cir-
cumstances, the author’s styles win out over the reader’s
styles. !important reader styles are stronger than any
other styles, including !important author styles. Both
author and reader styles override the user agent’s default
styles.

3. Sort by specificity all declarations applying to a given ele-
ment. Those elements with a higher specificity have more
weight than those with lower specificity.

Element Classification | 9

4. Sort by order all declarations applying to a given ele-
ment. The later a declaration appears in a style sheet or a
document, the more weight it is given. Declarations that
appear in an imported style sheet are considered to come
before all declarations within the style sheet that imports
them.

Element Classification
Broadly speaking, CSS groups elements into two types: non-
replaced and replaced. Although the types may seem rather
abstract, there actually are some profound differences in how
the two kinds of elements are presented. These differences
are explored in detail in Chapter 7 of CSS: The Definitive
Guide, Third Edition (O’Reilly).

Nonreplaced Elements
The majority of HTML and XHTML elements are nonreplaced
elements, which means their content is presented by the user
agent inside a box generated by the element itself. For exam-
ple, hi there is a nonreplaced element, and the
text hi there will be displayed by the user agent. Paragraphs,
headings, table cells, lists, and almost everything else in
HTML and XHTML are nonreplaced elements.

Replaced Elements
In contrast, replaced elements are those whose content is
replaced by something not directly represented by document
content. The most familiar XHTML example is the img ele-
ment, which is replaced by an image file external to the doc-
ument itself. In fact, img itself has no actual content, as we
can see by considering a simple example:

10 | CSS Pocket Reference

There is no content contained in the element—only an ele-
ment name and attributes. Only by replacing the element’s
lack of content with content found through other means (in
this case, loading an external image specified by the src
attribute) can the element have any presentation at all.
Another example is the input element, which may be
replaced with a radio button, checkbox, or text input box,
depending on its type. Replaced elements also generate boxes
in their display.

Element Display Roles
In addition to being replaced or not, there are two basic
types of element display roles in CSS2: block-level and inline-
level.

Block-Level
Block-level elements are those that generate an element box
that (by default) fills its parent element’s content area and
cannot have other elements to its sides. In other words,
block-level elements generate “breaks” before and after the
element box. The most familiar block elements from HTML
are p and div. Replaced elements can be block-level elements
but usually are not.

List items are a special case of block-level elements. In addi-
tion to behaving in a manner consistent with other block ele-
ments, they generate a marker—typically a bullet for
unordered lists or a number for ordered lists—which is
“attached” to the element box. Except for the presence of
this marker, list items are identical to other block elements.

Inline-Level Elements
Inline-level elements are those that generate an element box
within a line of text and do not break up the flow of that line.

Basic Visual Layout | 11

The best-known inline element is the a element in HTML
and XHTML. Other examples are span and em. These ele-
ments do not generate a break before or after themselves, so
they can appear within the content of another element with-
out disrupting its display.

Note that although the CSS block and inline elements have a
great deal in common with HTML and XHTML block- and
inline-level elements, there is an important difference. In
HTML and XHTML, block-level elements cannot descend
from inline-level elements, whereas in CSS, there is no restric-
tion on how display roles can be nested within each other.

Basic Visual Layout
CSS defines algorithms for laying out any element in a docu-
ment. These algorithms form the underpinnings of visual
presentation in CSS. There are two primary kinds of layout,
each with very different behaviors: block-level and inline-
level layout.

Block-Level Layout
A block-level box in CSS generates a rectangular box called
the element box, which describes the amount of space occu-
pied by an element. Figure 2 shows the various components
of an element box. The following rules apply to an element
box:

• The background of an element extends to the outer edge
of the border, thus filling the content, padding, and bor-
der areas. If the border has any transparent portions (e.g.,
it is dotted or dashed), then the background will be visi-
ble in those portions.

• Only the margins, height, and width of an element box
may be set to auto.

• Only margins can be given negative values.

12 | CSS Pocket Reference

• The padding and borders of the element box default to 0
(zero) and none, respectively.

• The property width defines only the width of the content
area; any padding, borders, or margins are added to it.
The same is true for height.

Inline Layout
All inline elements have a line-height, which has a great deal
to do with how the elements are displayed. The height of a
line of text is determined by taking into account the follow-
ing factors:

Anonymous text
Any string of characters not contained within an inline
element. Thus, in the markup:

<p> I'm so happy!</p>

the sequences “I’m” and “happy!” are anonymous text.
Note that the spaces are part of that text, as a space is a
character like any other.

Figure 2. Box model details

width

height

top outer edge

top margin

top border

top padding

top inner edge

bottom inner edge

bottom padding

bottom border

bottom margin

bottom outer edge

le
ft

 o
ut

er
 ed

ge

le
ft

 m
ar

gi
n

le
ft

 b
or

de
r

le
ft

 p
ad

di
ng

le
ft

 in
ne

r e
dg

e

right outer edge

right m
argin

right border

right padding

right inner edge

Basic Visual Layout | 13

Em-box
The em-box defined in the given font; otherwise known
as the character box. Actual glyphs can be taller or
shorter than their em-boxes, as discussed in Chapter 5 of
CSS: The Definitive Guide, Third Edition (O’Reilly). In
CSS, the value of font-size determines the height of each
em-box.

Content area
In nonreplaced elements, the content area can be the box
described by the em-boxes of every character in the ele-
ment, strung together, or else the box described by the
character glyphs in the element. The CSS2.1 specifica-
tion allows user agents to choose either. This text uses
the em-box definition for simplicity’s sake. In replaced
elements, the content area is the intrinsic height of the
element plus any margins, borders, or padding.

Leading
The leading is the difference between the values of font-
size and line-height. Half this difference is applied to the
top and half to the bottom of the content area. These addi-
tions to the content area are called, not surprisingly, half-
leading. Leading is applied only to nonreplaced elements.

Inline box
The box described by the addition of the leading to the
content area. For nonreplaced elements, the height of the
inline box of an element will be equal to the value for
line-height. For replaced elements, the height of the
inline box of an element will be equal to the content area,
as leading is not applied to replaced elements.

Line box
The shortest box that bounds the highest and lowest
points of the inline boxes that are found in the line. In
other words, the top edge of the line box will be placed
along the top of the highest inline box top, and the bot-
tom of the line box is placed along the bottom of the
lowest inline box bottom. (See Figure 3.)

14 | CSS Pocket Reference

Floating Rules
Floating allows an element to be placed to the left or right of
its containing block (which is the nearest block-level ancestor
element), with following content flowing around the element.
A floated element is placed according to the following rules:

• The left (or right) outer edge of a floated element may
not be to the left (or right) of the inner edge of its con-
taining block.

• The left (or right) outer edge of a floated element must be
to the right (or left) of the right (left) outer edge of a left-
floating (or right-floating) element that occurs earlier in
the document’s source, unless the top of the later ele-
ment is below the bottom of the former.

• The right outer edge of a left-floating element may not be
to the right of the left outer edge of any right-floating ele-
ment to its right. The left outer edge of a right-floating
element may not be to the left of the right outer edge of
any left-floating element to its left.

• A floating element’s top may not be higher than the inner
top of its containing block.

Figure 3. Inline layout details

content area

21px
inline box

half-leading

15px
content

area

content-area

15px line box

inline box

Positioning Rules | 15

• A floating element’s top may not be higher than the top
of any earlier floating or block-level element.

• A floating element’s top may not be higher than the top
of any line box with content that precedes the floating
element.

• A left (or right) floating element that has another float-
ing element to its left (right) may not have its right outer
edge to the right (left) of its containing block’s right (left)
edge.

• A floating element must be placed as high as possible.

• A left-floating element must be put as far to the left as
possible, a right-floating element as far to the right as
possible. A higher position is preferred to one that is fur-
ther to the right or left.

Positioning Rules
When elements are positioned, a number of special rules
come into play. These rules govern not only the containing
block of the element but also how it is laid out within that
element.

Types of Positioning
Static positioning

The element’s box is generated as normal. Block-level
elements generate a rectangular box that is part of the
document’s flow, and inline-level boxes generate one or
more line boxes that flow within their parent element.

Relative positioning
The element’s box is offset by some distance. Its contain-
ing block can be considered to be the area that the ele-
ment would occupy if it were not positioned. The
element retains the shape it would have had were it not
positioned, and the space that the element would ordi-
narily have occupied is preserved.

16 | CSS Pocket Reference

Absolute positioning
The element’s box is completely removed from the flow
of the document and positioned with respect to its con-
taining block, which may be another element in the doc-
ument or the initial containing block (described in the
next section). Whatever space the element might have
occupied in the normal document flow is closed up, as
though the element did not exist. The positioned ele-
ment generates a block box, regardless of the type of box
it would generate if it were in the normal flow.

Fixed positioning
The element’s box behaves as though it were set to
absolute, but its containing block is the viewport itself.

The Containing Block
The containing block of a positioned element is determined
as follows:

1. The containing block of the root element (also called the
initial containing block) is established by the user agent.
In HTML, the root element is the html element, although
some browsers may use body.

2. For nonroot elements, if an element’s position value is
relative or static, its containing block is formed by the
content edge of the nearest block-level, table-, cell-, or
inline-block ancestor box. (Despite this rule, relatively
positioned elements are still simply offset, not positioned
with respect to the containing block described here.)

3. For nonroot elements that have a position value of
absolute, the containing block is set to the nearest ances-
tor (of any kind) that has a position value other than
static. This happens as follows:

a. If the ancestor is block-level, the containing block is
that element’s padding edge; in other words, it is the
area that would be bounded by a border.

Positioning Rules | 17

b. If the ancestor is inline-level, the containing block is
set to the content edge of the ancestor. In left-to-right
languages, the top and left of the containing block
are the top and left content edges of the first box in
the ancestor, and the bottom and right edges are the
bottom and right content edges of the last box. In
right-to-left languages, the right edge of the contain-
ing block corresponds to the right content edge of
the first box, and the left is taken from the last box.
The top and bottom are the same.

c. If there are no ancestors as described in 3a and 3b,
then the absolutely positioned element’s containing
block is defined to be the initial containing block.

Layout of Absolutely Positioned Elements
In the following sections, these terms are used:

Shrink-to-fit
Similar to calculating the width of a table cell using the
automatic table layout algorithm. In general, the user
agent attempts to find the minimum element width that
will contain the content and wrap to multiple lines only
if wrapping cannot be avoided.

Static position
The place where an element’s edge would have been
placed if its position were static.

Horizontal layout of nonreplaced absolutely positioned
elements

The equation that governs the layout of these elements is:

left + margin-left + border-left-width + padding-left
+ width + padding-right + border-right-width + margin-
right + right = width of containing block

The steps used to determine layout are:

18 | CSS Pocket Reference

1. If all of left, width, and right are auto, first reset any
auto values for margin-left and margin-right to 0. Then,
if direction is ltr, set left to the static position and
apply the rule given in step 3c. Otherwise, set right to
the static position and apply the rule given in step 3a.

2. If none of left, width, and right is auto, pick the rule
that applies from the following list:

a. If both margin-left and margin-right are set to auto,
solve the equation under the additional constraint
that the two margins get equal values.

b. If only one of margin-left or margin-right is set to
auto, solve the equation for that value.

c. If the values are overconstrained (none is set to auto),
ignore the value for left if direction is rtl (ignore
right if direction is ltr) and solve for that value.

3. If some of left, width, and right are auto, but others are
not, reset any auto values for margin-left and margin-
right to 0. From the following list, pick the one rule that
applies:

a. If left and width are auto and right is not, then the
width is shrink-to-fit. Solve the equation for left.

b. If left and right are auto and width is not, then if
direction is ltr, set left to the static position
(otherwise, set right to the static position). Solve the
equation for left (if direction is rtl) or right (if
direction is ltr).

c. If width and right are auto and left is not, then the
width is shrink-to-fit. Solve the equation for right.

d. If left is auto and width and right are not, solve the
equation for left.

e. If width is auto and left and right are not, solve the
equation for width.

f. If right is auto and left and width are not, solve the
equation for right.

Positioning Rules | 19

Vertical layout of nonreplaced absolutely positioned
elements

The equation that governs the layout of these elements is:

top + margin-top + border-top-width + padding-top + height
+ padding-bottom + border-bottom-width + margin-bottom +
bottom = height of containing block

The steps used to determine layout are:

1. If all of top, height, and bottom are auto, set top to the
static position and apply the rule given in step 3c.

2. If none of top, height, and bottom is auto, pick the one
rule that applies from the following list:

a. If both margin-top and margin-bottom are set to auto,
solve the equation under the additional constraint
that the two margins get equal values.

b. If only one of margin-top or margin-bottom is set to
auto, solve the equation for that value.

c. If the values are overconstrained (none is set to auto),
ignore the value for bottom and solve for that value.

3. If some of top, height, and bottom are auto, but others are
not, pick the one rule that applies from the following list:

a. If top and height are auto and bottom is not, then the
height is based on the element’s content (as it would
be in the static flow). Reset any auto values for
margin-top and margin-bottom to 0 and solve the
equation for top.

b. If top and bottom are auto and height is not, then set
top to the static position. Reset any auto values for
margin-top and margin-bottom to 0 and solve the
equation for bottom.

c. If height and bottom are auto and top is not, then the
height is based on the element’s content (as it would
be in the static flow). Reset any auto values for
margin-top and margin-bottom to 0 and solve the
equation for bottom.

20 | CSS Pocket Reference

d. If top is auto and height and bottom are not, reset any
auto values for margin-top and margin-bottom to 0
and solve the equation for top.

e. If height is auto and top and bottom are not, reset any
auto values for margin-top and margin-bottom to 0
and solve the equation for height.

f. If bottom is auto and top and height are not, reset any
auto values for margin-top and margin-bottom to 0
and solve the equation for bottom.

Horizontal layout of replaced absolutely positioned elements

The behaviors that go into placing and sizing replaced ele-
ments are most easily expressed as a series of rules to be
taken one after the other. These rules state:

1. If width is set to auto, the computed value of width is
determined by the intrinsic width of the element’s con-
tent. Thus, the width of an image 50 pixels wide is com-
puted to be 50px. If width is explicitly declared (that is,
something such as 100px or 50%), then the width is set to
that value.

2. If left has the value auto in a left-to-right language,
replace auto with the static position. In right-to-left
languages, replace an auto value for right with the static
position.

3. If either left or right is still auto (in other words, it
hasn’t been replaced in a previous step), replace any auto
value in margin-left or margin-right with 0.

4. If at this point both margin-left and margin-right are
still defined to be auto, set them to be equal, thus center-
ing the element in its containing block.

5. After all that, if there is only one auto value left, change it
to equal the remainder of the equation.

Table Layout | 21

Vertical layout of replaced absolutely positioned elements

The behaviors that go into placing and sizing replaced ele-
ments are most easily expressed as a series of rules to be
taken one after the other. These state:

1. If height is set to auto, the computed value of height is
determined by the intrinsic height of the element’s con-
tent. Thus, the height of an image 50 pixels tall is com-
puted to be 50px. If height is explicitly declared (that is,
something such as 100px or 50%), then the height is set to
that value.

2. If top has the value auto, replace the value with the
replaced element’s static position.

3. If bottom has a value of auto, replace any auto value on
margin-top or margin-bottom with 0.

4. If at this point both margin-top and margin-bottom are
still defined to be auto, set them to be equal, thus center-
ing the element in its containing block.

5. After all that, if there is only one auto value left, change it
to equal the remainder of the equation.

Table Layout
The layout of tables can get quite complicated, especially
because CSS defines two different ways to calculate table and
cell widths, as well as two ways to handle the borders of
tables and elements internal to the table. Figure 4 illustrates
the components of a table.

Table Arrangement Rules
In general, a table is laid out according to the following
principles:

22 | CSS Pocket Reference

• Each row box encompasses a single row of grid cells. All
of the row boxes in a table fill the table from top to bot-
tom in the order they occur in the source document.
Thus, the table contains as many grid rows as there are
row elements.

• A row group’s box encompasses the same grid cells as
the row boxes that it contains.

• A column box encompasses one or more columns of grid
cells. Column boxes are placed next to each other in the
order they occur. The first column box is on the left for
left-to-right languages and on the right for right-to-left
languages.

• A column group’s box encompasses the same grid cells
as the column boxes that it contains.

• Although cells may span several rows or columns, CSS
does not define how that happens. It is instead left to the
document language to define spanning. Each spanned
cell is a rectangular box one or more grid cells wide and

Figure 4. Table layout components

Cells

Rows

Row groups

Columns

Column groups

Table

Table Layout | 23

high. The top row of this rectangle is in the row that is
parent to the cell. The cell’s rectangle must be as far to
the left as possible in left-to-right languages, but it may
not overlap any other cell box. It must also be to the
right of all cells in the same row that are earlier in the
source document in a left-to-right language. In right-to-
left languages, a spanned cell must be as far to the right
as possible without overlapping other cells and must be
to the left of all cells in the same row that come after it in
the document source.

• A cell’s box cannot extend beyond the last row box of a
table or row group. If the table structure causes this con-
dition, the cell must be shortened until it fits within the
table or row group that encloses it.

Fixed Table Layout
The fixed-layout model is fast because its layout doesn’t
depend on the contents of table cells; it’s driven by the width
values of the table, columns, and cells within the first row of
the table. The fixed-layout model uses the following simple
steps:

1. Any column element whose width property has a value
other than auto sets the width for that column.

2. If a column has an auto width, but the cell in the first
row of the table within that column has a width other
than auto, then that cell sets the width for that column. If
the cell spans multiple columns, then the width is
divided equally among the columns.

3. Any columns that are still auto-sized are sized so that
their widths are as equal as possible.

At that point, the width of the table is set to be either the
value of width for the table or the sum of the column widths,
whichever is greater. If the table turns out to be wider than
the column widths, the difference is divided by the number
of columns and added to each of them.

24 | CSS Pocket Reference

Automatic Table Layout
The automatic-layout model, although not as fast as the fixed-
layout, is likely to be much more familiar to authors because
it’s substantially the same model that HTML tables have used
for years. In most current user agents, use of this model will be
triggered by a table with a width of auto, regardless of the value
of table-layout—although this is not assured.

The details of the model can be expressed in the following
steps:

1. For each cell in a column, calculate both the minimum
and maximum cell width.

2. Determine the minimum width required to display the
content. In determining the minimum content width, the
content can flow to any number of lines, but it may not
stick out of the cell’s box. If the cell has a width value
that is larger than the minimum possible width, then the
minimum cell width is set to the value of width. If the
cell’s width value is auto, then the minimum cell width is
set to the minimum content width.

3. For the maximum width, determine the width required
to display the content without any line-breaking, other
than that forced by explicit line-breaking (e.g., due to the

 element). That value is the maximum cell width.

4. For each column, calculate both the minimum and maxi-
mum column width.

a. The column’s minimum width is determined by the
largest minimum cell width of the cells within the
column. If the column has been given an explicit
width value that is larger than any of the minimum
cell widths within the column, then the minimum
column width is set to the value of width.

b. For the maximum width, take the largest maximum
cell width of the cells within the column. If the col-
umn has been given an explicit width value that is

Table Layout | 25

larger than any of the maximum cell widths within
the column, then the maximum column width is set
to the value of width. These two behaviors recreate
the traditional HTML table behavior of forcibly
expanding any column to be as wide as its widest cell.

5. In cases where a cell spans more than one column, the
sum of the minimum column widths must be equal to
the minimum cell width for the spanning cell. Similarly,
the sum of the maximum column widths must equal the
spanning cell’s maximum width. User agents should
divide any changes in column widths equally among the
spanned columns.

In addition, the user agent must take into account that when
a column width has a percentage value for its width, the per-
centage is calculated in relation to the width of the table—
even though that width is not known yet. The user agent
must hang on to the percentage value and use it in the next
part of the algorithm. Once the user agent has determined
how wide or narrow each column can be, it can calculate the
width of the table. This happens as follows:

1. If the computed width of the table is not auto, then the
computed table width is compared to the sum of all the
column widths plus any borders and cell-spacing. (Col-
umns with percentage widths are likely calculated at this
time.) The larger of the two values is the final width of
the table. If the table’s computed width is larger than the
sum of the column widths, borders, and cell-spacing,
then all columns are increased in width by an equal
amount so they fill the computed width of the table.

2. If the computed width of the table is auto, then the final
width of the table is determined by summing up the col-
umn widths, borders, and cell-spacing. This means the
table will be only as wide as needed to display its content,
just as with traditional HTML tables. Any columns with
percentage widths use that percentage as a constraint, but
it is a constraint that a user agent does not have to satisfy.

26 | CSS Pocket Reference

Once the last step is completed, then (and only then) can the
user agent actually lay out the table.

Collapsing Cell Borders
The collapsing cell model largely describes how HTML
tables have always been laid out when they have no cell-
spacing. The following rules govern this model:

• Table elements cannot have any padding, although they
can have margins. Thus, there is never separation
between the border around the outside of the table and
its outermost cells.

• Borders can be applied to cells, rows, row groups, col-
umns, and column groups. The table element itself can,
as always, have a border.

• There is never any separation between cell borders. In
fact, borders collapse into each other where they adjoin
so that only one of the collapsing borders is actually
drawn. This is somewhat akin to margin-collapsing,
where the largest margin wins. When cell borders col-
lapse, the “most interesting” border wins.

• Once they are collapsed, the borders between cells are
centered on the hypothetical grid lines between the cells.

Collapsing borders

When two or more borders are adjacent, they collapse into
each other, as shown in Figure 5. There are some strict rules
governing which borders will win and which will not:

1. If one of the collapsing borders has a border-style of
hidden, it takes precedence over all other collapsing bor-
ders: all borders at this location are hidden.

2. If one of the collapsing borders has a border-style of
none, it takes the lowest priority. There will be no border
drawn at this location only if all of the borders meeting at
this location have a value of none. Note that none is the
default value for border-style.

Table Layout | 27

3. If at least one of the collapsing borders has a value other
than either none or hidden, then narrow borders lose out
to wider ones. If two or more of the collapsing borders
have the same width, then the border style is taken in the
following order, from most preferred to least: double,
solid, dashed, dotted, ridge, outset, groove, inset. Thus,
if two borders with the same width collapse and one is
dashed while the other is outset, the border at that loca-
tion will be dashed.

4. If collapsing borders have the same style and width but
differ in color, the color used is taken from an element in
the following list, from most preferred to least: cell, row,
row group, column, column group, table. Thus, if the
borders of a cell and a column—identical in every way
except color—collapse, then the cell’s border color (and
style and width) will be used. If the collapsing borders
come from the same type of element—such as two row
borders with the same style and width, but different
colors—then the one furthest to the left and top wins in
left-to-right languages; in right-to-left languages, the cell
furthest to the right and top wins.

Figure 5. Collapsing cell borders model

Table width Grid line

Cell
width

Cell
width

Cell
widthBo

rd
er

 w
id

th
Pa

dd
in

g

Pa
dd

in
g

Bo
rd

er
 w

id
th

Pa
dd

in
g

Pa
dd

in
g

Pa
dd

in
g

Bo
rd

er
 w

id
th

Pa
dd

in
g

Bo
rd

er
 w

id
th

28 | CSS Pocket Reference

Vertical Alignment Within Cells
The following describes the detailed process for aligning cell
contents within a row:

1. If any of the cells are baseline-aligned, then the row’s
baseline is determined and the content of the baseline-
aligned cells is placed.

2. Any top-aligned cell has its content placed. The row now
has a provisional height, which is defined by the lowest
cell bottom of the cells that have already had their con-
tent placed.

3. If any remaining cells are middle- or bottom-aligned, and
the content height is taller than the provisional row
height, the height of the row is increased by lowering the
baseline in order to enclose the tallest of those cells.

4. All remaining cells have their content placed. In any cell
with contents shorter than the row height, the cell’s pad-
ding is increased in order to match the height of the row.

Values
There are a variety of value types in CSS, most of which use
units. Combining basic value types (such as numbers) with
units (such as pixels) makes it possible to do any number of
interesting things with CSS.

Keywords
Keywords are defined on a per-property basis and have a
meaning specific only to a given property. For example,
normal has totally unique meanings for the properties font-
variant and letter-spacing. Keywords, as are property
names, are not case-sensitive. A special case is the keyword
inherit, which is allowed on all properties and always has
the same meaning (get the associated property’s value from
the element’s parent).

Values | 29

Color Values
#RRGGBB

This is a hex-pair notation familiar to authors using
traditional HTML. In this format, the first pair of digits
corresponds to the red level, the second pair to the green,
and the third pair to the blue. Each pair is in hexadecimal
notation in the range 00-FF. Thus, a “pure” blue is writ-
ten #0000FF, a “pure” red is written #FF0000, and so on.

#RGB
This is a shorter form of the six-digit notation described
above. In this format, each digit is replicated to arrive at
an equivalent six-digit value; thus, #F8C becomes #FF88CC.

rgb (rrr.rr%,ggg.gg%,bbb.bb%)
This format allows the author to use RGB values in the
range 0% to 100%, with decimal values allowed (e.g.,
75.5%). The value for black is thus rgb (0%,0%,0%),
whereas “pure” blue is rgb (0%,0%,100%).

rgb (rrr,ggg,bbb)
Similar to the previous value; the differences here are that
the accepted range of values is 0-255 and only integers are
permitted. Not coincidentally, this range is the decimal
equivalent of 00-FF in hexadecimal. In this format, “pure”
green is rgb (0,255,0), and white is represented as rgb
(255,255,255).

<keyword>
One of 17 recognized keywords based largely on the orig-
inal Windows VGA colors. These keywords are aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
orange, purple, red, silver, teal, white, and yellow. Brows-
ers may recognize other keywords, such as the X11 color
keywords that are documented in the W3C CSS3 Color
Module specification.

30 | CSS Pocket Reference

Number Values
A number value is expressed as a positive or negative num-
ber (when permitted). Numbers can be either real or inte-
gers, and some properties or value types may restrict number
values to integers. They may also restrict the range of accept-
able values, as with color values that accept only integers in
the range 0–255.

Percentage Values
A percentage value is expressed as a positive or negative
number (when permitted), followed immediately by a per-
cent sign (%). There should never be any space between the
number and the percent sign. A percentage value will always
be computed relative to something else. For example, declar-
ing font-size: 120%; for an element sets its font size to 120%
of the computed font-size of its parent element.

Length Values
A length value is expressed as a positive or negative number
(when permitted), followed immediately by a two-letter
abbreviation that represents the units to be used. There
should never be any space between the number and the unit
designator. Note that a value of 0 (zero) need not have a unit
designator. Length units are divided into two types: absolute
units, which are (in theory) always measured in the same
way, and relative units, which are measured in relation to
other things.

Absolute length units

Inches (in)
As you might expect, the same inches found on typical
U.S. rulers. The mapping from inches to a monitor or
other display device is usually approximate at best

Values | 31

because many systems have no concept of the relation of
their display areas to “real-world” measurements such as
inches. Thus, inches should be used with extreme cau-
tion in screen design.

Centimeters (cm)
The centimeters found on rulers the world over. There
are 2.54 cm to an inch, and 1 centimeter equals 0.394
inches. The same mapping warnings that applied to
inches also apply to centimeters.

Millimeters (mm)
There are 10 millimeters to a centimeter, so you get 25.4
mm to an inch, and 1 millimeter equals 0.0394 inches.
Bear in mind the previous warnings about mapping
lengths to monitors.

Points (pt)
Points are standard typographical measures used by print-
ers and typesetters for decades and by word-processing
programs for many years. By modern definition, there are
72 points to an inch. Therefore, the capital letters of text
set to 12 points should be one-sixth of an inch tall. For
example, p {font-size: 18pt;} is equivalent to p {font-
size: 0.25in;}, assuming proper mapping of lengths to
the display environment (see comments above).

Picas (pc)
Another typographical term. A pica is equivalent to 12
points, which means there are 6 picas to an inch. The
capital letters of text set to 1 pica should be one-sixth of
an inch tall. For example, p {font-size: 1.5pc;} would
set text to be the same size as the example declarations
found in the definition of points. Keep in mind previous
warnings.

32 | CSS Pocket Reference

Relative length units

em-height (em)
This refers to the em-height of a given font. In CSS, the
em-height is equivalent to the height of the character box
for a given font. Ems can be used to set relative sizes for
fonts; for example, 1.2em is the same as saying 120%.

x-height (ex)
This refers to the x-height of the font. However, the vast
majority of fonts do not include their x-height, so many
browsers approximate it (poorly) by simply setting 1ex to
be equal to 0.5em. The exception is IE5/Mac, which
attempts to determine the actual x-height of a font by
internally bitmapping a very large “x” and counting
pixels!

Pixels (px)
A pixel is a small box on screen, but CSS defines pixels
more abstractly. In CSS terms, a pixel is defined to be
about the size required to yield 96 pixels per inch. Most
user agents ignore this definition in favor of simply
addressing the pixels on the monitor. Scaling factors are
brought into play when printing, although this scale can-
not be relied upon.

URIs
<uri>

Used to point to a file such as a graphic. CSS defines
URIs as relative to a style sheet. URI stands for Uniform
Resource Identifier, which is the new name for URLs.
(Technically, URLs are a subset of URIs.) In CSS, which
was first defined when URIs were still called URLs, this
means that references to URIs will actually appear in the
form url(<uri>). Fun!

Values | 33

Aural-Specific Values
The following values are used in conjunction with aural style
properties in CSS2. These values were dropped from CSS2.1
due to a lack of support and are included here for the sake of
completeness.

Angle values
Used to define the position from which a given sound
should seem to originate. There are three types of angles:
degrees (deg), grads (grad), and radians (rad). For exam-
ple, a right angle could be declared as 90deg, 100grad, or
1.57rad; in each case, the values are translated into
degrees in the range 0 through 360. This is also true of
negative values, which are allowed. The measure -90deg
is the same as 270deg.

Time values
Used to specify delays between speaking elements. Time
values can be expressed as either milliseconds (ms) or sec-
onds (s); thus, 100ms and 0.1s are equivalent. They can-
not be negative, as CSS is supposed to avoid temporal
paradoxes.

Frequency values
Used to declare frequencies for the sounds that speaking
browsers can produce. Frequency values can be
expressed as hertz (Hz) or megahertz (mHz) and cannot be
negative. The value labels are case-insensitive, so 10mHz
and 10mhz are equivalent.

34 | CSS Pocket Reference

Selectors

Universal Selector

Pattern:

*

Description:

This selector matches any element name in the document’s
language. If a rule does not have an explicit selector, then the
universal selector is inferred.

Examples:
* {color: red;}
div * p {color: blue;}

Supported by:

All CSS-aware browsers.

Type Selector

Pattern:

element1

Description:

This selector matches the name of an element in the document’s
language. Every instance of the element name is matched. (CSS1
referred to these as “element selectors.”)

Examples:
body {background: #FFF;}
p {font-size: 1em;}

Supported by:

All CSS-aware browsers.

Selectors | 35

Descendant Selector

Pattern:

element1 element2

Description:

This allows the author to select an element based on its status as a
descendant of another element. The matched element can be a
child, grandchild, great-grandchild, etc., of the ancestor element.
(CSS1 referred to these as “contextual selectors.”)

Examples:
body h1 {font-size: 200%;}
table tr td div ul li {color: purple;}

Supported by:

All CSS-aware browsers.

Child Selector

Pattern:

element1 > element2

Description:

This type of selector is used to match an element based on its
status as a child of another element. It is more restrictive than a
descendant selector, as only a child will be matched.

Examples:
div > p {color: cyan;}
ul > li {font-weight: bold;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

36 | CSS Pocket Reference

Adjacent Sibling Selector

Pattern:

element1 + element2

Description:

This allows the author to select an element that is the following
adjacent sibling of another element. Any text between the two
elements is ignored; only elements and their positions in the docu-
ment tree are considered.

Examples:
table + p {margin-top: 2.5em;}
h1 + * {margin-top: 0;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Class Selector

Pattern:

element1.classname

element1.classname1.classname2

Description:

In languages that permit it, such as HTML, XHTML, SVG, and
MathML, a class selector using “dot notation” can be used to
select elements that have a class attribute containing a specific
value or values. The name of the class value must immediately
follow the dot. Multiple class values can be chained together,
although there are support problems in Explorer previous to IE7.
If no element name precedes the dot, then the selector matches all
elements bearing that class value or values.

Examples:
p.urgent {color: red;}
a.external {font-style: italic;}
.example {background: olive;}
.note.caution {background: yellow;}

Selectors | 37

Supported by:

All CSS-aware browsers.

Note:

IE previous to IE7 does not support the chained selector syntax,
though it does permit multiple words in class values in the
markup.

ID Selector

Pattern:

element1#idname

Description:

In languages that permit it, such as HTML or XHTML, an ID
selector using “hash notation” can be used to select elements that
have an ID containing a specific value or values. The name of the
ID value must immediately follow the octothorpe (#). If no
element name precedes the octothorpe, then the selector matches
all elements containing that ID value.

Examples:
h1#page-title {font-size: 250%;}
body#home {background: silver;}
#example {background: lime;}

Supported by:

All CSS-aware browsers.

Simple Attribute Selector

Pattern:

element1[attr]

Description:

This allows authors to select any element based on the presence of
an attribute, regardless of the attribute’s value.

38 | CSS Pocket Reference

Examples:
a[rel] {border-bottom: 3px double gray;}
p[class] {border: 1px dotted silver;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Exact Attribute Value Selector

Pattern:

element1[attr="value"]

Description:

This allows authors to select any element based on the precise and
complete value of an attribute.

Examples:
a[rel="Start"] {font-weight: bold;}
p[class="urgent"] {color: red;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Partial Attribute Value Selector

Pattern:

element1[attr˜="value"]

Description:

This allows authors to select any element based on a portion of the
space-separated value of an attribute. Note that [class˜="value"]
is equivalent to .value (see above).

Examples:
a[rel|="friend"] {text-transform: uppercase;}
p[class|="warning"] {background: yellow;}

Selectors | 39

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Beginning Substring Attribute Value Selector

Pattern:

element1[attr^="substring"]

Description:

This allows authors to select any element based on a substring at
the very beginning of an attribute’s value.

Examples:
a[href^="/blog"] {text-transform: uppercase;}
p[class^="test-"] {background: yellow;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Ending Substring Attribute Value Selector

Pattern:

element1[attr$="substring"]

Description:

This allows authors to select any element based on a substring at
the very end of an attribute’s value.

Example:
a[href$=".pdf"] {font-style: italic;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

40 | CSS Pocket Reference

Arbitrary Substring Attribute Value Selector

Pattern:

element1[attr*="substring"]

Description:

This allows authors to select any element based on a substring
found anywhere within an attribute’s value.

Examples:
a[href*="oreilly.com"] {font-weight: bold;}
div [class*="port"] {border: 1px solid red;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Language Attribute Selector

Pattern:

element1[lang|="lc"]

Description:

This allows authors to select any element with a lang attribute
whose value is a hyphen-separated list of values, starting with the
value provided in the selector.

Example:
html[lang|="tr"] {color: red;}

Supported by:

Firefox, Internet Explorer 7+ only, Opera, Safari.

Pseudo-Classes and Pseudo-Elements | 41

Pseudo-Classes and Pseudo-Elements

:active

Type:

Pseudo-class.

Applies to:

An element that is being activated.

Description:

This applies to an element during the period in which it is being
activated. The most common example is clicking on a hyperlink in
an HTML document: while the mouse button is being held down,
the link is active. There are other ways to activate elements, and
other elements can in theory be activated, although CSS doesn’t
define them.

Examples:
a:active {color: red;}
*:active {background: blue;}

Supported by:

Firefox, Internet Explorer, Opera 6+, Safari.

:after

Type:

Pseudo-element.

Generates:

A pseudo-element containing generated content placed after the
content in the element.

42 | CSS Pocket Reference

Description:

This allows the author to insert generated content at the end of an
element’s content. By default, the pseudo-element is inline, but it
can be changed using the property display.

Examples:
a.external:after {content: " " url(/icons/globe.gif);)
p:after {content: " | ";}

Supported by:

Firefox, Opera, Safari.

:before

Type:

Pseudo-element.

Generates:

A pseudo-element containing generated content placed before the
content in the element.

Description:

This allows the author to insert generated content at the begin-
ning of an element’s content. By default, the pseudo-element is
inline, but that can be changed using the property display.

Examples:
a[href]:before {content: "[LINK] ";)
p:before {content: attr(class);}
a[rel|="met"]:after {content: " *";}

Supported by:

Firefox, Opera, Safari.

:first-child

Type:

Pseudo-class.

Pseudo-Classes and Pseudo-Elements | 43

Applies to:

Any element that is the first child of another element.

Description:

With this pseudo-class, an element is matched only when it is the
first child of another element. For example, p:first-child will
select any p element that is the first child of some other element.
It does not, as is commonly assumed, select whatever element is
the first child of a paragraph; for that, an author would write p >
*:first-child.

Examples:
body *:first-child {font-weight: bold;}
p:first-child {font-size: 125%;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

:first-letter

Type:

Pseudo-element.

Generates:

A pseudo-element that contains the first letter of an element.

Description:

This is used to style the first letter of an element. Any leading
punctuation should be styled along with the first letter. Some
languages have letter combinations that should be treated as a
single character, and a user agent may apply the first letter style to
both. Prior to CSS2.1, :first-letter could be attached only to
block-level elements. CSS2.1 expanded its scope to include block,
list-item, table-call, table caption, and inline-block elements.
There is a limited set of properties that can apply to a first letter.

Examples:
h1:first-letter {font-size: 166%;}
p:first-letter {text-decoration: underline;}

44 | CSS Pocket Reference

Supported by:

Firefox, Internet Explorer, Opera, Safari.

:first-line

Type:

Pseudo-element.

Generates:

A pseudo-element that contains the first formatted line of an
element.

Description:

This is used to style the first line of text in an element, regardless
of how many or how few words may appear in that line. :first-
line can be attached only to block-level elements. There is a
limited set of properties that can apply to a first line.

Example:
p.lead:first-line {font-weight: bold;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

:focus

Type:

Pseudo-class.

Applies to:

An element that has focus.

Description:

This applies to an element during the period in which it has focus.
One example from HTML is an input box that has the text-input
cursor within it such that when the user starts typing, text will be
entered into that box. Other elements, such as hyperlinks, can

Pseudo-Classes and Pseudo-Elements | 45

also have focus; however, CSS does not define which elements
may have focus.

Examples:
a:focus {outline: 1px dotted red;}
input:focus {background: yellow;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

:focus support in Explorer applies only to hyperlinks and does
not extend to form controls.

:hover

Type:

Pseudo-class.

Applies to:

An element that is in a hovered state.

Description:

This applies to an element during the period in which it is being
hovered (when the user is designating an element without acti-
vating it). The most common example of this is moving the mouse
pointer inside the boundaries of a hyperlink in an HTML docu-
ment. Other elements can in theory be hovered, although CSS
doesn’t define which ones.

Examples:
a[href]:hover {text-decoration: underline;}
p:hover {background: yellow;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

46 | CSS Pocket Reference

Note:

:hover support in Explorer applies only to hyperlinks in versions
previous to IE7.

:lang

Type:

Pseudo-class.

Applies to:

Any element with associated language-encoding information.

Description:

This matches elements based on their human-language encoding.
Such language information must be contained within or other-
wise associated with the document; it cannot be assigned from
CSS. The handling of :lang is the same as for |= attribute selec-
tors. For example, in an HTML document, the language of an
element is determined by its lang attribute. If the document does
not have one, the language of an element is determined by the
lang attribute of its nearest ancestor that does have one, and
lacking that, by the Content-Language HTTP header response field
(or the respective meta http-equiv) for the document.

Examples:
html:lang(en) {background: silver;}
*:lang(fr) {quotes: '« ' ' »';}

Supported by:

Firefox, Opera.

:link

Type:

Pseudo-class.

Pseudo-Classes and Pseudo-Elements | 47

Applies to:

A hyperlink to another resource that has not been visited.

Description:

This applies to a link to a URI that has not been visited; that is, the
URI to which the link points does not appear in the user agent’s
history. This state is mutually exclusive with the :visited state.

Examples:
a:link {color: blue;}
*:link {text-decoration: underline;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

:visited

Type:

Pseudo-class.

Applies to:

A hyperlink to another resource that has already been visited.

Description:

This applies to a link to a URI that has been visited; that is, the
URI to which the link points appears in the user agent’s history.
This state is mutually exclusive with the :link state.

Examples:
a:visited {color: purple;}
*:visited {color: gray;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

48 | CSS Pocket Reference

Property Reference

Visual Media

background

Values:

[<background-color> || <background-image> || <background-
repeat> || <background-attachment> || <background-position>]
| inherit

Initial value:

Refer to individual properties.

Applies to:

All elements.

Inherited:

No.

Percentages:

Values are allowed for <background-position>.

Computed value:

See individual properties.

Description:

A shorthand way of expressing the various background properties
using a single rule. Use of this property is encouraged over the
other background properties because it is more widely supported
and doesn’t take as long to type. However, using it will set all of
the allowed values (e.g., the repeat, position, and so on) to their
defaults if the values are not explicitly declared. Thus, the
following two rules will have the same appearance:

 background: yellow;
 background: yellow none top left repeat;

Property Reference | 49

Furthermore, these defaults can override previous declarations
made with more specific background properties. For example,
given the following rules:

 h1 {background-repeat: repeat-x;}
 h1, h2 {background: yellow url(headback.gif);}

the repeat value for both h1 and h2 elements will be set to the
default of repeat, overriding the previously declared value of
repeat-x.

Examples:
body {background: white url(bg41.gif) fixed center repeat-
x;}
p {background: url(http://www.pix.org/stone.png) #555;}
pre {background: yellow;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

There is limited support for background-attachment in Explorer
previous to IE7.

background-attachment

Values:

scroll | fixed | inherit

Initial value:

scroll

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

50 | CSS Pocket Reference

Description:

This property defines whether the background image scrolls along
with the element when the document is scrolled. This property
can be used to create “aligned” backgrounds; for more details, see
Chapter 9 of CSS: The Definitive Guide, Third Edition (O’Reilly).

Examples:
body {background-attachment: scroll;}
div.fixbg {background-attachment: fixed;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

This property is supported only for the body element in Explorer
previous to IE7.

background-color

Values:

<color> | transparent | inherit

Initial value:

transparent

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property sets a solid color for the background of the element.
This color fills the content, padding, and border areas of the
element, extending to the outer edge of the element’s border.

Property Reference | 51

Borders that have transparent sections (such as dashed borders)
will show the background color through the transparent sections.

Examples:
h4 {background-color: white;}
p {background-color: rgb(50%,50%,50%);}
pre {background-color: #FF9;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

background-image

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute URI.

Description:

This property places an image in the background of the element.
Depending on the value of background-repeat, the image may tile
infinitely, along one axis, or not at all. The initial background
image (the origin image) is placed according to the value of
background-position.

Examples:
body {background-image: url(bg41.gif);}
h2 {background-image: url(http://www.pix.org/dots.png);}

52 | CSS Pocket Reference

Supported by:

Firefox, Internet Explorer, Opera, Safari.

background-position

Values:

[[<percentage> | <length> | left | center | right] [<percentage>
| <length> | top | center | bottom]?] | [[left | center | right] ||
[top | center | bottom]] | inherit

Initial value:

0% 0%

Applies to:

Block-level and replaced elements.

Inherited:

No.

Percentages:

Refer to the corresponding point on both the element and the origin
image.

Computed value:

The absolute length offsets if <length> is specified; otherwise,
percentage values.

Description:

This property sets the position of the background’s origin image
(as defined by background-image); this is the point from which any
background repetition or tiling will occur. Percentage values
define not only a point within the element, but also the same
point in the origin image itself, thus allowing (for example) an
image to be centered by declaring its position to be 50% 50%. For
more details, see Chapter 9 of CSS: The Definitive Guide, Third
Edition (O’Reilly).

Property Reference | 53

When percentage or length values are used, the first is always the
horizontal position, and the second the vertical. If only one value
is given, it sets the horizontal position, while the missing value is
assumed to be either center or 50%. Negative values are permitted
and may place the origin image outside the element’s content area
without actually rendering it.

Examples:
body {background-position: top center;}
div#navbar {background-position: right;}
pre {background-position: 10px 50%;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

background-repeat

Values:

repeat | repeat-x | repeat-y | no-repeat | inherit

Initial value:

repeat

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property defines the tiling pattern for the background image.
Note that the axis-related repeat values actually cause repetition
in both directions along the relevant axis. The repetition begins
from the origin image, which is defined as the value of background-
image and is placed according to the value of background-position.

54 | CSS Pocket Reference

Examples:
body {background-repeat: no-repeat;}
h2 {background-repeat: repeat-x;}
ul {background-repeat: repeat-y;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

Refer to individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This is a shorthand property that defines the width, color, and
style of an element’s border. Note that while none of the values
are actually required, omitting a border style will result in no
border being applied because the default border style is none.
Versions of IE/Win previous to IE5.5 do not apply borders to
inline elements.

Examples:
h1 {border: 2px dashed olive;}
a:link {border: blue solid 1px;}
p.warning {border: double 5px red;}

Property Reference | 55

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-bottom

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-width, etc.).

Description:

This shorthand property defines the width, color, and style of the
bottom border of an element. As with border, omission of a
border style will result in no border appearing.

Examples:
ul {border-bottom: 0.5in groove green;}
a:active {border-bottom: purple 2px dashed;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-bottom-color

Values:

<color> | transparent | inherit

56 | CSS Pocket Reference

Initial value:

The value of color for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

If no value is specified, use the computed value of the property
color for the same element; otherwise, as specified.

Description:

This property sets the color for the visible portions of the bottom
border of an element. Only a solid color can be defined, and the
border’s style must be something other than none or hidden for
any visible border to appear.

Examples:
ul {border-bottom-color: green;}
a:active {border-bottom-color: purple;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-bottom-style

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset | inherit

Initial value:

none

Applies to:

All elements.

Property Reference | 57

Inherited:

No.

Computed value:

As specified.

Description:

This defines the style for the bottom border of an element. The
value must be something other than none for any border to appear.

Examples:
ul {border-bottom-style: groove;}
a:active {border-bottom-style: dashed;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-bottom-width

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style of the border is none or hidden.

Description:

This property sets the width for the bottom border of an element,
which will take effect only if the border’s style is something other
than none. If the border style is none, then the border width is
effectively reset to 0. Negative length values are not permitted.

58 | CSS Pocket Reference

Examples:
ul {border-bottom-width: 0.5in;}
a:active {border-bottom-width: 2px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-color

Values:

[<color> | transparent]{1,4} | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-top-color, etc.).

Description:

This shorthand property sets the color for the visible portions of
the overall border of an element or sets a different color for each
of the four sides. Remember that a border’s style must be some-
thing other than none or hidden for any visible border to appear.

Examples:
h1 {border-color: purple;}
a:visited {border-color: maroon;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 59

border-left

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-width, etc.).

Description:

This shorthand property defines the width, color, and style of the
left border of an element. As with border, omission of a border
style will result in no border appearing.

Examples:
p {border-left: 3em solid gray;}
pre {border-left: double black 4px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-left-color

Values:

<color> | transparent | inherit

Initial value:

The value of color for the element.

60 | CSS Pocket Reference

Applies to:

All elements.

Inherited:

No.

Computed value:

If no value is specified, use the computed value of the property
color for the same element; otherwise, as specified.

Description:

This property sets the color for the visible portions of the left
border of an element. Only a solid color can be defined, and the
border’s style must be something other than none or hidden for
any visible border to appear.

Examples:
p {border-left-color: gray;}
pre {border-left-color: black;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-left-style

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Property Reference | 61

Computed value:

As specified.

Description:

This defines the style for the left border of an element. The value
must be something other than none for any border to appear.

Examples:
p {border-left-style: solid;}
pre {border-left-style: double;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-left-width

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style of the border is none or hidden.

Description:

This sets the width for the left border of an element, which will
take effect only if the border’s style is something other than none.
If the border style is none, then the border width is effectively reset
to 0. Negative length values are not permitted.

62 | CSS Pocket Reference

Examples:
p {border-left-width: 3em;}
pre {border-left-width: 4px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-right

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-width, etc.).

Description:

This shorthand property defines the width, color, and style of the
right border of an element. As with border, omission of a border
style will result in no border appearing.

Examples:
img {border-right: 30px dotted blue;}
h3 {border-right: cyan 1em inset;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 63

border-right-color

Values:

<color> | transparent | inherit

Initial value:

The value of color for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

If no value is specified, use the computed value of the property
color for the same element; otherwise, as specified.

Description:

This property sets the color for the visible portions of the right
border of an element. Only a solid color can be defined, and the
border’s style must be something other than none or hidden for
any visible border to appear.

Examples:
img {border-right-color: blue;}
h3 {border-right-color: cyan;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-right-style

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset | inherit

64 | CSS Pocket Reference

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This defines the style for the right border of an element. The value
must be something other than none for any border to appear.

Examples:
img {border-right-style: dotted;}
h3 {border-right-style: inset;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-right-width

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Property Reference | 65

Computed value:

Absolute length; 0 if the style of the border is none or hidden.

Description:

This sets the width for the right border of an element, which will
take effect only if the border’s style is something other than none.
If the border style is none, then the border width is effectively reset
to 0. Negative length values are not permitted.

Examples:
img {border-right-width: 30px;}
h3 {border-right-width: 1em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-style

Values:

[none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset]{1,4} | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-top-style, etc.).

Description:

This shorthand property can be used to set the styles for the overall
border of an element or for each side individually. The value of any
border must be something other than none for the border to appear.

66 | CSS Pocket Reference

Note that setting border-style to none (its default value) will result
in no border at all. In such a case, any value of border-width will be
ignored and the width of the border will be set to 0. Any unrecog-
nized value from the list of values should be reinterpreted as solid.

Examples:
h1 {border-style: solid;}
img {border-style: inset;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-top

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (border-width, etc.).

Description:

This shorthand property defines the width, color, and style of the
top border of an element. As with border, omission of a border
style will result in no border appearing.

Examples:
ul {border-top: 0.5in solid black;}
h1 {border-top: dashed 1px gray;}

Property Reference | 67

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-top-color

Values:

<color> | transparent | inherit

Initial value:

The value of color for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

If no value is specified, use the computed value of the property
color for the same element; otherwise, as specified.

Description:

This property sets the color for the visible portions of the top
border of an element. Only a solid color can be defined, and the
border’s style must be something other than none or hidden for
any visible border to appear.

Examples:
ul {border-top-color: black;}
h1 {border-top-color: gray;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

68 | CSS Pocket Reference

border-top-style

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This defines the style for the top border of an element. The value
must be something other than none for any border to appear.

Examples:
ul {border-top-style: solid;}
h1 {border-top-style: dashed;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-top-width

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Property Reference | 69

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style of the border is none or hidden.

Description:

This sets the width for the top border of an element, which will
take effect only if the border’s style is something other than none.
If the style is none, then the width is effectively reset to 0. Nega-
tive length values are not permitted.

Examples:
ul {border-top-width: 0.5in;}
h1 {border-top-width: 1px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

border-width

Values:

[thin | medium | thick | <length>]{1,4} | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

70 | CSS Pocket Reference

Computed value:

See individual properties (border-top-style, etc.).

Description:

This shorthand property can be used to set the width for the
overall border of an element or for each side individually. The
width will take effect for a given border only if the border’s style is
something other than none. If the border style is none, then the
border width is effectively reset to 0. Negative length values are
not permitted.

Examples:
h1 {border-width: 2ex;}
img {border-width: 5px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

bottom

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (that is, elements for which the value of
position is something other than static).

Inherited:

No.

Percentages:

Refer to the height of the containing block.

Property Reference | 71

Computed value:

For relatively positioned elements, see Note; for static elements,
auto; for length values, the corresponding absolute length; for
percentage values, the specified value; otherwise, auto.

Note:

For relatively positioned elements, if both bottom and top are auto,
their computed values are both 0; if one of them is auto, it
becomes the negative of the other; if neither is auto, bottom will
become the negative of the value of top.

Description:

This property defines the offset between the bottom outer margin
edge of a positioned element and the bottom edge of its
containing block.

Examples:
div#footer {position: fixed; bottom: 0;}
sup {position: relative; bottom: 0.5em; vertical-align:
baseline;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

clear

Values:

left | right | both | none

Initial value:

none

Applies to:

Block-level elements.

Inherited:

No.

72 | CSS Pocket Reference

Computed value:

As specified.

Description:

This defines the sides of an element on which no floating elements
may appear. In CSS1 and CSS2, this is accomplished by automati-
cally increasing the top margin of the cleared element. In CSS2.1,
clearance space is added above the element’s top margin, but the
margin itself is not altered. In either case, the end result is that the
element’s top outer border edge is just below the bottom outer
margin edge of a floated element on the declared side.

Examples:
h1 {clear: both;}
h3 {clear: right;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

clip

Values:

rect(top, right, bottom, left) | auto | inherit

Initial value:

auto

Applies to:

Absolutely positioned elements (in CSS2, clip applied to block-
level and replaced elements).

Inherited:

No.

Computed value:

For a rectangle, a set of four computed lengths representing the
edges of the clipping rectangle; otherwise, as specified.

Property Reference | 73

Description:

This is used to define a clipping rectangle inside of which the
content of an absolutely positioned element is visible. Content
outside the clipping area is treated according to the value of
overflow. The clipping area can be smaller or larger than the
content area of the element. In current browsers, the clipping area
is defined by using the rect() value to define the offsets of the
top, right, bottom, and left edges of the clipping areas with
respect to the top left corner of the element. Thus, the value rect
(5px, 10px, 40px, 5px) would place the top edge of the clipping
area 5px down from the top edge of the element, the right edge of
the clipping area 10px over from the left edge of the element, the
bottom edge of the clipping area 40px down from the top edge of
the element, and the left edge of the clipping area 5px over from
the left edge of the element. Note that this behavior flatly contra-
dicts CSS2.1, which defines the four values to define offsets from
the top, right, bottom, and left sides of the element.

Examples:
div.sidebar {overflow: scroll; clip: 0 0 5em 10em;}
img.tiny {overflow: hidden; clip: 5px 5px 20px 20px;}

Supported by:

None as defined.

Firefox, Internet Explorer, Opera, Safari as described.

color

Values:

<color> | inherit

Initial value:

User agent-specific.

Applies to:

All elements.

74 | CSS Pocket Reference

Inherited:

Yes.

Computed value:

As specified.

Description:

This property sets the foreground color of an element, which in
HTML rendering means the text of an element; raster images are
not affected by color. This is also the color applied to any borders
of the element, unless overridden by border-color or one of the
other border color properties (border-top-color, etc.).

Examples:
strong {color: rgb (255,128,128);}
h3 {color: navy;}
p.warning {color: #ff0000;}
pre.pastoral {color: #0f0;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

content

Values:

normal | [<string> | <uri> | <counter> | attr(<identifier>)|
open-quote | close-quote | no-open-quote | no-close-quote]+ |
inherit

Initial value:

normal

Applies to:

:before and :after pseudo-elements.

Inherited:

No.

Property Reference | 75

Computed value:

For <uri> values, an absolute URI; for attribute references, the
resulting string; otherwise, as specified.

Description:

This is the property used to define the generated content placed
before or after an element. By default, this is likely to be inline
content, but the type of box the content creates can be controlled
using the property display.

Examples:
p:before {content: "Paragraph...";}
img:after {content: attr(src);}
a[href]:after {content: "(" attr(href) ")"; font-size:
smaller;}

Supported by:

Firefox, Opera, Safari.

counter-increment

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

User agent-dependent.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

76 | CSS Pocket Reference

Description:

With this property, counters can be incremented (or decre-
mented) by any value, positive or negative. If no <integer> is
supplied, it defaults to 1.

Examples:
h1 {counter-increment: section;}
*.backward li {counter-increment: counter -1;}

Supported by:

Opera.

counter-reset

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

User agent-dependent.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

With this property, counters can be reset (or set for the first time)
to any value, positive or negative. If no <integer> is supplied, it
defaults to 0.

Examples:
h1 {counter-reset: section;}
h2 {counter-reset: subsec 1;}

Property Reference | 77

Supported by:

None.

cursor

Values:

[[<uri>,]* [auto | default | pointer | crosshair | move | e-resize |
ne-resize | nw-resize | n-resize | se-resize | sw-resize | s-resize
| w-resize| text | wait | help | progress]] | inherit

Initial value:

auto

Applies to:

All elements.

Inherited:

Yes.

Computed value:

For <uri> values, an absolute URI; otherwise, as specified.

Description:

This defines the cursor shape to be used when a mouse pointer is
placed within the boundary of an element (although CSS2.1 does
not define which edge creates the boundary). Authors are
cautioned to remember that users are typically very aware of
cursor changes and can be easily confused by changes that seem
counterintuitive. For example, making any noninteractive element
switch the cursor state to pointer is quite likely to cause user
frustration.

<uri> values are supported only by IE6+/Win as of this writing.

Examples:
a.moreinfo {cursor: help;}
a[href].external {cursor: url(globe.ani);}

78 | CSS Pocket Reference

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

<uri> values are supported only by Explorer 6 and later.

direction

Values:

ltr | rtl | inherit

Initial value:

ltr

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property specifies the base writing direction of blocks and
the direction of embeddings and overrides for the unicode bidirec-
tional algorithm. User agents that do not support bidirectional
text are permitted to ignore this property.

Examples:
*:lang(en) {direction: ltr;}
*:lang(ar) {direction: rtl;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 79

display

Values:

none | inline | block | inline-block | list-item | run-in | table |
inline-table | table-row-group | table-header-group | table-
footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | inherit

Initial value:

inline

Applies to:

All elements.

Inherited:

No.

Computed value:

Varies for floated, positioned, and root elements (see CSS2.1,
section 9.7); otherwise, as specified.

Note:

The values compact and marker appeared in CSS2 but were
dropped from CSS2.1 due to a lack of widespread support.

Description:

This is used to define the kind of display box an element generates
during layout. Gratuitous use of display with a document type such
as HTML can be tricky, as it upsets the display hierarchy already
defined in HTML, but it can also be very useful. In the case of XML,
which has no such built-in hierarchy, display is indispensable.

Examples:
h1 {display: block;}
li {display: list-item;}
img {display: inline;}
.hide {display: none;}
tr {display: table-row;}

80 | CSS Pocket Reference

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

The table-related values are not supported by Internet Explorer.

float

Values:

left | right | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

float defines the direction in which an element is floated. This has
traditionally been applied to images in order to let text flow around
them, but in CSS, any element may be floated. A floated element
will generate a block-level box no matter what kind of element it
may be. Floated nonreplaced elements should be given an explicit
width, as they otherwise tend to become as narrow as possible.
Basic floating is generally supported by all browsers, especially on
images, but the nature of floats can lead to unexpected results when
they are used as a page layout mechanism. Use float cautiously,
and thoroughly test any pages employing it.

Examples:
img.figure {float: left;}
p.sidebar {float: right; width: 15em;}

Property Reference | 81

Supported by:

Firefox, Internet Explorer, Opera, Safari.

font

Values:

[[<font-style> || <font-variant> || <font-weight>]? <font-size>
[/ <line-height>]? <font-family>] | caption | icon | menu |
message-box | small-caption | status-bar | inherit

Initial value:

Refer to individual properties.

Applies to:

All elements.

Inherited:

Yes.

Percentages:

Calculated with respect to the parent element for <font-size> and
with respect to the element’s <font-size> for <line-height>.

Computed value:

See individual properties (font-style, etc.).

Description:

This is a shorthand property used to set two or more aspects of an
element’s font at once. It can also be used to set the element’s font to
match an aspect of the user’s computing environment using
keywords such as icon. If keywords are not used, the minimum font
value must include the font size and family in that order.

Examples:
p {font: small-caps italic bold small/1.25em
Helvetica,sans-serif;}
p.example {font: 14px Arial;} /* technically correct,
although

82 | CSS Pocket Reference

 generic font-families are encouraged for fallback
purposes */
.figure span {font: icon;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

font-family

Values:

[[<family-name> | <generic-family>],]* [<family-name> |
<generic-family>] | inherit

Initial value:

User agent-specific.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This defines a font family to be used in the display of an element’s
text. Note that use of a specific font family (e.g., Geneva) is
wholly dependent on that family being available on a user’s
machine; no font downloading is implied by this property. There-
fore, using generic family names as a fallback is strongly
encouraged. Font names that contain spaces or nonalphabetic
characters should be quoted to minimize potential confusion.

Examples:
p {font-family: Helvetica, Arial, sans-serif;}
li {font-family: Times, TimesNR, "New Century Schoolbook",
serif;}
pre {font-family: Courier, "Courier New", "Andale Mono",
Monaco, monospace;}

Property Reference | 83

Supported by:

Firefox, Internet Explorer, Opera, Safari.

font-size

Values:

xx-small | x-small | small | medium | large | x-large | xx-large |
smaller | larger | <length> | <percentage> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

Yes.

Percentages:

Calculated with respect to the parent element’s font size.

Computed value:

An absolute length.

Description:

This property sets the size of the font. The size can be defined as
an absolute size, a relative size, a length value, or a percentage
value. Negative length and percentage values are not permitted.

The dangers of font-size assignment are many and varied, and
points are particularly discouraged in web design, as there is no
certain relationship between points and the pixels on a monitor.
It’s a matter of historical interest that due to early misunderstand-
ings, setting the font-size to medium led to different results in early
versions of Internet Explorer and Navigator 4.x. Some of these
problems are covered in Chapter 5 of CSS: The Definitive Guide,
Third Edition (O’Reilly); for further discussion, refer to http://
style.cleverchimp.com/.

http://style.cleverchimp.com/
http://style.cleverchimp.com/

84 | CSS Pocket Reference

For best results, authors are encouraged to use either percentages
or em units for font sizing. As a last resort, pixel sizes can be used,
but this approach has serious accessibility penalties because it
prevents users from resizing text in IE/Win, even when it is too
small to read comfortably. Most other browsers allow users to
resize text regardless of how it has been sized.

Examples:
h2 {font-size: 200%;}
code {font-size: 0.9em;}
p.caption {font-size: 9px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

font-style

Values:

italic | oblique | normal | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This sets the font to use an italic, oblique, or normal font face. Italic
text is generally defined as a separate face within the font family. It
is theoretically possible for a user agent to compute a slanted font
face from the normal face. However, the reality is that user agents
rarely recognize the difference between italic and oblique text and
almost always render both in exactly the same way.

Property Reference | 85

Examples:
em {font-style: oblique;}
i {font-style: italic;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

font-variant

Values:

small-caps | normal | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property is basically used to define small-caps text. It is theo-
retically possible for a user agent to compute a small-caps font
face from the normal face.

Examples:
h3 {font-variant: small-caps;}
p {font-variant: normal;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

86 | CSS Pocket Reference

font-weight

Values:

normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500| 600 |
700 | 800 | 900 | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

One of the numeric values (100, etc.) or one of the numeric values
plus one of the relative values (bolder or lighter).

Description:

This property sets the font weight used in rendering an element’s
text. The numeric value 400 is equivalent to the keyword normal,
and 700 is equivalent to bold. Each numeric value must be at least
as light as the next lowest number and at least as heavy as the next
highest number. Thus, if a font has only two weights—normal
and bold—then the numbers 100 through 500 will be normal, and
600 through 900 will be bold.

Examples:
b {font-weight: 700;}
strong {font-weight: bold;}
.delicate {font-weight: lighter;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

There is minimal support for the numeric keywords (100-900).

Property Reference | 87

height

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Block-level and replaced elements.

Inherited:

No.

Percentages:

Calculated with respect to the height of the containing block.

Computed value:

For auto and percentage values, as specified; otherwise, an abso-
lute length, unless the property does not apply to the element
(then auto).

Description:

This defines the height of an element’s content area, outside of
which padding, borders, and margins are added. This property is
ignored for inline nonreplaced elements. Negative length and
percentage values are not permitted.

Examples:
img.icon {height: 50px;}
h1 {height: 1.75em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

In IE6 and earlier, height is treated as a minimum height, not a
fixed height.

88 | CSS Pocket Reference

left

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (that is, elements for which the value of
position is something other than static).

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For relatively positioned elements, see Note; for static elements,
auto; for length values, the corresponding absolute length; for
percentage values, the specified value; otherwise, auto.

Note:

For relatively positioned elements, the computed value of left
always equals -right.

Description:

This property defines the offset between the left outer margin edge
of a positioned element and the left edge of its containing block.

Examples:
div#footer {position: fixed; left: 0;}
*.hanger {position: relative; left: -25px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 89

letter-spacing

Values:

<length> | normal | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

For length values, the absolute length; otherwise, normal.

Description:

This defines the amount of whitespace to be inserted between the
character boxes of text. Because character glyphs are typically
narrower than their character boxes, length values create a modi-
fier to the usual spacing between letters. Thus, normal is
synonymous with 0. Negative length values are permitted and will
cause letters to bunch closer together.

Examples:
p.spacious {letter-spacing: 6px;}
em {letter-spacing: 0.2em;}
p.cramped {letter-spacing: -0.5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

line-height

Values:

<length> | <percentage> | <number> | normal | inherit

90 | CSS Pocket Reference

Initial value:

normal

Applies to:

All elements (but see text regarding replaced and block-level
elements).

Inherited:

Yes.

Percentages:

Relative to the font size of the element.

Computed value:

For length and percentage values, the absolute value; otherwise,
as specified.

Description:

This property influences the layout of line boxes. When applied to
a block-level element, it defines the minimum (but not the
maximum) distance between baselines within that element. The
difference between the computed values of line-height and font-
size (called “leading” in CSS) is split in half and added to the top
and bottom of each piece of content in a line of text. The shortest
box that can enclose all those pieces of content is the line box. A
raw number value assigns a scaling factor, which is inherited
instead of a computed value. Negative values are not permitted.

Examples:
p {line-height: 1.5em;}
h2 {line-height: 200%;}
ul {line-height: 1.2;}
pre {line-height: 0.75em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 91

list-style

Values:

[<list-style-type> || <list-style-image> || <list-style-position>] |
inherit

Initial value:

Refer to individual properties.

Applies to:

Elements whose display value is list-item.

Inherited:

Yes.

Computed value:

See individual properties.

Description:

This is a shorthand property that condenses all the other list-style
properties. Because it applies to any element that has a display of
list-item, it will apply only to li elements in ordinary HTML and
XHTML, although it can be applied to any element and inherited
by list-item elements.

Examples:
ul {list-style: square url(bullet3.gif) outer;} /* values
are inherited by 'li'
elements */
ol {list-style: upper-roman;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

list-style-image

Values:

<uri> | none | inherit

92 | CSS Pocket Reference

Initial value:

none

Applies to:

Elements whose display value is list-item.

Inherited:

Yes.

Computed value:

For <uri> values, the absolute URI; otherwise, none.

Description:

This specifies an image to be used as the marker on an ordered or
unordered list item. The placement of the image with respect to
the content of the list item can be broadly controlled using list-
style-position.

Examples:
ul {list-style-image: url(bullet3.gif);}
ul li {list-style-image: url(http://example.org/pix/
checkmark.png);}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

list-style-position

Values:

inside | outside | inherit

Initial value:

outside

Applies to:

Elements whose display value is list-item.

Inherited:

Yes.

Property Reference | 93

Computed value:

As specified.

Description:

This property is used to declare the position of the list marker
with respect to the content of the list item. Outside markers are
placed some distance from the border edge of the list item, but the
distance is not defined in CSS. Inside markers are treated as
though they were inline elements inserted at the beginning of the
list item’s content.

Examples:
li {list-style-position: outside;}
ol li {list-style-position: inside;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

list-style-type

CSS2.1 values:

disc | circle | square | decimal | decimal-leading-zero | upper-
alpha | lower-alpha | upper-latin | lower-latin | upper-roman |
lower-roman | lower-greek | georgian | armenian | none | inherit

CSS2 values:

disc | circle | square | decimal | decimal-leading-zero | upper-
alpha | lower-alpha | upper-latin | lower-latin | upper-roman |
lower-roman | lower-greek | hebrew | armenian | georgian | cjk-
ideographic | hiragana | katakana | hiragana-iroha | none |
inherit

Initial value:

disc

Applies to:

Elements whose display value is list-item.

94 | CSS Pocket Reference

Inherited:

Yes.

Computed value:

As specified.

Description:

This is used to declare the type of marker system to be used in the
presentation of a list. There is no defined behavior for what
happens when a list using an alphabetic ordering exceeds the
letters in the list. For example, once an upper-latin list reaches
“Z”, the specification does not say what the next bullet should be.
(Two possible answers are “AA” and “ZA”.) This is the case
regardless of the alphabet in use. Thus, there is no guarantee that
different user agents will act consistently.

Examples:
ul {list-style-type: square;}
ol {list-style-type: lower-roman;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

As of this writing, the only CSS2.1 values with widespread
support are disc, circle, square, decimal, upper-alpha, lower-
alpha, upper-latin, upper-roman, and lower-roman.

margin

Values:

[<length> | <percentage> | auto]{1,4} | inherit

Initial value:

Not defined.

Applies to:

All elements.

Property Reference | 95

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

See individual properties.

Description:

This shorthand property sets the width of the overall margin for
an element or sets the widths of each individual side margin.
Vertically adjacent margins of block-level elements are collapsed,
whereas inline elements effectively do not take top and bottom
margins. The left and right margins of inline elements do not
collapse, nor do margins on floated elements. Negative margin
values are permitted, but caution is warranted because negative
values can cause elements to overwrite other parts of a page or to
appear to be wider than their parent elements.

Examples:
h1 {margin: 2ex;}
p {margin: auto;}
img {margin: 10px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

margin-bottom

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements.

96 | CSS Pocket Reference

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute length.

Description:

This sets the width of the bottom margin for an element. Nega-
tive values are permitted, but caution is warranted.

Examples:
ul {margin-bottom: 0.5in;}
h1 {margin-bottom: 2%;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

margin-left

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Property Reference | 97

Computed value:

For percentages, as specified; for length values, the absolute length.

Description:

This sets the width of the left margin for an element. Negative
values are permitted, but caution is warranted.

Examples:
p {margin-left: 5%;}
pre {margin-left: 3em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

margin-right

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute
length.

Description:

This sets the width of the right margin for an element. Negative
values are permitted, but caution is warranted.

98 | CSS Pocket Reference

Examples:
img {margin-right: 30px;}
ol {margin-right: 5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

margin-top

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute
length.

Description:

This sets the width of the top margin for an element. Negative
values are permitted, but caution is warranted.

Examples:
ul {margin-top: 0.5in;}
h3 {margin-top: 1.5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 99

max-height

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

All elements except inline nonreplaced elements and table elements.

Inherited:

No.

Percentages:

Refer to the height of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute
length; otherwise, none.

Description:

The value of this property sets a maximum constraint on the
height of the element. Thus, the element can be shorter than the
specified value but not taller. Negative values are not permitted.

Example:
div#footer {max-height: 3em;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

max-width

Values:

<length> | <percentage> | none | inherit

100 | CSS Pocket Reference

Initial value:

none

Applies to:

All elements except inline nonreplaced elements and table elements.

Inherited:

No.

Percentages:

Refer to the height of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute
length; otherwise, none.

Description:

The value of this property sets a maximum constraint on the
width of the element. Thus, the element can be narrower than the
specified value but not wider. Negative values are not permitted.

Example:
#sidebar img {width: 50px; max-width: 100%;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

min-height

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements except inline nonreplaced elements and table elements.

Property Reference | 101

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For percentages, as specified; for length values, the absolute length.

Description:

The value of this property sets a minimum constraint on the
height of the element. Thus, the element can be taller than the
specified value, but not shorter. Negative values are not
permitted.

Example:
div#footer {min-height: 1em;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

min-width

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements except inline nonreplaced elements and table elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

102 | CSS Pocket Reference

Computed value:

For percentages, as specified; for length values, the absolute
length; otherwise, none.

Description:

The value of this property sets a minimum constraint on the width
of the element. Thus, the element can be wider than the specified
value, but not narrower. Negative values are not permitted.

Example:
div.aside {float: right; width: 13em; max-width: 33%;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

outline

Values:

[<outline-color> || <outline-style> || <outline-width>] | inherit

Initial value:

Not defined for shorthand properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (outline-color, etc.).

Description:

This shorthand property is used to set the overall outline for an
element. Outlines can be of irregular shape, and they do not
change or otherwise affect the placement of elements.

Property Reference | 103

Examples:
*[href]:focurs {outline: 2px dashed invert;}
form:focus {outline: outset cyan 0.25em;}

Supported by:

Firefox, Opera.

outline-color

Values:

<color> | invert | inherit

Initial value:

invert (see Description)

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property sets the color for the visible portions of the overall
outline of an element. Remember that an outline’s style must be
something other than none for any visible border to appear. User
agents are permitted to ignore invert on platforms that don’t
support color inversion. In that case, the default is the value of
color for the element.

Examples:
*[href]:focurs {outline-color: invert;}
form:focus {outline-color: cyan;}

Supported by:

Firefox, Opera.

104 | CSS Pocket Reference

outline-style

Values:

none | dotted | dashed | solid | double | groove | ridge | inset |
outset | inherit

Initial value:

none

Applies to:

All elements

Inherited:

No.

Computed value:

As specified.

Description:

This property is used to set the style for the overall border of an
element. The style must be something other than none for any
outline to appear.

Examples:
*[href]:focus {outline-style: dashed;}
form:focus {outline-style: outset;}

Supported by:

Firefox, Opera.

outline-width

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Property Reference | 105

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style of the border is none or hidden.

Description:

This property sets the width for the overall outline of an element.
The width will take effect only for a given outline if the outline’s
style is something other than none. If the style is none, then the width
is effectively reset to 0. Negative length values are not permitted.

Examples:
*[href]:focus {outline-width: 2px;}
form:focus {outline-width: 0.25em;}

Supported by:

Firefox, Opera.

overflow

Values:

visible | hidden | scroll | auto | inherit

Initial value:

visible

Applies to:

Block-level and replaced elements.

Inherited:

No.

Computed value:

As specified.

106 | CSS Pocket Reference

Description:

This defines what happens to content that overflows the content
area of an element. For the value scroll, user agents should
provide a scrolling mechanism whether or not it is actually
needed; thus, for example, scrollbars would appear even if all
content can fit within the element box.

Examples:
#masthead {overflow: hidden;}
object {overflow: scroll;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

There are layout bugs associated with visible in IE6 and earlier.

padding

Values:

[<length> | <percentage>]{1,4} | inherit

Initial value:

Not defined for shorthand elements.

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

See individual properties (padding-top, etc.).

Property Reference | 107

Note:

Padding can never be negative.

Description:

This shorthand property sets the width of the overall padding for
an element or sets the widths of each individual side padding.
Padding set on inline nonreplaced elements does not affect line-
height calculations; therefore, such an element with both padding
and a background may visibly extend into other lines and poten-
tially overlap other content. The background of the element will
extend throughout the padding. Negative padding values are not
permitted.

Examples:
h1 {padding: 2ex;}
img {padding: 10px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

padding-bottom

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

108 | CSS Pocket Reference

Computed value:

For percentage values, as specified; for length values, the absolute
length.

Note:

Padding can never be negative.

Description:

This property sets the width of the bottom padding for an
element. Bottom padding set on inline nonreplaced elements does
not affect line-height calculations; therefore, such an element with
both bottom padding and a background may visibly extend into
other lines and potentially overlap other content. Negative
padding values are not permitted.

Examples:
ul {padding-bottom: 0.5in;}
h1 {padding-bottom: 2%;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

padding-left

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Property Reference | 109

Computed value:

For percentage values, as specified; for length values, the absolute
length.

Note:

Padding can never be negative.

Description:

This property sets the width of the left padding for an element.
Left padding set for an inline nonreplaced element will appear
only on the left edge of the first inline box generated by the
element. Negative padding values are not permitted.

Examples:
p {padding-left: 5%;}
pre {padding-left: 3em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

padding-right

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

110 | CSS Pocket Reference

Computed value:

For percentage values, as specified; for length values, the absolute
length.

Note:

Padding can never be negative.

Description:

This property sets the width of the right padding for an element.
Right padding set for an inline nonreplaced element will appear
only on the right edge of the last inline box generated by the
element. Negative padding values are not permitted.

Examples:
img {padding-right: 30px;}
ol {padding-right: 5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

padding-top

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Property Reference | 111

Computed value:

For percentage values, as specified; for length values, the absolute
length.

Note:

Padding can never be negative.

Description:

This property sets the width of the top padding for an element.
Top padding set on inline nonreplaced elements does not affect
line-height calculations; therefore, such an element with both top
padding and a background may visibly extend into other lines and
potentially overlap other content. Negative padding values are not
permitted.

Examples:
ul {padding-top: 0.5in;}
h3 {padding-top: 1.5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

position

Values:

static | relative | absolute | fixed | inherit

Initial value:

static

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

112 | CSS Pocket Reference

Description:

This defines the positioning scheme used to lay out an element.
Any element may be positioned, although elements positioned
with absolute or fixed will generate a block-level box regardless
of what kind of element it is. An element that is relatively
positioned is offset from its default placement in the normal flow.

Examples:
#footer {position: fixed; bottom: 0;}
*.offset {position: relative; top: 0.5em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

Fixed positioning is supported in Explorer only for versions 7 and
later.

quotes

Values:

[<string> <string>]+ | none | inherit

Initial value:

User agent-dependent.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property is used to determine the quotation pattern used
with quotes and nested quotes. The actual quote marks are
inserted via the property content.

Property Reference | 113

Example:
q {quotes: '\201C' '\201D' '\2018' '\2019';}

Supported by:

Firefox, Opera.

right

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (that is, elements for which the value of
position is something other than static).

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For relatively positioned elements, see the following Note; for
static elements, auto; for length values, the corresponding abso-
lute length; for percentage values, the specified value; otherwise,
auto.

Note:

For relatively positioned elements, the computed value of left
always equals right.

Description:

This property defines the offset between the right outer margin
edge of a positioned element and the right edge of its containing
block.

114 | CSS Pocket Reference

Examples:
div#footer {position: fixed; right: 0;}
*.overlapper {position: relative; right: -25px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

text-align

CSS2.1 values:

left | center | right | justify | inherit

CSS2 values:

left | center | right | justify | <string> | inherit

Initial value:

User agent-specific; may also depend on writing direction.

Applies to:

Block-level elements.

Inherited:

Yes.

Computed value:

As specified.

Note:

CSS2 included a <string> value that was dropped from CSS2.1
due to a lack of support.

Description:

This property sets the horizontal alignment of text within a block-
level element by defining the point to which line boxes are
aligned. The value justify is supported by allowing user agents to
programmatically adjust the word (but not letter) spacing of the
line’s content; results may vary by user agent.

Property Reference | 115

Examples:
p {text-align: justify;}
h4 {text-align: center;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

text-decoration

Values:

none | [underline || overline || line-through || blink] | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property allows certain text effects such as underlining.
These decorations will span descendant elements that don’t have
decorations of their own. User agents are not required to support
blink. They will span child elements, which do not have text
decoration defined; for more details, see Chapter 6 of CSS: The
Definitive Guide, Third Edition (O’Reilly). Combinations of the
values are legal. Any time two text-decoration declarations apply
to the same element, the values of the two declarations are not
combined. For example:

h1 {text-decoration: overline;}
h1, h2 {text-decoration: underline;}

116 | CSS Pocket Reference

Given these styles, h1 elements will be underlined with no over-
line because the value of overline completely overrides the value
of underline. If h1 should have both overlines and underlines, use
the value overline underline for the h1 rule and move it after the
h1, h2 rule; or extend its selector to raise its specificity.

Examples:
u {text-decoration: underline;}
.old {text-decoration: line-through;}
u.old {text-decoration: line-through underline;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Notes:

Explorer does not support the blink value.

There may be inconsistent results regarding text decoration span-
ning child elements (see Description).

text-indent

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

Block-level elements.

Inherited:

Yes.

Percentages:

Refer to the width of the containing block.

Computed value:

For percentage values, as specified; for length values, the absolute
length.

Property Reference | 117

Description:

This property is used to define the indentation of the first line of
content in a block-level element. It is most often used to create a
tab effect. Negative values are permitted and cause outdent (or
hanging indent) effects.

Examples:
p {text-indent: 5em;}
h2 {text-indent: -25px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

text-transform

Values:

uppercase | lowercase | capitalize | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property changes the case of letters in an element, regardless
of the case of the text in the document source. The determination
of which letters are to be capitalized by the value capitalize is not
precisely defined, as it depends on user agents knowing how to
recognize a “word.”

118 | CSS Pocket Reference

Examples:
h1 {text-transform: uppercase;}
.title {text-transform: capitalize;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

top

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (that is, elements for which the value of
position is something other than static).

Inherited:

No.

Percentages:

Refer to the height of the containing block.

Computed value:

For relatively positioned elements, see Note; for static elements,
auto; for length values, the corresponding absolute length; for
percentage values, the specified value; otherwise, auto.

Note:

For relatively positioned elements, if both top and bottom are auto,
their computed values are both 0; if one of them is auto, it
becomes the negative of the other; if neither is auto, bottom
becomes the negative of the value of top.

Description:

This property defines the offset between the top outer margin edge
of a positioned element and the top edge of its containing block.

Property Reference | 119

Examples:
#masthead {position: fixed; top: 0;}
sub {position: relative; top: 0.5em; vertical-align:
baseline;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

unicode-bidi

Values:

normal | embed | bidi-override | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property allows the author to generate levels of embedding
within the unicode embedding algorithm. User agents that do not
support bidirectional text are permitted to ignore this property.

Examples:
*:lang(ar) {direction: rtl; unicode-bidi: embed;}
*:lang(es) {direction: ltr; unicode-bidi: normal;}

Supported by:

Firefox, Internet Explorer, Opera 9+.

120 | CSS Pocket Reference

vertical-align

Values:

baseline | sub | super | top | text-top | middle | bottom | text-
bottom | <percentage> | <length> | inherit

Initial value:

baseline

Applies to:

Inline elements and table cells.

Inherited:

No.

Percentages:

Refer to the value of line-height for the element.

Computed value:

For percentage and length values, the absolute length; otherwise,
as specified.

Note:

When applied to table cells, only the values baseline, top, middle,
and bottom are recognized.

Description:

This defines the vertical alignment of an inline element’s baseline
with respect to the baseline of the line in which it resides. Nega-
tive length and percentage values are permitted, and they lower
the element instead of raising it. In table cells, this property sets
the alignment of the content of the cell within the cell box.

Examples:
sup {vertical-align: super;}
.fnote {vertical-align: 50%;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 121

visibility

Values:

visible | hidden | collapse | inherit

Initial value:

inherit

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

Description:

This specifies whether the element box generated by an element is
rendered. This means authors can have the element take up the
space it would ordinarily take up, while remaining completely
invisible. The value collapse is used in tables to remove columns
or rows from the table’s layout.

Examples:
ul.submenu {visibility: hidden;}
tr.hide {visibility: collapse;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

white-space

Values:

normal | nowrap | pre | pre-wrap | pre-line | inherit

Initial value:

normal

122 | CSS Pocket Reference

Applies to:

All elements (CSS2.1); block-level elements (CSS2).

Inherited:

No.

Computed value:

As specified.

Description:

This declares how whitespace within an element is handled during
layout. normal acts like traditional web browsers, in that it reduces
any sequence of whitespace to a single space. pre causes
whitespace to be treated as it is in the HTML element pre, with
whitespace and returns fully preserved. nowrap prevents an
element from line-breaking, as in the “nowrap” attribute for td
and th elements in HTML4. The values pre-wrap and pre-line
were added in CSS2.1; the former causes the user agent to
preserve whitespace while still automatically wrapping lines of
text, and the latter honors newline characters within the text
while collapsing all other whitespace as per normal.

Examples:
td {white-space: nowrap;}
tt {white-space: pre;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

As of this writing, pre-wrap is supported only by Opera 8 and
later, whereas pre-line has no known support.

width

Values:

<length> | <percentage> | auto | inherit

Property Reference | 123

Initial value:

auto

Applies to:

Block-level and replaced elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

For auto and percentage values, as specified; otherwise, an abso-
lute length, unless the property does not apply to the element
(then auto).

Description:

This defines the width of an element’s content area, outside of
which padding, borders, and margins are added. This property is
ignored for inline nonreplaced elements. Negative length and
percentage values are not permitted.

Examples:
table {width: 80%;}
#sidebar {width: 20%;}
.figure img {width: 200px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

In IE6 and earlier, width is treated as a minimum width, not a
fixed width.

124 | CSS Pocket Reference

word-spacing

Values:

<length> | normal | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

For normal, the absolute length 0; otherwise, the absolute length.

Description:

This defines the amount of whitespace to be inserted between
words in an element. For the purposes of this property, a word is
defined to be a string of characters surrounded by whitespace.
Length values create a modifier to the usual spacing between
words; thus, normal is synonymous with 0. Negative length values
are permitted and will cause words to bunch closer together.

Examples:
p.spacious {word-spacing: 0.5em;}
em {word-spacing: 5px;}
p.cramped {word-spacing: -0.2em;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Property Reference | 125

z-index

Values:

<integer> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements.

Inherited:

No.

Computed value:

As specified.

Description:

This property sets the placement of a positioned element along the
z-axis, which is defined to be the axis that extends perpendicular to
the display area. Positive numbers are closer to the user, and nega-
tive numbers are further away.

Example:
#masthead {position: relative; z-index: 10000;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

126 | CSS Pocket Reference

Tables

border-collapse

Values:

collapse | separate | inherit

Initial value:

separate

Applies to:

Elements with the display value table or table-inline.

Inherited:

Yes.

Computed value:

As specified.

Note:

In CSS2, the default value was collapse.

Description:

This property is used to define the layout model used in laying out
the borders in a table—i.e., those applied to cells, rows, and so
forth. Although the property applies only to tables, it is inherited
by all the elements within the table.

Example:
table {border-collapse: separate; border-spacing: 3px
5px;}

Supported by:

Firefox, Opera, Safari.

Tables | 127

border-spacing

Values:

<length> <length>? | inherit

Initial value:

0

Applies to:

Elements with the display value table or table-inline.

Inherited:

Yes.

Computed value:

Two absolute lengths.

Note:

Property is ignored unless the border-collapse value is separate.

Description:

This specifies the distance between cell borders in the separated
borders model. The first of the two length values is the horizontal
separation and the second is the vertical. This property is ignored
unless border-collapse is set to separate. Although the property
applies only to tables, it is inherited by all of the elements within
the table.

Examples:
table {border-collapse: separate; border-spacing: 0;}
table {border-collapse: separate; border-spacing: 3px
5px;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

128 | CSS Pocket Reference

caption-side

Values:

top | bottom

Initial value:

top

Applies to:

Elements with the display value table-caption.

Inherited:

No.

Computed value:

As specified.

Note:

The values left and right appeared in CSS2 but were dropped
from CSS2.1 due to a lack of widespread support.

Description:

This specifies the placement of a table caption with respect to the
table box. The caption is rendered as though it were a block-level
element placed just before (or after) the table.

Example:
caption {caption-side: top;}

Supported by:

Firefox, Internet Explorer 7+, Opera, Safari.

Note:

Only Firefox supports the left and right values.

Tables | 129

empty-cells

Values:

show | hide | inherit

Initial value:

show

Applies to:

Elements with the display value table-cell.

Inherited:

Yes.

Computed value:

As specified.

Note:

Property is ignored unless the border-collapse value is separate.

Description:

This defines the presentation of table cells that contain no
content. If shown, the cell’s borders and background are drawn.
This property is ignored unless border-collapse is set to separate.

Example:
th, td {empty-cells: show;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

Explorer’s support appears to apply only to entire rows of hidden
cells and not to empty cells in a row of nonempty cells.

130 | CSS Pocket Reference

table-layout

Values:

auto | fixed | inherit

Initial value:

auto

Applies to:

Elements with the display value table or inline-table.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property is used to specify which layout algorithm is used to
lay out a table. The fixed layout algorithm is faster but less flexible,
whereas the automatic algorithm is slower but more reflective of
traditional HTML tables.

Example:
table.fast {table-layout: fixed;}

Supported by:

None.

Paged Media | 131

Paged Media

orphans

Values:

<integer> | inherit

Initial value:

2

Applies to:

Block-level elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This specifies the minimum number of text lines within the
element that can be left at the bottom of a page. This can affect
the placement of page breaks within the element.

Examples:
p {orhpans: 4;}
ul {orphans: 2;}

Supported by:

Unknown.

132 | CSS Pocket Reference

page-break-after

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

Nonfloated block-level elements with a position value of relative
or static.

Inherited:

No.

Computed value:

As specified.

Description:

This declares whether page breaks should be placed after an
element. Although it is theoretically possible to force breaks with
always, it is not possible to guarantee prevention; avoid asks the
user agent to avoid inserting a page break if possible.

Examples:
div.section {page-break-after: always;}
h2 {page-break-after: avoid;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

The behavior of this property is highly unpredictable and may be
buggy in some or all browsers listed.

Paged Media | 133

page-break-before

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

Nonfloated block-level elements with a position value of relative
or static.

Inherited:

No.

Computed value:

As specified.

Description:

Declares whether page breaks should be placed before an element.
Although it is theoretically possible to force breaks with always, it
is not possible to guarantee prevention; the best an author can do
is ask the user agent to avoid inserting a page break if possible.

Examples:
p + ul {page-break-before: avoid;}
h2 {page-break-before: always;}

Supported by:

Firefox, Internet Explorer, Opera, Safari.

Note:

The behavior of this property is highly unpredictable and may be
buggy in some or all browsers listed.

134 | CSS Pocket Reference

page-break-inside

Values:

auto | avoid | inherit

Initial value:

auto

Applies to:

Nonfloated block-level elements with a position value of relative
or static.

Inherited:

Yes.

Computed value:

As specified.

Description:

This declares whether page breaks should be placed inside an
element. Because an element might be taller than a page box, it is
not possible to guarantee prevention; the best an author can do is
ask the user agent to avoid inserting a page break if possible.

Example:
table {page-break-inside: avoid;}

Supported by:

Firefox, Opera, Safari.

Note:

The behavior of this property is highly unpredictable and may be
buggy in some or all browsers listed.

Dropped from CSS2.1 | 135

widows

Values:

<integer> | inherit

Initial value:

2

Applies to:

Block-level elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This specifies the minimum number of text lines within the
element that can be left at the top of a page. This can affect the
placement of page breaks within the element.

Examples:
p {widows: 4;}
ul {widows: 2;}

Supported by:

Unknown.

Dropped from CSS2.1
The following properties appeared in CSS2 but were dropped
from CSS2.1 due to a lack of widespread support. They do not
have computed value information because computed values were
first explicitly defined in CSS2.1.

136 | CSS Pocket Reference

Visual Styles

font-size-adjust

Values:

<number> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

Yes.

Description:

The aim of this property is to allow authors to trigger font scaling
such that substitute fonts will not look too wildly different from
the font the author wanted to use, even if the substituted font has
a different x-height. Note that this property does not appear in
CSS2.1. As of this writing, only Firefox for Windows supports it.

font-stretch

Values:

normal | wider | narrower | ultra-condensed | extra-condensed |
condensed | semi-condensed | semi-expanded | expanded | extra-
expanded | ultra-expanded | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Visual Styles | 137

Description:

With this property, the character glyphs in a given font can be
made wider or narrower, ideally by selected condensed or
expanded faces from the font’s family. Note that this property does
not appear in CSS2.1.

marker-offset

Values:

<length> | auto | inherit

Initial value:

auto

Applies to:

Elements with a display value of marker.

Inherited:

No.

Note:

This property is obsolete as of CSS2.1 and will likely not appear in
CSS3, with the same holding true for the display value of marker;
as of this writing, it appears that other mechanisms will be used to
achieve these effects.

Description:

This property specifies the distance between the nearest border
edge of a marker box and its associated element box.

text-shadow

Values:

none | [<color> || <length> <length> <length>? ,]* [<color> ||
<length> <length> <length>?] | inherit

Initial value:

none

138 | CSS Pocket Reference

Applies to:

All elements.

Inherited:

No.

Description:

This permits the assignments of one or more “shadows” to the
text in an element. The first two length values in a shadow defini-
tion set horizontal and vertical offsets, respectively, from the
element’s text. The third length defines a blurring radius. Note
that this property does not appear in CSS2.1. As of this writing,
Safari supports text-shadow but restricts the value to a single
shadow.

Paged Media

marks

Values:

[crop || cross] | none | inherit

Initial value:

none

Applies to:

Page context.

Inherited:

N/A.

Description:

This property defines whether “cross marks” (otherwise known as
register marks or registration marks) should be placed outside the
content area but within the printable area of the canvas. The exact
placement and rendering of the marks is not defined. Note that
this property does not appear in CSS2.1.

Paged Media | 139

page

Values:

<identifier> | inherit

Initial value:

auto

Applies to:

Block-level elements.

Inherited:

Yes.

Description:

This property, in conjunction with size, specifies a particular page
type to be used in the printing of an element. Note that this prop-
erty does not appear in CSS2.1.

size

Values:

<length>{1,2} | auto | portrait | landscape | inherit

Initial value:

auto

Applies to:

The page area.

Inherited:

No.

Description:

With this property, authors can declare the size and orientation of
the page box used in the printing of an element. It can be used in
conjunction with page, although that is not always necessary.
Note that this property does not appear in CSS2.1.

140 | CSS Pocket Reference

Aural Styles

azimuth

Values:

<angle> | [[left-side | far-left | left | center-left | center |
center-right | right | far-right | right-side] || behind] |
leftwards | rightwards | inherit

Initial value:

center

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Normalized angle.

Description:

This property sets the angle along the horizontal plane (otherwise
known as the horizon) from which a sound should seem to
emanate. It is used in conjunction with elevation to place the
sound at a point on a hypothetical sphere with the user at its
center.

Supported by:

Emacspeak.

cue

Values:

[<cue-before> || <cue-after>] | inherit

Aural Styles | 141

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (cue-before, etc.).

Description:

This is a shorthand property that allows an author to define cues
that precede and follow the audio rendering of an element’s
content. A cue is something like an auditory icon.

Supported by:

Emacspeak.

cue-after

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

For <uri> values, the absolute URI; otherwise, none.

142 | CSS Pocket Reference

Description:

This property allows an author to define a cue that follows the
audio rendering of an element’s content.

Supported by:

Emacspeak.

cue-before

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

For <uri> values, the absolute URI; otherwise, none.

Description:

This property allows an author to define a cue that precedes the
audio rendering of an element’s content.

Supported by:

Emacspeak.

elevation

Values:

<angle> | below | level | above | higher | lower | inherit

Initial value:

level

Aural Styles | 143

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Normalized angle.

Description:

This property sets the angle above or below the horizontal plane
(otherwise known as the horizon) from which a sound should
seem to emanate. This is used in conjunction with azimuth to
place the sound at a point on a hypothetical sphere with the user
at its center.

Supported by:

Emacspeak.

pause

Values:

[[<time> | <percentage>]{1,2}] | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties (pause-before, etc.).

144 | CSS Pocket Reference

Description:

This is a shorthand property that allows an author to define pauses
that precede and follow the audio rendering of an element’s
content. A pause is an interval in which no content is audibly
rendered, although background sounds may still be audible.

Supported by:

Emacspeak.

pause-after

Values:

<time> | <percentage> | inherit

Initial values:

0

Applies to:

All elements.

Inherited:

No.

Computed value:

The absolute time value.

Description:

This property allows an author to define the length of a pause that
follows the audio rendering of an element’s content.

Supported by:

Emacspeak.

pause-before

Values:

<time> | <percentage> | inherit

Aural Styles | 145

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Computed value:

The absolute time value.

Description:

This property allows an author to define the length of a pause that
precedes the audio rendering of an element’s content.

Supported by:

Emacspeak.

pitch

Values:

<frequency> | x-low | low | medium | high | x-high | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

Yes.

Computed value:

The absolute frequency value.

146 | CSS Pocket Reference

Description:

This property specifies the average pitch (frequency) of the
speaking voice used to audibly render the element’s content. The
average pitch of a voice will depend greatly on the voice family.

Supported by:

Emacspeak.

pitch-range

Values:

<number> | inherit

Initial value:

50

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property specifies the variation in average pitch used by the
speaking voice, while audibly rendering the element’s content.
The higher the variation, the more animated the voice will sound.

Supported by:

Emacspeak.

play-during

Values:

<uri> | [mix || repeat]? | auto | none | inherit

Aural Styles | 147

Initial value:

auto

Applies to:

All elements.

Inherited:

No.

Computed value:

For <uri> values, the absolute URI; otherwise, as specified.

Description:

This provides a sound to be played in the background while the
element’s contents are audibly rendered. The sound can be mixed
with other background sounds (set using play-during on an
ancestor element), or it can replace other sounds for the duration
of the element’s audio rendering.

Supported by:

Emacspeak.

richness

Values:

<number> | inherit

Initial value:

50

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

148 | CSS Pocket Reference

Description:

This property sets the brightness of the speaking voice used when
audibly rendering the element’s content. The brighter the voice,
the more it will carry.

Supported by:

Emacspeak.

speak

Values:

normal | none | spell-out | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This determines how an element’s contents will be audibly
rendered or whether they will be rendered at all. The value spell-
out is typically used for acronyms and abbreviations, such as W3C
or CSS. If the value is none, the element is skipped (it takes no time
to be audibly rendered).

Supported by:

Emacspeak.

Aural Styles | 149

speak-header

Values:

once | always | inherit

Initial value:

once

Applies to:

Elements containing table header information.

Inherited:

Yes.

Computed value:

As specified.

Description:

This specifies whether the content of table headers is spoken
before every cell associated with those headers or only when the
header associated with a cell is different than the header associ-
ated with the previously rendered cell.

Supported by:

Emacspeak

speak-numeral

Values:

digits | continuous | inherit

Initial value:

continuous

Applies to:

All elements.

150 | CSS Pocket Reference

Inherited:

Yes.

Computed value:

As specified.

Description:

This property determines how numbers are spoken during audible
rendering.

Supported by:

Emacspeak.

speak-punctuation

Values:

code | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property determines how punctuation is spoken during
audible rendering. The value code causes punctuation symbols to
be rendered literally.

Supported by:

Emacspeak.

Aural Styles | 151

speech-rate

Values:

<number> | x-slow | slow | medium | fast | x-fast | faster| slower
| inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

Yes.

Computed value:

An absolute number.

Description:

This sets the average rate at which words are spoken when an
element’s content is audibly rendered.

Supported by:

Emacspeak.

stress

Values:

<number> | inherit

Initial value:

50

Applies to:

All elements.

152 | CSS Pocket Reference

Inherited:

Yes.

Computed value:

As specified.

Description:

This property affects the height of peaks in the intonation of a
speaking voice, which are in turn generated by stress marks within
a language.

Supported by:

Emacspeak.

voice-family

Values:

[[<specific-voice> | <generic-voice>],]* [<specific-voice> |
<generic-voice>] | inherit

Initial value:

User agent-dependent.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

Description:

This property is used to define a list of voice families that can be
used in the audio rendering of an element’s content and is compa-
rable to font-family. The permitted generic voices are male, female,
and child.

Aural Styles | 153

Supported by:

Emacspeak.

volume

Values:

<number> | <percentage> | silent | x-soft | soft | medium | loud |
x-loud | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

Yes.

Computed value:

An absolute number.

Description:

This sets the median volume level for the waveform of the audibly
rendered content. Thus, a waveform with large peaks and valleys
may go well above or below the volume level set with this prop-
erty. Note that 0 is not the same as silent.

Supported by:

Emacspeak.

155

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
absolute length units, 30
absolute positioning, 16

horizontal nonreplaced, 17
horizontal replaced, 20
layout, 17
rules, 15
shrink-to-fit, 17
static, 17
vertical nonreplaced, 19
vertical replaced, 21

:active pseudo-class, 41
Adjacent Sibling Selector, 36
:after pseudo-element, 41
alignment

table cells, vertical, 28
angle values, aural-specific, 32
anonymous text, 12
anonymous text, inline layout

and, 12
attributes, 2
aural style properties

angle values, 33
frequency values, 33
time values, 33

aural-specific values, 32
automatic-layout model

(tables), 24–26
automatic-layout of tables, 23
azimuth property, 140

B
background property, 48
background-attachment

property, 49
background-color property, 50
background-image property, 51
background-position

property, 52
background-repeat property, 53
:before pseudo-element, 42
block-level box, 11
block-level elements, 10
block-level layout, 11

element box and, 11
border-bottom property, 55
border-bottom-color

property, 55
border-bottom-style

property, 56
border-bottom-width

property, 57
border-collapse property, 126
border-color property, 58
border-left property, 59
border-left-color property, 59
border-left-style property, 60
border-left-width property, 61
border-right property, 62
border-right-color property, 63
border-right-style property, 63

156 | Index

border-right-width property, 64
border-spacing property, 127
border-style property, 65
border-top property, 66
border-top-color property, 67
border-top-style property, 68
border-top-width property, 68
border-width property, 69
bottom property, 70

C
calculations, specificity, 6
caption-side property, 128
cascade, 8

declarations, 8, 9
inheritance, 6, 7
specificity, 6
steps, 7

cells, tables
collapsing borders, 26
vertical alignment, 28

centimeter length values, 30
Child Selector, 35
Class Selector, 36
clear property, 71
clip property, 72
collapsing cell borders,

tables, 26
collapsing cell model

(tables), 26–27
colon (:) in properties, 6
color property, 73
color values, 28

#RGB, 29
#RRGGBB, 29
<keyword>, 29
rgb (rrr,ggg,bbb), 29

containing block of positioned
elements, 16

content area, inline layout
and, 12

content property, 74
counter-increment property, 75
counter-reset property, 76
CSS (Cascading Style Sheets)

introduction, 1
CSS2.1, properties dropped

from, 135–153
azimuth property, 140
cue property, 140
cue-after property, 141
cue-before property, 142
elevation property, 142
font-size-adjust property, 136
font-stretch property, 136
marker-offset property, 137
marks property, 138
page property, 139
pause property, 143
pause-after property, 144
pause-before property, 144
pitch property, 145
pitch-range property, 146
play-during property, 146
richness property, 147
size property, 139
speak property, 148
speak-header property, 149
speak-numeral property, 149
speak-punctuation

property, 150
speech-rate property, 151
stress property, 151
text-shadow property, 137
voice-family property, 152
volume property, 153

cue property, 140
cue-after property, 141
cue-before property, 142
curly braces in declaration

blocks, 6
cursor property, 77

Index | 157

D
declaration block (rules), 5
declaration blocks

curly braces, 6
rules, 6
semicolon (;), 6

declarations
cascade and, 9
properties, 6
semicolons(;), 6
sorting, cascade and, 9
values, 6

Descendant Selector, 35
direction property, 78
display property, 79
div, 10

E
element box, block-level layout

and, 11
element classification, 9–10

nonreplaced, 9
replaced, 9

element display roles
block-level, 10
inline-level, 10

elements
classifications, 9
display roles, 10, 11
embedded style sheets and, 2
floated, 14
link to external style sheets, 3
nonreplaced, 9
replaced, 9

elevation property, 142
em, 11
embedded style sheets, 2
em-box, 13
em-box, inline layout and, 12
em-height (em), 32
em-height relative length

value, 32
empty-cells property, 129

Exact Attribute Value
Selector, 38

external style sheets, 3
external style sheets, link

element, 3

F
:first-child pseudo-class, 42
:first-letter pseudo-element, 43
:first-line pseudo-element, 44
fixed positioning, 16
fixed-layout model (tables), 23
float property, 80
floating

elements, 13
rules, 14

:focus pseudo-class, 44
font property, 81
font-family property, 82
fonts-em-box and, 12
font-size property, 83
font-size-adjust property, 136
font-stretch property, 136
font-style property, 84
font-variant property, 85
font-weight property, 86

H
height property, 87
horizontal layout, absolutely

positioned elements, 17
:hover pseudo-class, 45

I
ID Selector, 37
@import directives, 4
!important rules, 8
inches, length values, 30
inheritance, 6, 7, 8
inline box, 13
inline box, inline layout and, 14

158 | Index

inline elements, 12
anonymous text, 12
box, 13
content area, 13
em-box, 13
leading, 13
line box, 13–15

inline layout, 12
content area, 13
em-box and, 12
inline box, 13
leading, 13
line box, 13

inline styles, 2
inline-level elements, 10, 11

K
<keyword> (color value), 29
keywords, 28
keywords, values, 28

L
:lang pseudo-class, 46
Language Attribute Selector, 40
layout, 11–13

absolutely positioned
elements, 17

block-level, 11
block-level box, 11
horizontal nonreplaced

absolutely positioned
elements, 17

horizontal replaced absolutely
positioned elements, 20

inline elements (see inline
elements)

inline layout, 12
tables, 21, 23
tables (see table layout)
vertical nonreplaced absolutely

positioned elements, 19
vertical replaced absolutely

positioned elements, 21

leading, 13
leading, inline layout and, 12
left property, 88
length values, 30

absolute
centimeters (cm), 31
inches (in), 30
millimeters (mm), 31
picas (pc), 31
points (pt), 31

absolute units, 30
relative, 32

em-height (em), 32
pixels (px), 32
x-height (ex), 32

letter-spacing property, 89
line box, 13–15
line box, inline layout and, 14
line-height property, 89
line-height, inline layout and, 12
link element, 4

alternate style sheets, 4
external style sheets, 3

:link pseudo-class, 46
list items, 10
list-style property, 91
list-style-image property, 91
list-style-position property, 92
list-style-type property, 93

M
margin property, 94
margin-bottom property, 95
margin-left property, 96
margin-right property, 97
margin-top property, 98
marker-offset property, 137
marks property, 138
max-height property, 99
max-width property, 99
media attribute, 4
media attribute, link element, 3
millimeter length values, 32

Index | 159

min-height property, 100
min-width property, 101

N
nonreplaced elements, 9
number values, 30

O
orphans property, 131
outline property, 102
outline-color property, 103
outline-style property, 104
outline-width property, 104
overflow property, 105

P
p (block element), 10
padding property, 106
padding-bottom property, 107
padding-left property, 108
padding-right property, 109
padding-top property, 110
page property, 139
page-break-after property, 132
page-break-before property, 133
page-break-inside property, 134
paged media, 131–135

orphans property, 131
page-break-after

property, 132
page-break-before

property, 133
page-break-inside

property, 134
widows property, 135

Partial Attribute Value
Selector, 38

pause property, 143
pause-after property, 144
pause-before property, 144

percentage values, 30
picas (pc), 31
pitch property, 145
pitch-range property, 146
pixels (px), 32
play-during property, 146
points (pt), 31
position property, 111
positioning rules, 15–21

absolute, 16
horizontal nonreplaced, 17
horizontal replaced, 20
shrink-to-fit, 17
static, 17
vertical nonreplaced, 19
vertical replaced, 21

containing block, 16
fixed, 16
relative, 15
static, 15

positioning, rules
absolute, 16
fixed, 15
relative, 15
static, 15

precedence, 6
properties

colon (:), 6
declarations, 6

pseudo-elements
:after, 41
:before, 42
:first-letter, 43
:first-line, 44

pseudo-classes
:active, 41
:first-child, 42
:focus, 44
:hover, 45
:lang, 46
:link, 46
:visited, 47

160 | Index

Q
quotes property, 112

R
relative length values

em-height, 32
pixels, 32
x-height, 32

relative positioning, 15
relative positioning, rules, 15

containing block, 16
replaced elements, 9
#RGB (color value), 29
rgb (rrr,ggg,bbb) (color

value), 29
richness property, 147
right property, 113
root element, containing

block, 16
#RRGGBB (color value), 29
rules

!important, 8
declaration block, 6
floating, 14
positioning, 15, 16
selector, 6
structure, 5
table arrangement, 22

S
selector (rules), 5
selectors

Adjacent Sibling Selector, 36
Child Selector, 35
Class Selector, 36
Descendant Selector, 35
Exact Attribute Value

Selector, 38
ID Selector, 37
Language Attribute

Selector, 40

Partial Attribute Value
Selector, 38

rules, 6
Simple Attribute Selector, 37
Type Selector, 34
Universal Selector, 34

semicolon (;) in declaration
blocks, 6

shrink-to-fit, 17
shrink-to-fit, absolutely

positioned elements, 17
Simple Attribute Selector, 37
size property, 139
sorting declarations, cascade

and, 9
span, 11
speak property, 148
speak-header property, 149
speak-numeral property, 149
speak-punctuation

property, 150
specificity, 6

calculations, 6
speech-rate property, 151
static position, 17
static positioning, 15
static positioning, rules, 15

containing block, 16
stress property, 151
style attribute, 2
style element, embedded style

sheets and, 2
style precedence, 6–9

cascade, 8
inheritance, 8

style sheets
embedded, 3
external, 3
linking alternate, 5

styles
adding to HTML and

XHTML, 2–5
@import directives, 4
embedded, 3

Index | 161

external style sheets, 3
inline, 2
link element, 4
media attribute, 4
xml-stylesheet processing

instruction, 5

T
table layout, 21–28

arrangement rules, 21
automatic-layout

model, 24–26
collapsing cell model, 26–27
fixed-layout model, 23
vertical alignment within

cells, 28
table-layout property, 130
tables, 126–130

border-collapse property, 126
border-spacing property, 127
caption-side property, 128
cells, 26, 28
empty-cells property, 129
rules, arrangement, 22
table-layout property, 130

text, anonymous, inline layout
and, 12

text-align property, 114
text-decoration property, 115
text-indent property, 116
text-shadow property, 137
text-transform property, 117
time values, 33
top property, 118
Type Selector, 34

U
unicode-bidi property, 119
Universal Selector, 34
<uri>, 32
URI values, 32
URL values, 32

V
value types, 28–33

<uri>, 32
aural style properties (see aural

style properties)
color (see color values)
keywords, 28
length (see length values)
number, 30
percentage, 30

vertical alignment, table cells, 28
vertical layout, absolutely

positioned elements, 19
vertical-align property, 120
visibility property, 121
:visited pseudo-class, 47
visual media, 48–125

background property, 48
background-attachment

property, 49
background-color

property, 50
background-image

property, 51
background-position

property, 52
background-repeat

property, 53
border-bottom property, 55
border-bottom-color

property, 55
border-bottom-style

property, 56
border-bottom-width

property, 57
border-color property, 58
border-left property, 59
border-left-color property, 59
border-left-style property, 60
border-left-width property, 61
border-right property, 62
border-right-color

property, 63

162 | Index

visual media (continued)
border-right-style

property, 63
border-right-width

property, 64
border-style property, 65
border-top property, 66
border-top-color property, 67
border-top-style property, 68
border-top-width property, 68
border-width property, 69
bottom property, 70
clear property, 71
clip property, 72
color property, 73
content property, 74
counter-increment

property, 75
counter-reset property, 76
cursor property, 77
direction property, 78
display property, 79
float property, 80
font property, 81
font-family property, 82
font-size property, 83
font-style property, 84
font-variant property, 85
font-weight property, 86
height property, 87
left property, 88
letter-spacing property, 89
line-height property, 89
list-style property, 91
list-style-image property, 91
list-style-position property, 92
list-style-type property, 93
margin property, 94
margin-bottom property, 95
margin-left property, 96
margin-right property, 97

margin-top property, 98
max-height property, 99
max-width property, 99
min-height property, 100
min-width property, 101
outline property, 102
outline-color property, 103
outline-style property, 104
outline-width property, 104
overflow property, 105
padding property, 106
padding-bottom

property, 107
padding-left property, 108
padding-right property, 109
padding-top property, 110
position property, 111
quotes property, 112
right property, 113
text-align property, 114
text-decoration property, 115
text-indent property, 116
text-transform property, 117
top property, 118
unicode-bidi property, 119
vertical-align property, 120
visibility property, 121
white-space property, 121
width property, 122
word-spacing property, 124
z-index property, 125

voice-family property, 152
volume property, 153

W
white-space property, 121
widows property, 135
width property, 122
word-spacing property, 124

Index | 163

X
x-height (ex), 32
x-height relative length value, 32
xml-stylesheet processing

instruction, 5

Z
z-index property, 125

	Contents
	CSS Pocket Reference
	Conventions Used in This Book
	Safari® Books Online
	Adding Styles to HTML and XHTML
	Inline Styles
	Embedded Style Sheets
	External Style Sheets
	@import directive
	link element
	xml-stylesheet processing instruction

	Rule Structure
	Style Precedence
	Specificity Calculations
	Inheritance
	The Cascade

	Element Classification
	Nonreplaced Elements
	Replaced Elements

	Element Display Roles
	Block-Level
	Inline-Level Elements

	Basic Visual Layout
	Block-Level Layout
	Inline Layout

	Floating Rules
	Positioning Rules
	Types of Positioning
	The Containing Block
	Layout of Absolutely Positioned Elements
	Horizontal layout of nonreplaced absolutely positioned elements
	Vertical layout of nonreplaced absolutely positioned elements
	Horizontal layout of replaced absolutely positioned elements
	Vertical layout of replaced absolutely positioned elements

	Table Layout
	Table Arrangement Rules
	Fixed Table Layout
	Automatic Table Layout
	Collapsing Cell Borders
	Collapsing borders

	Vertical Alignment Within Cells

	Values
	Keywords
	Color Values
	Number Values
	Percentage Values
	Length Values
	Absolute length units
	Relative length units

	URIs
	Aural-Specific Values

	Selectors
	Universal Selector
	Type Selector
	Descendant Selector
	Child Selector
	Adjacent Sibling Selector
	Class Selector
	ID Selector
	Simple Attribute Selector
	Exact Attribute Value Selector
	Partial Attribute Value Selector
	Beginning Substring Attribute Value Selector
	Ending Substring Attribute Value Selector
	Arbitrary Substring Attribute Value Selector
	Language Attribute Selector

	Pseudo-Classes and Pseudo-Elements
	:active
	:after
	:before
	:first-child
	:first-letter
	:first-line
	:focus
	:hover
	:lang
	:link
	:visited

	Property Reference
	Visual Media
	background
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	border
	border-bottom
	border-bottom-color
	border-bottom-style
	border-bottom-width
	border-color
	border-left
	border-left-color
	border-left-style
	border-left-width
	border-right
	border-right-color
	border-right-style
	border-right-width
	border-style
	border-top
	border-top-color
	border-top-style
	border-top-width
	border-width
	bottom
	clear
	clip
	color
	content
	counter-increment
	counter-reset
	cursor
	direction
	display
	float
	font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	height
	left
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin
	margin-bottom
	margin-left
	margin-right
	margin-top
	max-height
	max-width
	min-height
	min-width
	outline
	outline-color
	outline-style
	outline-width
	overflow
	padding
	padding-bottom
	padding-left
	padding-right
	padding-top
	position
	quotes
	right
	text-align
	text-decoration
	text-indent
	text-transform
	top
	unicode-bidi
	vertical-align
	visibility
	white-space
	width
	word-spacing
	z-index

	Tables
	border-collapse
	border-spacing
	caption-side
	empty-cells
	table-layout

	Paged Media
	orphans
	page-break-after
	page-break-before
	page-break-inside
	widows

	Dropped from CSS2.1
	Visual Styles
	font-size-adjust
	font-stretch
	marker-offset
	text-shadow

	Paged Media
	marks
	page
	size

	Aural Styles
	azimuth
	cue
	cue-after
	cue-before
	elevation
	pause
	pause-after
	pause-before
	pitch
	pitch-range
	play-during
	richness
	speak
	speak-header
	speak-numeral
	speak-punctuation
	speech-rate
	stress
	voice-family
	volume

	Index

