
Learning Flash Lite 1.X ActionScript

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Endocer, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in
the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases
mentioned within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and
may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Macromedia Flash 8 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights
Reserved. http://www.on2.com.

Visual SourceSafe is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Mary Leigh Burke

Writing: Tim Statler

Managing Editor: Rosana Francescato

Editing: Linda Adler, Geta Carlson, Evelyn Eldridge, Mary Kraemer, Lisa Stanziano

Production Management: Patrice O’Neill, Kristin Conradi, Yuko Yagi

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman. John Francis, Geeta Karmarkar, Masayo Noda,
Paul Rangel, Arena Reed, Mario Reynoso

Special thanks to Lisa Friendly, Bonnie Loo, Erick Vera, the beta testers, and the entire Flash Lite engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.
San Francisco, CA 94103

Contents
Chapter 1: About Flash Lite 1.x ActionScript 5

Flash Lite 1.x ActionScript overview . 5
Differences between Flash Lite 1.0 and Flash Lite 1.1 ActionScript . . . 6
Flash 4 ActionScript not supported by Flash Lite 1.x ActionScript. . . . 6
Features not available in Flash Lite 1.x ActionScript 7

Chapter 2: Flash 4 ActionScript Primer. .9

Getting and setting movie clip properties .9
Controlling other timelines . 10
Using variables .11
Emulating arrays .11
Working with text and strings . 12
Using the call() function to create functions . 13
Using the eval() function . 17

Chapter 3: Common Scripting Tasks . 19

Determining device and platform capabilities . 19
Opening a web page . 20
Initiating a phone call . 20
Initiating a text or multimedia message . 21
Initiating an e-mail message. 22
Loading external SWF files . 22
Loading external data . 22

Index . 25
3

4 Contents

1

CHAPTER 1

About Flash Lite 1.x
ActionScript
You use ActionScript to add programming logic and interactivity to your Macromedia Flash
Lite applications. The version of ActionScript in Flash Lite 1.0 and 1.1—referred to
collectively as Flash Lite 1.x ActionScript—is a hybrid of Flash 4 ActionScript, plus additional
commands and properties specific the Flash Lite player, such as the ability to initiate phone
calls or text messages, or get time and date information from the device.

This chapter contains the following topics:
Flash Lite 1.x ActionScript overview . 5

Differences between Flash Lite 1.0 and Flash Lite 1.1 ActionScript 6

Flash 4 ActionScript not supported by Flash Lite 1.x ActionScript. 6

Features not available in Flash Lite 1.x ActionScript . 7

Flash Lite 1.x ActionScript overview
Flash Lite 1.x ActionScript consists of the following parts:

Flash Player 4 ActionScript This includes operators (for example, comparison and
assignment operators), movie clip properties (for example, _height, _x, and _y), Timeline
control functions (for example, gotoAndPlay() or stop()), and network functions, such as
the loadVariables() and loadMovie() functions (Flash Lite 1.1 only). For a list of
unsupported Flash 4 ActionScript, see “Flash 4 ActionScript not supported by Flash Lite 1.x
ActionScript” on page 6.

Phone integration commands and properties Flash Lite provides commands that let you,
for example, query the date and time information from the device, initiate a phone call or
short message service (SMS) text message, or start external applications installed on
the device.

Platform capability variables (Flash Lite 1.1 only) These properties provide information
about the capabilities of the device or Flash Lite runtime environment. For example, the
_capLoadData variable indicates if your application can load data over the network.
5

fscommand2() function Like the fscommand() function, you use fscommand2() to
communicate with the host environment or system—in this case, the mobile phone or device.
The fscommand2() function provides enhancements to fscommand(), including the ability
to pass an arbitrary number of arguments and to retrieve immediate return values (rather than
having to wait until the next frame, as with fscommand()).

Differences between Flash Lite 1.0 and
Flash Lite 1.1 ActionScript
The following Flash Lite 1.1 ActionScript features are not available in Flash Lite 1.0:

■ Network access or network status information. For example, in Flash Lite 1.0 you cannot
use the loadVariables() or loadMovie() functions to load external data or SWF files,
or the various fscommand2() commands for determining a device’s connection signal
strength or the status of a network request.

■ Getting time and date information from the device.
■ Platform capability variables, which provide information about the capabilities of the

Flash Lite platform and of the device.
■ The fscommand2() function and its associated commands, such as SetSoftKeys and

FullScreen.
■ The scroll and maxscroll text field properties.

Flash 4 ActionScript not supported by
Flash Lite 1.x ActionScript
The following Flash 4 ActionScript features are unsupported, or only partially supported, in
Flash Lite 1.x ActionScript:

■ The startDrag() and stopDrag() functions.
■ Flash Lite 1.x ActionScript supports a subset of the button events supported in Flash

Player 4. For more information about handling button events, see Chapter 1, “Creating
Interactivity and Navigation” in Developing Flash Lite Applications.

■ Flash Lite 1.x ActionScript supports a subset of key events supported in Flash Player 4.
For more information about supported key events in Flash Lite, see Chapter 1, “Creating
Interactivity and Navigation” in Developing Flash Lite Applications.

■ The _dropTarget property.
6 About Flash Lite 1.x ActionScript

■ The _soundBufTime property.
■ The _url property.
■ The String() conversion function.

Features not available in Flash Lite 1.x
ActionScript
Because Flash Lite player is based on an older version of Flash Player, it does not support all
the programming features available in more recent releases of Flash Player or other
programming languages that you might be familiar with. This section discusses programming
features not available in Flash Lite 1.x ActionScript and available alternatives and
work-arounds.

User-defined functions Flash Lite 1.x does not support the ability to define and call
custom functions. However, you can use the call() function to execute code that resides on
an arbitrary frame in the timeline. For more information, see “Using the call() function to
create functions” on page 13.

Native arrays, objects, or other complex data types Flash Lite 1.x does not support
native array data structures or other complete data types. However, you can emulate arrays
using pseudo-arrays, a technique that involves using the eval() function to dynamically
evaluate concatenated strings. For more information, see “Emulating arrays” on page 11.

Runtime loading of external image or sound files Unlike the desktop version of Flash
Player, Flash Lite 1.x ActionScript cannot load external JPEG files or MP3 files. In Flash Lite
1.1 you can use the loadMovie() function to load external SWF files. For more information,
see “Loading external SWF files” on page 22.
Features not available in Flash Lite 1.x ActionScript 7

8 About Flash Lite 1.x ActionScript

2

CHAPTER 2

Flash 4 ActionScript Primer
Flash Lite 1.x ActionScript is based on the version of ActionScript that was first available in
Flash Player 4. Consequently, several programming features available in later versions of Flash
Player (for desktop systems) are not available to Flash Lite 1.x applications.

If you’re unfamiliar with Flash 4 ActionScript syntax and features or if you’ve forgotten some
of the details from previous Flash development work, this chapter provides a primer on using
Flash 4 ActionScript in your Flash Lite applications.

This chapter contains the following topics:
Getting and setting movie clip properties . 9

Controlling other timelines . 10

Using variables . 11

Emulating arrays . 11

Working with text and strings . 12

Using the call() function to create functions . 13

Using the eval() function .17

Getting and setting movie clip properties
To get or set a movie clip property (if settable), you can use dot syntax or the setProperty()
or getProperty() functions. You can also use the tellTarget() function.

To use dot syntax, specify the movie clip instance name, followed by a dot (.) and then the
property name. For example, the following code gets the x screen coordinate (represented by
the _x movie clip property) of the movie clip named cartoonArea, and assigns the result to a
variable named x_pos.
x_pos = cartoonArea._x;

The following example is equivalent to the previous example, but uses the getProperty()
function to retrieve the movie clip’s x position:
x_pos = getProperty(cartoonArea, _x);
9

The setProperty() function lets you set a property of a movie clip instance, as shown in the
following example:
setProperty(cartoonArea, _x, 100);

The following example is equivalent to the previous example but uses dot syntax:
cartoonArea._x = 100;

You can also get or set movie clip properties from within a tellTarget() statement. The
following code is equivalent to the setProperty() example shown previously:
tellTarget("/cartoonArea") {

_x = 100;
}

For more information about the tellTarget() function, see “Controlling other timelines”
on page 10.

Controlling other timelines
To specify a path to a timeline, use slash syntax (/) combined with dots (..) to build the path
reference. You can also use _levelN, _root, or _parent from Flash 5 notation to refer to,
respectively, a specific movie level, the application’s root timeline, or the parent timeline.

For example, suppose you had a movie clip instance named box on your SWF file’s main
timeline. The box instance, in turn, contains another movie clip instance named cards. The
following examples target the movie clip cards from the main timeline:
tellTarget("/box/cards")
tellTarget("_level0/box/cards")

The following example targets the main timeline from the movie clip cards:
tellTarget("../../cards")
tellTarget("_root")

The following example targets the parent movie clip cards:
tellTarget("../cards")
tellTarget("_parent/cards")
10 Flash 4 ActionScript Primer

Using variables
To specify a variable on a timeline, use slash syntax (/) combined with dots (..) and colons (:).
You can also use the dot notation.

The following code refers to the car variable on the main timeline:
/:car
_root.car

The following example shows the car variable in a movie clip instance that resides on the
main timeline:
/mc1/mc2/:car
_root.mc1.mc2.car

The following example shows the car variable in a movie clip instance that resides on the
current timeline:
mc2/:car
mc2.car

Emulating arrays
Arrays are useful for creating and manipulating ordered lists of information such as variables
and values. However, Flash Lite 1.1 does not support native array data structures. A common
technique in Flash Lite (and Flash 4) programming is to emulate arrays with string processing.
An emulated array is also called a pseudo-array. The key to pseudo-array processing is the
eval() ActionScript function, which lets you access variables, properties, or movie clips by
name. For more information, see “Using the eval() function” on page 17.

A pseudo-array typically consists of two or more variables that share the same base name,
followed by a numeric suffix. The suffix is the index for each array element.

For example, suppose you create the following ActionScript variables:
color_1 = "orange";
color_2 = "green";
color_3 = "blue";
color_4 = "red";

You can then use the following code to loop over the elements in the pseudo-array:
for (i = 1; i <=4; i++) {

trace (eval ("color_" add i));
}

Emulating arrays 11

In addition to letting you reference existing variables, you can also use the eval() function on
the left side of a variable assignment to create variables at runtime. For example, suppose you
want to maintain a list of high scores as a user plays a game. Each time the user completes a
turn, you add their score to the list:
eval("highScore" add scoreIndex) = currentScore;
scoreIndex++;

Each time this code executes, it adds a new item to the list of high scores and then increments
the scoreIndex variable, which determines each item’s index in the list. For instance, you
might end up with the following variables:
highScore1 = 2000
highScore2 = 1500
highScore3 = 3000

Working with text and strings
Flash Lite provides some basic ActionScript commands and properties for working with text.
You can get and set the values of text fields, concatenate strings, URL-encode or URL-decode
text strings, and create scrolling text fields.

This section contains the following topics:

■ “Concatenating strings” on page 12
■ “Scrolling text” on page 12

Concatenating strings
To concatenate strings in Flash Lite, you use the add operator, as the following example
shows:
city = "Boston";
team = "Red Sox";
fullName = city add " " add team;
// Result:
// fullName = "Boston Red Sox"

Scrolling text
You can use the scroll property of dynamic and input text fields to get or set the field’s
current scroll position. You can also use the maxscroll position to determine a text field’s
current scroll position relative to the maximum scroll position. For an example of how to
create a scrolling text field, see “Creating scrolling text (Flash Professional Only)” in
Developing Flash Lite Applications.
12 Flash 4 ActionScript Primer

Using the call() function to create
functions
You can’t define or call custom functions in Flash Lite as you can in Flash Player 5 and later.
However, you can use the call() ActionScript function to execute code that resides on an
arbitrary frame in the timeline. This technique lets you encapsulate commonly used code in a
single location, making it easier to maintain.

The call() function takes a frame number or frame label as a parameter. For example, the
following ActionScript calls the code located on the frame labeled moveUp:
call("moveUp");

The call() function operates synchronously; any ActionScript that follows a call()
function call won’t execute until all of the ActionScript on the specified frame finishes
executing.

To call ActionScript on another frame:

1. In a new Flash document, insert a keyframe on Frame 10.

2. With the new keyframe selected, open the Actions panel (Window > Actions), and type the
following code:
trace("Hello from frame 10");

3. Select the keyframe on Frame 1, and in the Actions panel, type the following code:
stop();
call(10);

This code stops the playhead on Frame 1, and then calls the code on Frame 10.
4. Test the application in the emulator and open the Output panel (Window > Output).

You should see “Hello from frame 10” displayed in the Output panel.
Using the call() function to create functions 13

You can also call code that resides on another timeline, such as a movie clip’s timeline. To
execute the code, specify the movie clip instance name followed by a colon, and then the
frame number or label. For example, the following ActionScript calls the code that resides on
the frame labeled moveUp in the movie clip instance named callClip:
call("callClip:moveUp");

This technique is often used to create call clips or function clips—movie clips whose sole
purpose is to encapsulate regularly used code. A call clip contains a keyframe for each function
you want to create. You typically label each keyframe according to its purpose. Macromedia
also recommends that you create a new layer for each new keyframe, and that you give each
layer the same name as the frame label you assign to the keyframe.

The following figure shows the Timeline of an example call clip. The first keyframe of a call
clip always contains a stop() action, which ensures that the playhead doesn’t continually loop
over the frames in its Timeline. Subsequent keyframes contain code for each “function.” Each
function keyframe is labeled to identify what it does. To make editing and viewing the call
clip easier, each function keyframe is typically inserted on a separate layer.

The following procedure explains how to create and use a call clip.

To create and use a call clip:

1. In Flash Professional 8, create a new document from the Flash Lite 1.1 Symbian Series 60
document template.

2. Select Insert > New Symbol.

3. In the Create New Symbol dialog box, type Call Clip in the Name text box, and then
click OK.

The movie clip opens in editing mode.

Frame labels

Each keyframe contains code.

First keyframe contains stop() action
14 Flash 4 ActionScript Primer

4. Click the Add New Layer button the Timeline window twice to insert two new layers.

Name the top layer Actions, the second layer function1, and the third layer function2.
5. Insert a keyframe on Frame 2 of the function1 layer, and another keyframe on Frame 3 of

the function2 layer, as the following figure shows:

6. Select the keyframe on the Actions layer and open the Actions panel.

7. Add a stop() action to the Actions panel.

8. Select the keyframe on Frame 2 of the function1 layer and do the following:

a. In the Property inspector, type function1 in the Frame Label text box.

b. In the Actions panel (Window > Actions), type the following code:
trace("function1 was called.");

9. Select the keyframe on Frame 3 of the function2 layer and do the following:

a. In the Property inspector, type function2 in the Frame Label text box.

b. In the Actions panel (Window > Actions), type the following code:
trace("function2 was called.");

10. Press Control+E (Windows) or Command+E (Macintosh) to return to the main Timeline.
Using the call() function to create functions 15

11. Set your document’s view to include the work area around the Stage by selecting View >
Work Area.

Because the call clip doesn’t need to be visible to the user, you can place it in the work area.
12. Open the Library panel (Window > Library) and drag the Call Clip symbol to the work

area around the Stage.

The call clip doesn’t contain any visual elements so it appears on the Stage as a small circle,
representing the movie clip’s registration point.

13. In the Property inspector, type callClip in the Instance Name text box.

14. In the Timeline, select Frame 1 on the layer named ActionScript.

15. In the Actions panel, enter the following code:
call("callClip:function1");
call("callClip:function2");

16. Test your application in the emulator (Control > Test Movie).

You should see the following text in the Output panel:
function1 was called.
function2 was called.

T
IP To make your call clip more easily identifiable on the Stage, add some text or other

visual element to the first keyframe in the call clip’s Timeline.

Call clip instance

Work area around the Stage
16 Flash 4 ActionScript Primer

Using the eval() function
The eval() function lets you dynamically reference variables and movie clip instances at
runtime. The eval() function takes a string expression as a parameter and returns either the
value of the variable represented by that expression or a reference to a movie clip.

For example, the following code evaluates the value of the name ActionScript variable and
assigns the result to nameValue:
name = "Jack";
nameValue = eval("name");
// result: nameValue = "Jack"

The eval() function is often used with for() loops and the add (string concatenation)
operator to create string-based arrays, because Flash Lite doesn’t support native array data
structures. For more information, see “Emulating arrays” on page 11.

You can also use eval() to reference movie clip instances by name. For example, suppose you
had three movie clips named clip1, clip2, and clip3. The following for() loop increments
the x position of each clip by 10 pixels:
for(index = 1; index <= 3; index++) {

eval("clip" add index)._x += 10
}

Using the eval() function 17

18 Flash 4 ActionScript Primer

3

CHAPTER 3

Common Scripting Tasks
This chapter discusses common Flash Lite scripting tasks for working with the user’s device.
These include, for example, getting device capability information, initiating phone calls and
text messages, and determining network status.

This chapter contains the following topics:
Determining device and platform capabilities . 19

Opening a web page . 20

Initiating a phone call . 20

Initiating a text or multimedia message . 21

Initiating an e-mail message. 22

Loading external SWF files . 22

Loading external data . 22

Determining device and platform
capabilities
Flash Lite 1.1 includes a number of ActionScript variables that provide information about
features and capabilities available to Flash Lite applications running on a particular device. For
example, the _capLoadData variable indicates if the device supports loading external data,
and the _capSMS variable indicates if the device supports sending SMS (short message service)
messages. For a full list of capability variables, see “Capabilities” in the Flash Lite 1.x
ActionScript Language Reference.
19

Typically, you use capability variables to determine if a device supports a specific feature
before attempting to use that feature. For example, suppose that you wanted to develop an
application that downloads data from a web server using the loadVariables() function.
Before attempting to load the data, you can first check the value of the _capLoadData
variable to determine if the device supports that feature, as follows:
if(_capLoadData == 1) {

loadVariables("http://www.macromedia.com/data.txt");
} else {

status_message = "Sorry, unable to load external data."
}

Flash Lite defines capability variables on the root timeline of the main SWF file. So to access
these variables from another timeline—for example, from within a movie clip’s timeline—you
need to qualify the path to the variable. For instance, the following example uses a slash (/) to
provide the fully qualified path to the _capSMS variable.
canSendSMS = /:_capSMS

Opening a web page
You use the getURL() command to open a web page in the device’s web browser. This is the
same way you open a web page from a desktop Flash application. For example, the following
opens the Macromedia web page:
getURL("http:www.macromedia.com");

Flash Lite processes only one getURL() action per frame or per event handler. Certain
handsets restrict the getURL() action to keypress events only, in which case the getURL() call
is processed only if it is triggered within a keypress event handler. Even under such
circumstances, only one getURL() action is processed per keypress event handler. The
following code, attached to a button instance on the Stage, opens a web page when the user
presses the Select button on the device:
on (keyPress "<Enter>"){

getURL("http://www.macromedia.com");
}

Initiating a phone call
To initiate a phone call from a Flash Lite application, you use the getURL() function.
Typically, you use this function to open a web page, but in this case you specify tel: as the
protocol (in place of http), and then provide the phone number you wish the phone to dial.
When you call this function, Flash Lite displays a confirmation dialog box asking the user for
permission to make the call to the specified number.
20 Common Scripting Tasks

The following code attempts to initiate call to 555-1212:
getURL("tel:555-1212");

Flash Lite only processes one getURL() action per frame or per event handler. Certain
handsets restrict the getURL() action to keypress events only, in which case the getURL() call
is processed only if it is triggered within a keypress event handler. Even under such
circumstances, only one getURL() action is processed per keypress event handler. The
following example starts a phone call when the user presses the Select button on the device:
on (keyPress "<Enter>"){

getURL("tel:555-1212");
}

Initiating a text or multimedia message
You can use Flash Lite to initiate a short message service (SMS) or multimedia message service
(MMS) message. To initiate an SMS or MMS message in a Flash Lite application, you use the
getURL() command, passing it the sms: or mms: protocols in place of the standard http
protocol, and then the phone number to which you want to send the message.
getURL("sms:555-1212");

You can optionally specify the message body in the URL query string, as the following
code shows:
getURL("sms:555-1212?body=More info please");

To initiate an MMS message, you use the mms: protocol instead of sms:, as follows:
getURL("mms:555-1212");

Flash Lite processes only one getURL() action per frame or per event handler. Certain
handsets restrict the getURL() action to keypress events only, in which case the getURL() call
is processed only if it is triggered within a keypress event handler. Even under such
circumstances, only one getURL() action is processed per keypress event handler. The
following example initiates an SMS message when the user presses the Select button on
the device:
on (keyPress "<Enter>"){

getURL("sms:555-1212");
}

N
O

T
E

It’s not possible to specify an attachment for the MMS message from Flash Lite.
Initiating a text or multimedia message 21

Initiating an e-mail message
You can use Flash Lite to initiate an e-mail message. To initiate an e-mail message, you use the
getURL() command and pass it the mailto: protocol, followed by the recipient’s e-mail
address. You can optionally specify the message subject and body in the URL’s query string,
as follows:
getURL("mailto:mobile-developer@macromedia.com?subject=Flash Lite");

To specify just the message body in the query string, use the following code:
getURL("mailto:mobile-developer@macromedia.com?body=More+info+please");

Loading external SWF files
The loadMovie() function lets you load SWF files from a network or local file. This feature
is only available in Flash Lite 1.1 and later. The following caveats apply when you load
external SWF files:

■ Flash Lite can load other Flash Lite 1.0 or Flash Lite 1.1 SWF files, or Flash 4-formatted
SWF files or earlier. If you attempt to load a SWF file in another format (for example, a
Flash Player 6 SWF file), Flash Lite will generate a runtime error.

■ Flash Lite cannot directly load external image files, such as JPEG or GIF images. To load
these types of media, you need to convert the image data to the SWF file format. You can
do this “manually” with the Flash authoring tool by importing the image file into a new
document, and then exporting the file to a Flash Lite or Flash 4 SWF file. There are also
third-party utilities that can perform this type of conversion for you automatically.

For more information about loading SWF files, see loadMovie() in Flash Lite 1.x ActionScript
Language Reference.

Loading external data
To load external data into a Flash Lite application, you use the loadVariables() function.
You can load data over the network (from an HTTP address) or from the local file system.
This feature is available only in Flash Lite 1.1 and later.

This section demonstrates how to use the loadVariables() function to load data from an
external file and display that data in dynamic text fields. First you’ll create the data file, a text
file that contains five name-value pairs separated by ampersand (&) symbols. Then you’ll
create the Flash Lite application that loads and displays the data contained in the text file.
22 Common Scripting Tasks

This example assumes that the data file and the SWF are both located in the same folder,
either on your computer (when you test in the emulator) or on the device’s memory card
(when you test on an actual device). To test the application on the device, you must do one of
the following:

■ Transfer the text file to your device and put it in the same folder as the SWF file.
■ Post the text file to a URL on a web server (for example, www.your-server.com/data.txt).

Then modify the loadVariables() call in the sample application to point to that URL,
as follows:
loadVariables("http://www.your-server.com/data.txt", "data_clip");

For an example of an application that loads data over the network, see the “Flash Lite
news reader” in Flash Samples.

To create the data file:

1. Using a text editor (for example, Notepad or SimpleText), create a file that contains the
following text:
item_1=Hello&item_2=Bonjour&item_3=Hola&item_4=Buon+giorno&item_5=G'day

2. Save the file as data.txt.

To create the Flash Lite application to load the data:

1. Create a new document from the Flash Lite 1.1 Symbian Series 60 document template.

For more information about using Flash Lite document templates, see “Using Flash Lite
document templates (Flash Professional Only)” in Getting Started with Flash Lite.

2. Save the file as dataloading.fla to the same folder that contains the text file (data.txt) that
you created previously.

3. In the Timeline, select Frame 1 of the layer named Content.

4. Using the Text tool, create five dynamic text fields on the Stage, as the following
figure shows:
Loading external data 23

5. Select the first (top-most) text field, and in the Property inspector, type item_1 in the Var
text box.

This variable name corresponds to the name of the first variable defined in the data.txt file
you created previously (item_1=Hello).

6. In the same manner as described in the previous two steps, give the remaining four text
fields the variable names item_2, item_3, item_4, and item_5.

7. Shift-select each text field so that they’re all selected, and select Modify > Convert To
Symbol.

8. In the Convert to Symbol dialog box, select Movie Clip as the symbol type and click OK.

9. Select the movie clip you just created and, in the Property inspector, type data_clip in the
Instance Name text box.

10. In the Timeline, select Frame 1 of the Actions layer and open the Actions panel
(Window > Actions).

11. Type the following code in the Actions panel:
loadVariables("data.txt", "data_clip");

12. Save your changes (File > Save) and test the application in the emulator (Control > Test
Movie).

You should see each text field populated with the data in the text file, as the following
figure shows:
24 Common Scripting Tasks

Index
A
arrays, emulating with strings 11

C
call() function, using 13
concatenate strings 12

E
e-mail message, starting 22
eval() function, using 17

F
Flash Lite 1.x ActionScript

differences between 1.0 and 1.1 6
features not available in 7
overview 5
unsupported Flash 4 ActionScript 6

function clips, creating 13
functions, emulating with call() 13

G
getURL() function

opening web pages with 20
starting a multimedia message with 21
starting a phone call with 20
starting a text message with 21
starting an e-mail message with 22

I
initiate messages 21
initiate phone calls 20

L
load external data 22
load external SWF files 22
loadMovie() function, using 22
loadVariables() function, using 22

M
movie clips

getting and setting properties 9
referencing dynamically 17

multimedia message, starting 21

O
open a web page 20

P
phone call, starting 20
platform capability variables, about 19

S
scrolling text, creating 12
strings, concatenating 12

T
text message, starting 21
timelines, controlling with ActionScript 10
25

V
variables

dot syntax and slash syntax 11
referencing 11
referencing dynamically 17

W
web page, opening 20
26 Index

	Contents
	About Flash Lite 1.x ActionScript
	Flash Lite 1.x ActionScript overview
	Differences between Flash Lite 1.0 and Flash Lite 1.1 ActionScript
	Flash 4 ActionScript not supported by Flash Lite 1.x ActionScript
	Features not available in Flash Lite 1.x ActionScript

	Flash 4 ActionScript Primer
	Getting and setting movie clip properties
	Controlling other timelines
	Using variables
	Emulating arrays
	Working with text and strings
	Concatenating strings
	Scrolling text

	Using the call() function to create functions
	Using the eval() function

	Common Scripting Tasks
	Determining device and platform capabilities
	Opening a web page
	Initiating a phone call
	Initiating a text or multimedia message
	Initiating an e-mail message
	Loading external SWF files
	Loading external data

	Index

